
R

Spartan-3 Generation
Configuration User
Guide
Extended Spartan-3A,
Spartan-3E, and Spartan-3
FPGA Families

UG332 (v1.5) March 16, 2009

Spartan-3 Generation Configuration User Guide www.xilinx.com UG332 (v1.5) March 16, 2009

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2006–2009, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All
other trademarks are the property of their respective owners.

R

http://www.xilinx.com

UG332 (v1.5) March 16, 2009 www.xilinx.com Spartan-3 Generation Configuration User Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

12/05/06 1.0 Initial release.

02/26/07 1.1 Added configuration information for the Spartan-3AN FPGA family. Added Chapter 10,
“Internal Master SPI Mode” describing how a Spartan®-3AN FPGA configures from its
internal In-System Flash memory. Increased ConfigRate settings for Spartan-3A/3AN
FPGAs based on improved data setup time (Table 4-11 and Table 5-8). Added links to
new reference designs using the Spartan-3E and Spartan-3A Starter Kit boards.

05/23/07 1.2 Added Spartan-3A DSP family configuration information. Added “Bitstream Format,”
page 39. Added “Indirect SPI Programming using iMPACT,” page 134. Updated
“Limitations when Reprogramming via JTAG if FPGA Set for BPI Configuration,”
page 171. Updated JTAG ID values in Table 12-4, page 246. Added more information to
“Configuration Watchdog Timer (CWDT) and Fallback,” page 285.

11/21/07 1.3 Noted in “Non-Continuous SelectMAP Data Loading” that “Deasserting CSI_B” is not
supported in the Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA families. Added
“Indirect Parallel Flash Programming Using iMPACT”. Updated Figure 5-14 to
showD[7:0] inputs clocked on rising CCLK edge. Added “Byte Swapping” description.
Added JTAG TAP Controller State descriptions in Table 9-2. Updated Spartan-3AN
FPGA Variant Select options in Table 10-2. Updated Figure 14-20 and description to note
that MultiBoot Variant Select is based on Read Command from GENERAL2 register
when NEWMODE=1, not BOOTVSEL bits in MODE_REG. Updated software version
references throughout. Updated documentation links throughout.

07/01/08 1.4 Added “Schedule of Figures” and “Schedule of Tables”. Updated STMicroelectronics
and Intel Flash memory references to Numonyx. Noted HSWAP_EN is a dedicated pin
in the Spartan-3 family. Noted that Extended Spartan-3A family FPGA DOUT also
functions as BUSY as in Spartan-3/3E FPGAs. Noted that Extended Spartan-3A family
FPGAs do not support 1.8V configuration due to VCCO2T requirement of 2.0V. Updated
references to iMPACT indirect Flash programming support using Spartan-3 generation
devices.

03/16/09 1.5 Updated nomenclature for Extended Spartan-3A family. Added fifth paragraph below
“Overview and Design Considerations,” page 27. Added “Additional Resources,”
page 47, and “VCCAUX Level,” page 77. Revised Table 5-6, page 152, Figure 5-6,
page 159, and Figure 5-14, page 169. Revised Table 14-8, page 278. Added Chapter 17,
“Configuration Details” and Chapter 18, “Readback”.

http://www.xilinx.com
http://www.xilinx.com/spartan3an
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm
http://www.xilinx.com/spartan3adsp

Spartan-3 Generation Configuration User Guide www.xilinx.com UG332 (v1.5) March 16, 2009

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 5
UG332 (v1.5) March 16, 2009

Revision History . 3

Schedule of Figures . 15

Schedule of Tables . 21

Chapter 1: Overview and Design Considerations
Design Considerations . 27

Will the FPGA load configuration data itself from external or internal memory
or will an external processor/microcontroller download configuration data?. 28

Does the application use a single FPGA or multiple FPGAs? . 32
Is the “easiest possible” configuration solution the more important consideration? . . . 33
Will the application require a nonvolatile FPGA? . 34
Is the “lowest cost” solution the more important consideration? 34
Is “fastest possible configuration time” the more important consideration? 34
Will the FPGA or FPGAs be loaded with a single configuration image

or loaded with multiple images? . 35
What I/O voltages are required in the end application? . 35
Will the FPGA application need to store nonvolatile data? . 35
Should the FPGA I/O pins be pulled High via resistors during configuration?. 35
Does the application target a specific FPGA density or should it support migrating to

other FPGA densities in the same package footprint? . 36
What is the anticipated production lifetime for the end product? 37
Do you want to protect your FPGA bitstream against unauthorized duplication?. 38
Do you want to load multiple FPGAs with the same configuration bitstream? 38
Will the FPGA be used in a PCI™ application? . 38
Where to go for debugging support . 38

FPGA Configuration Bitstream Sizes . 38
Uncompressed Bitstream Image Size . 38
Bitstream Format . 39

Synchronization Word . 39
Array ID . 40
Data Frames . 40
CRC. 41

Bitstream Compression . 41
Packet Format . 42

Setting Bitstream Options, Generating an FPGA Bitstream 42
ISE Software Project Navigator . 42
BitGen Command Line Utility . 46

Additional Resources . 47
Data Sheets . 47
Application Notes . 47

Chapter 2: Configuration Pins and Behavior during Configuration
General Configuration Control Pins . 49

Table of Contents

http://www.xilinx.com

6 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Choose a Configuration Mode: M[2:0] . 50
M[2:0] Functional Differences between Spartan-3 Generation Families 50
Extended Spartan-3A Family and Spartan-3E FPGA Families . 51
Spartan-3 FPGA Family . 51
Defining M[2:0] after Configuration for Minimum Power Consumption. 51

DONE Pin . 52
Associated Bitstream Generator (BitGen) Options . 52
DONE Synchronizes Multiple FPGAs in a Daisy Chain or Broadside (Ganged)

Configuration . 54
Program or Reset FPGA: PROG_B . 56
Configuration Clock: CCLK . 56

CCLK Differences between Spartan-3 Generation FPGA Families 56
CCLK Design Considerations . 58
ConfigRate: Bitstream Option for CCLK. 60
Persist: Reserve CCLK As Part of SelectMAP Interface . 60
Extended Spartan-3A Family and Spartan-3E FPGA Families . 61
Spartan-3 FPGA Family . 61

Initializing Configuration Memory, Configuration Error: INIT_B. 61
After Configuration . 61
Extended Spartan-3A Family FPGA Post-Configuration CRC . 62
Extended Spartan-3A Family and Spartan-3E FPGA Families . 62
Spartan-3 FPGA Family . 62

Pull-Up Resistors During Configuration . 62
Pins with Dedicated Pull-Up Resistors during Configuration . 62
Pins with Optional Pull-Up Resistors during Configuration . 64
FPGA Pull-Up Resistor Values . 64

Pin Descriptions . 65
Pin Behavior During Configuration . 69

Extended Spartan-3A Family FPGA . 70
Spartan-3E FPGAs . 71
Spartan-3 FPGAs . 72

Default I/O Standard During Configuration . 72
Lowering VCCO_2 After Configuration in Extended Spartan-3A Family 73

Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins 75
Dedicating the HSWAP, PUDC_B, M[2:0], and VS[2:0] Pins . 75
Reusing HSWAP, PUDC_B, M[2:0], and VS[2:0] After Configuration 75
Spartan-3E HSWAP Considerations . 75
Dual-Purpose Pins Become User I/O . 76

VCCAUX Level . 77

Chapter 3: Master Serial Mode
Master Serial Mode Connections . 83
Voltage Compatibility. 84

Platform Flash PROM . 84
FPGA . 84

Spartan-3E and Spartan-3A/3A DSP FPGAs with VCCAUX at 2.5V 84
Spartan-3 FPGAs. 84

JTAG Interface . 84
Supported Platform Flash PROMs . 85
CCLK Frequency . 86
Daisy-Chained Configuration . 86

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 7
UG332 (v1.5) March 16, 2009

R

Ganged or Broadside Configuration . 86
JTAG Interface . 88
Storing Additional User Data in Platform Flash . 88
Generating the Bitstream for a Master Serial Configuration 90

ConfigRate: CCLK Frequency . 90
StartupClk: CCLK . 90
DriveDone: Actively Drive DONE Pin . 90
GTS_cycle: Global Three-State Release Timing for Daisy Chains 90

Preparing a Platform Flash PROM File . 90
iMPACT . 90

Platform Flash In-System Programming via JTAG using iMPACT 95
Prepare Board for Programming . 95
Programming via iMPACT. 95

Production Programmers . 99
Additional Information . 99

Chapter 4: Master SPI Mode
Master SPI Mode Differences between

Spartan-3 Generation FPGA Families. 104
Choosing a Compatible SPI Serial Flash . 104

SPI Flash PROM Density Requirements . 107
FPGA Connections to the SPI PROM . 108
Voltage Compatibility. 112
Power-On Precautions if System 3.3V Supply is Last in Sequence 112

Extended Spartan-3A Family and Configuration Watchdog Timer 114
CCLK Frequency . 114
SPI Flash Interface after Configuration . 116

If Not Using SPI Flash after Configuration . 116
If Using SPI Flash Interface after Configuration . 117

SPI Master Interface using FPGA Logic . 117
Accessing SPI Flash PROM. 118
Accessing other SPI-compatible Peripherals. 118

Daisy-Chained Configuration . 119
Ganged or Broadside Configuration . 120
Programming Support. 120

Third-Party Programmer (Off-board Programming) . 121
Direct, SPI In-System Programming . 122

Requirements for iMPACT Direct Programming Support . 122
Programmable Cable Connections . 122
Forcing FPGA SPI Bus Pins to High-impedance During Programming 123

Direct, In-system SPI Programming Using FPGA as Intermediary 124
Indirect, In-System SPI Programming Using FPGA JTAG Chain 124

Generating the Bitstream for a Master SPI Configuration 125
ConfigRate: CCLK Frequency . 125
StartupClk: CCLK . 125
DriveDone: Actively Drive DONE Pin . 125
DONE_cycle: Daisy Chains with Spartan-3E Master . 126
GTS_cycle: Global Three-State Release Timing for Daisy Chains 126

http://www.xilinx.com

8 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Preparing an SPI PROM File . 126
iMPACT . 126
PROMGen . 130

Direct SPI Programming using iMPACT . 131
Prepare Board for Programming . 131
Programming via iMPACT. 131

Indirect SPI Programming using iMPACT . 134
Programming Setup. 134
Using iMPACT . 134

Serial Peripheral Interface (SPI) Configuration Timing . 138
Multi-Package Layout . 141
Saving Power . 142

Deassert CSO_B to Enter Standby Mode . 142

Chapter 5: Master BPI Mode
Overview . 143
Master BPI Mode Differences between Spartan-3 Generation FPGA

Families . 145
PROM Address Generation . 146
Voltage Compatibility. 150
Compatible Parallel NOR Flash Families . 150
Required Parallel Flash PROM Densities . 151
CCLK Frequency . 152
Using the BPI Interface after Configuration . 153
Precautions Using x8/x16 Flash PROMs . 154
Daisy Chaining . 155

Parallel Daisy Chaining. 156
Serial Daisy Chaining (Extended Spartan-3A Family FPGAs Only) 157

Using Xilinx Platform Flash PROMs with Master BPI Mode 158
ConfigRate Settings Using Platform Flash . 160

Generating the Bitstream for a Master BPI Configuration 160
ConfigRate: CCLK Frequency . 160
StartupClk: CCLK . 160
DriveDone: Actively Drive DONE Pin . 160
GTS_cycle: Global Three-State Release Timing for Daisy Chains 161

Preparing a Parallel NOR Flash PROM File . 161
iMPACT . 161

Indirect Parallel Flash Programming Using iMPACT. 166
In-System Programming Support . 166
Power-On Precautions if 3.3V Supply is Last in Sequence 167

Extended Spartan-3A Family and Configuration Watchdog Timer 168
Byte Peripheral Interface (BPI) Timing . 169
Limitations when Reprogramming via JTAG if FPGA Set for BPI

Configuration. 171
Spartan-3E BPI Mode Interaction with Right and Bottom Edge

Global Clock Inputs . 171
BPI Data Ordering . 172

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 9
UG332 (v1.5) March 16, 2009

R

Chapter 6: Master Parallel Mode

Chapter 7: Slave Parallel (SelectMAP) Mode
Voltage Compatibility. 180
Daisy Chaining . 181

Spartan-3E/Extended Spartan-3A Family Slave Parallel Daisy Chains 181
Slave Parallel Daisy Chains Using Any Modern Xilinx FPGA Family 182

SelectMAP Data Loading . 182
CSI_B . 182
RDWR_B . 183
CCLK . 183
BUSY . 183

Continuous SelectMAP Data Loading . 183
Non-Continuous SelectMAP Data Loading . 185

Deasserting CSI_B . 185
Pausing CCLK . 186

SelectMAP ABORT . 186
Configuration Abort Sequence Description . 187
Readback Abort Sequence Description . 187
ABORT Status Word . 188
Resuming Configuration or Readback After an Abort . 189

Persist . 190
SelectMAP Reconfiguration . 190
SelectMAP Data Ordering . 191

Byte Swapping . 191

Chapter 8: Slave Serial Mode
Voltage Compatibility. 195
Daisy Chaining . 195

Chapter 9: JTAG Configuration Mode and Boundary-Scan
JTAG Cable Voltage Compatibility . 198
JTAG Device ID . 199
JTAG User ID . 199
Using JTAG Interface to Communicate to a Configured FPGA Design 199
Boundary-Scan for Spartan-3 Generation FPGAs

Using IEEE Standard 1149.1 . 199
Test Access Port (TAP) . 200
TAP Controller . 202
Boundary-Scan Architecture . 203

Boundary-Scan Register . 203
Bit Sequence Boundary-Scan Register. 204
Instruction Register. 205
BYPASS Register. 206
Identification (IDCODE) Register . 206
JTAG Configuration Register (Boundary-Scan) . 206
USERCODE Register. 207

http://www.xilinx.com

10 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

USER1 and USER2 Registers. 207
Using Boundary-Scan in Spartan-3 Generation FPGAs . 207

Programming Cables and Headers . 207
Programming an FPGA Using JTAG . 208

Mode Pin Considerations when Programming a Spartan-3AN FPGA
via JTAG using iMPACT . 213

Configuration via JTAG using an Embedded Controller . 213

Chapter 10: Internal Master SPI Mode
Internal Flash Memory . 216
Mode Select Pins, M[2:0] . 216
Variant Select Pins, VS[2:0] . 216
Supply Voltage Requirements . 217

VCCAUX . 217
VCCO_2 . 217
Sequencing . 217

Accessing the Internal SPI Flash PROM After Configuration. 217
No Configuration Daisy Chains in Internal Master SPI Mode 218
Generating the Bitstream for a Master SPI Configuration 218

ConfigRate: CCLK Frequency . 218
StartupClk: CCLK . 218
DriveDone: Actively Drive DONE Pin . 218

Programming a Spartan-3AN FPGA Using JTAG . 219
Preparing an In-System Flash Programming File . 220

iMPACT . 220
PROMGen . 226

Programming Spartan-3AN FPGAs Using iMPACT . 228
Third-Party Programmer Support. 228

BPM Microsystems . 228
Production Hardware Programming Solutions . 228
Programming Socket Modules and Software . 229

Chapter 11: Configuration Bitstream Generator (BitGen) Settings

Chapter 12: Sequence of Events
Overview . 239
Setup for Configuration (Steps 1-3) . 239

Wake from Reset . 239
Power-On Reset (POR) . 240
PROG_B Pin . 241
Power-Up Timing . 241

Clear Configuration Memory (Initialization). 243
Sample Control Pins . 243
Delaying Configuration . 243

Bitstream Loading (Steps 4-7). 244
Synchronization . 244
Check Array IDCODE . 245
Load Configuration Data Frames . 247

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 11
UG332 (v1.5) March 16, 2009

R

Cyclic Redundancy Check . 247
Startup. 248

Startup Clock Source . 250
Waiting for DCMs to Lock, DCI to Match . 250

Chapter 13: Configuration-Related Design Primitives
Boundary-Scan (BSCAN) . 253

Usage . 254
Port Descriptions . 254

Start-Up (STARTUP) . 255
Usage . 256
Port Descriptions . 256

Readback Capture (CAPTURE) . 256
Usage . 257
Port Description . 257
Attributes. 257

Internal Configuration Access Port (ICAP) . 258
Usage . 258
Port Description . 258

Device DNA Access Port (DNA_PORT). 259
Usage . 259
Port Descriptions . 260
Attributes. 260

Chapter 14: Reconfiguration and MultiBoot
Overview . 261
MultiBoot Options Compared between

Spartan-3 Generation FPGA Families. 261
Spartan-3E MultiBoot . 263

Generating a Spartan-3E MultiBoot PROM Image using iMPACT 264
PROMGen Report File . 269
Spartan-3E MultiBoot using Xilinx Platform Flash PROMs . 270

Extended Spartan-3A Family MultiBoot . 271
Specifying the Next MultiBoot Configuration Address . 271
Required Data Spacing between MultiBoot Images . 272

Flash Sector, Block, or Page Boundaries . 272
Additional Memory Space Required for DCM_WAIT . 272

MultiBoot Command Sequence (ICAP Example) . 273
Design Specification . 273
FPGA Application Run Time . 274
MultiBoot from an Address Preloaded during Configuration 274
MultiBoot to a Address Specified by the FPGA Application . 274

MultiBoot using SelectMAP . 275
MultiBoot using Slave Serial . 275
MultiBoot using JTAG . 276
MultiBoot Registers . 276

Next MultiBoot Start Address (GENERAL1, GENERAL2) . 276
Command Register (CMD) . 277
Configuration Mode Register (MODE_REG) . 278

http://www.xilinx.com

12 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Generating an Extended Spartan-3A Family MultiBoot PROM Image
using iMPACT . 278

Configuration Fallback . 284
Configuration Watchdog Timer (CWDT) and Fallback . 285
CRC Error and Fallback . 285
Fallback Limited to 3 Additional Tries . 285
Advanced Capabilities . 286

Switching between MultiBoot Configuration Memory Types 286
MultiBoot Design Examples . 287

Chapter 15: Protecting FPGA Designs
Basic FPGA Hardware-Level Security Options . 289

Spartan-3 and Spartan-3E Security Levels . 290
Extended Spartan-3A Family Security Levels . 290
Setting the Security Level in the Bitstream . 290

ISE Software Project Navigator. 290
BitGen Command-Line Utility . 292

Approaches to Design Security . 292
Security Bits . 293
Encryption . 293
Authentication . 293

Extended Spartan-3A Family Unique Device Identifier (Device DNA). 294
Identifier Value . 294
Operation. 294
Interface Timing . 295
Identifier Memory Specifications. 296
Extending Identifier Length . 296
JTAG Access to Device Identifier. 297
iMPACT Access to Device Identifier . 297

Authentication Design Examples . 297
Extended Spartan-3A Family FPGA: Imprinting or Watermarking the

Configuration PROM with Device DNA . 298
Spartan-3E FPGA: Leveraging Security Features in

Select Commodity Flash PROMs . 299
Extended Spartan-3A Family FPGA: Authenticating a Downloaded Design 302
Authenticating any FPGA Design Using External Secure PROM 303

Handling Failed Authentications . 304
No Functionality . 304
Limited Functionality . 304
Full Functionality with Time Out . 304
Active Defense . 305

Authentication Algorithm . 305
Manufacturing Logistics . 305
Additional Uses of Authentication and Device ID . 306

Protecting Intellectual Property (IP) . 306
Code and Data Security. 306

U.S. Legal Protection of FPGA Configuration Bitstream Programs 306
Additional Information . 308

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 13
UG332 (v1.5) March 16, 2009

R

Chapter 16: Configuration CRC
CRC Checking during Configuration . 309

Spartan-3 and Spartan-3E Configuration CRC Errors . 309
Configuration CRC Enabled by Default . 309
Possible CRC Escapes . 309
Extended Spartan-3A Family Configuration CRC Errors and

Configuration Watchdog Timer . 310
Robust CMOS Configuration Latches (CCLs) . 310
Post-Configuration CRC (Extended Spartan-3A Family Only) 310

Overview . 310
Continuous CRC Checking Until Configuration, JTAG or Suspend Event 312
Clock Source . 312

CRC Checking Time . 312
Behavior when CRC Error Occurs . 312

Verifying CRC Error Behavior . 313
Preparing an Application to Use the Post-Configuration CRC Feature 313
Example User Constraints File (UCF) . 313
CONFIG Constraints . 314
Bitstream Generator Options . 314
Design Considerations . 315
Techniques to Check Distributed and Block RAM Contents 315

Chapter 17: Configuration Details
Configuration Memory Frames . 317
Configuration Control Logic. 318

Packet Types . 318
Type 1 Packet . 318
Type 2 Packet . 319

Configuration Registers . 320
Command Register (CMD) . 321
Control Register (CTL) . 322
Frame Address Registers (FAR_MAJ and FAR_MIN) . 323
Status Register (STAT) . 323
Configuration Options Registers (COR1 and COR2) . 324
Suspend Options Register (PWRDN_REG) . 326
Housecleaning Options Register (HC_OPT_REG) . 327
Multiple Frame Write Register (MFWR). 327

Bitstream Composition . 327
Default Initial Configuration Process . 328

Chapter 18: Readback
Preparing a Design for Readback . 331
Readback Command Sequences . 332

Accessing Configuration Registers through the SelectMAP Interface 332
Configuration Register Read Procedure (SelectMAP) . 333
Configuration Memory Read Procedure (SelectMAP) . 334
Accessing Configuration Registers through the JTAG Interface 336

Configuration Register Read Procedure - JTAG . 337
Configuration Memory Read Procedure (1149.1 JTAG) . 338
Configuration Memory Read Procedure (1532 JTAG) . 341

http://www.xilinx.com

14 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Verifying Readback Data. 342
Readback Capture. 346

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 15
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
Figure 1-1: Spartan-3 Generation Self-Loading (Master) Configuration Modes 29
Figure 1-2: Spartan-3 Generation Downloaded (Slave) Configuration Modes 30
Figure 1-3: Spartan-3 Generation Configuration Daisy-Chain Options 33
Figure 1-4: Extended Spartan-3A Family Type 1 Packet Header. 42
Figure 1-5: Setting Bitstream Generator Options from ISE Project Navigator 42
Figure 1-6: Bitstream Generator General Options . 43
Figure 1-7: Bitstream Generator Configuration Options . 44
Figure 1-8: Bitstream Generator Startup Options . 45
Figure 1-9: Bitstream Generator Readback Options . 46

Chapter 2: Configuration Pins and Behavior during Configuration
Figure 2-1: DONE and INIT_B Synchronize Daisy-Chain or

Broadside Configurations . 55
Figure 2-2: Differences between Spartan-3/3E and

Extended Spartan-3A Family FPGAs for Master Configuration Modes 58
Figure 2-3: Point-to-Point: Master CCLK Output Drives Single Clock Load 59
Figure 2-4: Multi-Drop: Master CCLK Output Drives Two Clock Inputs 59
Figure 2-5: Star Topology Is Not Recommended . 60
Figure 2-6: Using Resistor Divider Network to Meet VCCO_2 POR Threshold 74
Figure 2-7: Stylized Configuration Waveforms Showing When

Dual-Purpose Pins Become Active . 77

Chapter 3: Master Serial Mode
Figure 3-1: Master Serial Mode Using Platform Flash PROM

(Spartan-3E or Spartan-3A/3A DSP FPGA, VCCAUX = 2.5V) . 80
Figure 3-2: Master Serial Mode Using Platform Flash PROM

(Extended Spartan-3A Family FPGA, VCCAUX = 3.3V). 81
Figure 3-3: Master Serial Mode Using Platform Flash PROM (Spartan-3 FPGA) 82
Figure 3-4: Multi-FPGA Daisy-Chain Configuration Using

Xilinx Platform Flash PROM. 87
Figure 3-5: Multiple, Identical FPGAs Programmed with the Same Bitstream 87
Figure 3-6: Various Methods to Use Platform Flash PROM after Configuration 89
Figure 3-7: Double-click Generate PROM, ACE or JTAG File . 91
Figure 3-8: Prepare a PROM File . 91
Figure 3-9: Set Options for Xilinx Platform Flash PROM . 92
Figure 3-10: Select Platform Flash PROM . 93
Figure 3-11: Review PROM Formatting Settings . 94
Figure 3-12: Add FPGA Configuration Bitstream File(s) . 94

Schedule of Figures

http://www.xilinx.com

16 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Figure 3-13: Generate PROM File . 95
Figure 3-14: Program Platform Flash PROM using JTAG . 96
Figure 3-15: iMPACT Automatically Detects JTAG Chain . 96
Figure 3-16: Bypass Programming the FPGA . 97
Figure 3-17: Select the Platform Flash Programming File . 97
Figure 3-18: Program the Platform Flash PROM . 98
Figure 3-19: PROM Programming Options . 98

Chapter 4: Master SPI Mode
Figure 4-1: SPI Flash Configuration Interface for M25P-compatible Devices 102
Figure 4-2: SPI Flash Configuration Interface for Atmel DataFlash Devices. 103
Figure 4-3: SPI Flash PROM/FPGA Power-On Timing if 3.3V

Supply is Last in Power-On Sequence . 113
Figure 4-4: If Not Using SPI after Configuration, Drive CSO_B Pin High. 116
Figure 4-5: Using the SPI Flash Interface After Configuration . 117
Figure 4-6: Daisy Chaining from SPI Flash Mode . 119
Figure 4-7: Multiple, Identical FPGAs Programmed with the Same Bitstream 120
Figure 4-8: Using FPGA’s JTAG Test Chain to Program Attached SPI Flash 125
Figure 4-9: Double-click Generate PROM, ACE or JTAG File . 126
Figure 4-10: Prepare a PROM File . 127
Figure 4-11: Set Options for a 3rd-Party SPI PROM . 128
Figure 4-12: Select SPI PROM Density . 128
Figure 4-13: Review PROM Formatting Settings . 129
Figure 4-14: Add FPGA Configuration Bitstream File(s) . 129
Figure 4-15: Generate PROM File . 130
Figure 4-16: iMPACT Supports Direct Programming for SPI Serial Flash Memories. 131
Figure 4-17: Select a Previously-formatted PROM File . 132
Figure 4-18: Select a Supported SPI Flash Memory Device. . 132
Figure 4-19: Directly Program Supported SPI Flash PROM. 133
Figure 4-20: SPI PROM Programming Options . 133
Figure 4-21: Indirect Programming Method Uses JTAG . 135
Figure 4-22: Select the FPGA Bitstream File and Enable SPI Programming 135
Figure 4-23: iMPACT Uses the JTAG Clock Input TCK for Startup Clock when

Programming via JTAG . 136
Figure 4-24: Select the SPI PROM Programming FIle. 136
Figure 4-25: Select SPI Flash PROM Type. 136
Figure 4-26: Bypass the Platform Flash PROM. 137
Figure 4-27: iMPACT Presents JTAG Chain, Shows Attached Flash PROM 137
Figure 4-28: SPI PROM Programming Options . 138
Figure 4-29: Waveforms for Serial Peripheral Interface (SPI) Configuration 139
Figure 4-30: Multi-Package Layout for the M25Pxx Family on Spartan-3E Starter Kit 142

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 17
UG332 (v1.5) March 16, 2009

R

Chapter 5: Master BPI Mode
Figure 5-1: Spartan-3E FPGA Configured from Parallel NOR Flash 144
Figure 5-2: Extended Spartan-3A Family FPGA Configured from

Parallel NOR Flash . 145
Figure 5-3: FPGA Supports x8 Interface before Configuration and Optional

x16 Interface after Configuration . 154
Figure 5-4: Parallel Daisy Chain using BPI Mode . 156
Figure 5-5: Serial Daisy Chains are Only Available for

Extended Spartan-3A Family BPI Mode . 158
Figure 5-6: Master BPI Mode Using Xilinx

Parallel Platform Flash PROMs (XCFxxP) . 159
Figure 5-7: Double-click Generate PROM, ACE or JTAG File . 161
Figure 5-8: Prepare a PROM File . 162
Figure 5-9: Set Options for a Generic Parallel PROM. 163
Figure 5-10: Select Parallel PROM Size and Configuration Style 164
Figure 5-11: Select FPGA Bitstream Files . 165
Figure 5-12: Generate Parallel PROM File . 166
Figure 5-13: Parallel NOR Flash PROM/FPGA Power-On Timing if 3.3V Supply

is Last in Power-On Sequence. 168
Figure 5-14: BPI Configuration Timing Waveform

(Spartan-3E BPI Down mode shown) . 169

Chapter 6: Master Parallel Mode

Chapter 7: Slave Parallel (SelectMAP) Mode
Figure 7-1: Slave Parallel Mode

(Spartan-3E and Extended Spartan-3A Family FPGAs) . 176
Figure 7-2: Slave Parallel Mode (Spartan-3 FPGAs) . 177
Figure 7-3: Slave Parallel Daisy Chain for

Spartan-3E/Extended Spartan-3A Family FPGAs . 181
Figure 7-4: Slave Parallel Daisy Chain Using Any Modern Xilinx FPGA 182
Figure 7-5: SelectMAP Continuous Data Loading . 184
Figure 7-6: SelectMAP Non-Continuous Data Loading with Controlled CSI_B. 185
Figure 7-7: Non-Continuous SelectMAP Data Loading with Controlled CCLK 186
Figure 7-8: Configuration Abort Sequence . 187
Figure 7-9: Readback Abort Sequence . 188
Figure 7-10: Byte Swapping Example . 192

Chapter 8: Slave Serial Mode
Figure 8-1: Slave Serial Configuration . 194

Chapter 9: JTAG Configuration Mode and Boundary-Scan
Figure 9-1: JTAG Configuration Interface. 198
Figure 9-2: Typical JTAG (IEEE 1149.1) Architecture . 200

http://www.xilinx.com

18 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Figure 9-3: Test Access Port (TAP) State Machine . 201
Figure 9-4: Boundary-Scan Logic per I/O Pin . 204
Figure 9-5: Spartan-3 Generation Boundary-Scan Timing Waveforms 207
Figure 9-6: Target Interface Connector Dimensions and Pin Assignments 208
Figure 9-7: Double-click Configure Device (iMPACT) . 209
Figure 9-8: Configure Devices Using JTAG . 209
Figure 9-9: iMPACT Automatically Detects Devices on the JTAG Chain 210
Figure 9-10: iMPACT Prompts for FPGA Bitstream . 210
Figure 9-11: iMPACT Automatically Adjusts FPGA Startup Clock

for JTAG Configuration . 211
Figure 9-12: Click Bypass to Skip Platform Flash Programming 211
Figure 9-13: Click Bypass to Skip CPLD Programming . 212
Figure 9-14: Double-Click Program to Configure FPGA via JTAG 212
Figure 9-15: FPGA Programming Options. 213

Chapter 10: Internal Master SPI Mode
Figure 10-1: Spartan-3AN FPGA using Internal Master SPI Flash Mode 215
Figure 10-2: Spartan-3AN SPI_ACCESS Design Primitive . 218
Figure 10-3: Double-click Generate PROM, ACE or JTAG File . 220
Figure 10-4: Prepare a PROM File . 221
Figure 10-5: Set Options for Spartan-3AN In-System Flash PROM. 222
Figure 10-6: Select a Spartan-3AN FPGA. 223
Figure 10-7: Specify the FPGA Configuration Bitstream(s) . 224
Figure 10-8: Review Spartan-3AN In-System Memory Formatting Settings 225
Figure 10-9: Add FPGA Configuration Bitstream File(s) . 225
Figure 10-10: iMPACT View of the Spartan-3AN In-System Flash Memory 226
Figure 10-11: Generate the Spartan-3AN In-System Flash File . 226

Chapter 11: Configuration Bitstream Generator (BitGen) Settings

Chapter 12: Sequence of Events
Figure 12-1: Spartan-3 Generation FPGA Configuration Process. 239
Figure 12-2: FPGA Wake from Reset . 239
Figure 12-3: Extended Spartan-3A Family and Spartan-3E Reset Circuitry

(Spartan-3 is similar) . 240
Figure 12-4: FPGA Power-Up Timing Waveforms (Master Modes) 242
Figure 12-5: Clear Configuration Memory (Initialization). 243
Figure 12-6: Sample Control Pins (Mode Select, Variant Select) 243
Figure 12-7: Synchronization . 244
Figure 12-8: Check Array ID. 245
Figure 12-9: Load Configuration Data Frames . 247
Figure 12-10: Cyclic Redundancy Check . 247
Figure 12-11: Startup Sequence . 248

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 19
UG332 (v1.5) March 16, 2009

R

Figure 12-12: Default Start-Up Sequence. 249
Figure 12-13: Extended Spartan-3A Family, Spartan-3E FPGA

Configuration Logic Conceptual Block Diagram . 252

Chapter 13: Configuration-Related Design Primitives
Figure 13-1: BSCAN Primitive for Extended Spartan-3A Family FPGAs 253
Figure 13-2: STARTUP Primitive for

Extended Spartan-3A Family and Spartan-3E FPGAs . 255
Figure 13-3: CAPTURE Primitive for Extended Spartan-3A Family FPGAs

(other families are similar). 256
Figure 13-4: ICAP Primitive (only available on

Extended Spartan-3A Family FPGAs) . 258
Figure 13-5: DNA_PORT Primitive

(only available on Extended Spartan-3A Family FPGAs) . 259

Chapter 14: Reconfiguration and MultiBoot
Figure 14-1: Example Spartan-3E MultiBoot Application

using 1Mbyte Parallel Flash PROM. 263
Figure 14-2: Prepare a MultiBoot PROM Image. 264
Figure 14-3: Select a PROM Supporting MultiBoot for Spartan-3E FPGAs 265
Figure 14-4: Select the Configuration Direction of the First MultiBoot Image 266
Figure 14-5: Select a PROM Size and Add It to the Design . 266
Figure 14-6: Confirm the PROM Settings . 267
Figure 14-7: Select the First MultiBoot Configuration Image . 267
Figure 14-8: Select the Second MultiBoot Configuration Image 268
Figure 14-9: Generate the PROM File Using the Specified Parameters 269
Figure 14-10: PROMGen Report File (*.prm) . 270
Figure 14-11: Spartan-3A MultiBoot Example using XC3S700A and SPI Flash 279
Figure 14-12: Prepare a MultiBoot PROM Image. 279
Figure 14-13: Select a PROM Supporting MultiBoot for

Extended Spartan-3A Family FPGAs . 280
Figure 14-14: SPI or Parallel Flash PROMs are Supported . 281
Figure 14-15: Enter a PROM Density and Specify MultiBoot Image Start Locations. . 281
Figure 14-16: Confirm PROM Settings. 282
Figure 14-17: Select the First (Default) Configuration Image . 283
Figure 14-18: Select the Third MultiBoot Configuration Image . 283
Figure 14-19: Generate the PROM File Using the Specified Parameters 284
Figure 14-20: Extended Spartan-3A Family MultiBoot Configuration Mode Control . 286

Chapter 15: Protecting FPGA Designs
Figure 15-1: Setting Bitstream Generator Options from ISE Project Navigator 291
Figure 15-2: Bitstream Generator Security Options. 291
Figure 15-3: Extended Spartan-3A Family DNA_PORT Design Primitive 294
Figure 15-4: DNA_PORT Operation . 295

http://www.xilinx.com

20 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Figure 15-5: Possible Options for DIN Input . 297
Figure 15-6: Extended Spartan-3A Family FPGA Configures Normally 298
Figure 15-7: Extended Spartan-3A Family FPGA Authenticates the

PROM Image Against Device DNA. 298
Figure 15-8: Authentication Fails Using an Unauthorized Copy 299
Figure 15-9: Spartan-3E FPGA Authentication Example using

Commodity Flash PROM with Identifier . 300
Figure 15-10: Spartan-3E FPGA Authenticates the PROM Image Against the

PROM’s Device ID . 301
Figure 15-11: Intelligent Host Downloads a Spartan-3A Bitstream 302
Figure 15-12: Host Reads Device DNA, Generates Authentication Value 302
Figure 15-13: Host Writes Authentication Value to Enable FPGA Application 302
Figure 15-14: FPGA Authentication Using SHA-1 Secure EEPROM 303
Figure 15-15: Extended Spartan-3A Family Device DNA

Used as a Key to Protect Embedded Processing Applications 306

Chapter 16: Configuration CRC
Figure 16-1: Conceptual Overview of Post-Configuration CRC Calculator 311
Figure 16-2: UCF Constraints for Post-Configuration CRC . 313
Figure 16-3: Checking Block RAM Contents Using Simple Parity 315

Chapter 17: Configuration Details

Chapter 18: Readback
Figure 18-1: Changing the SelectMAP Port from Write to Read Control 332
Figure 18-2: SelectMAP Status Register Read . 334
Figure 18-3: IEEE 1532 JTAG Readback Flow . 342
Figure 18-4: Readback Data Stream . 343
Figure 18-5: Comparing Readback Data Using the .msd and .rbd Files 344
Figure 18-6: Comparing Readback Data Using the .msk and .bit Files 345
Figure 18-7: Extended Spartan-3A Library Primitive . 346
Figure 18-8: Logic Allocation File Format . 347

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 21
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
Table 1-1: Spartan-3 Generation Self-Loading Configuration Modes

and Memory Sources. 29
Table 1-2: Spartan-3 Generation Configuration Options . 31
Table 1-3: PROM Families and Footprint Compatible Package Migration. 37
Table 1-4: Number of Bits in an Uncompressed FPGA Bitstream Image 39
Table 1-5: Configuration Data Frames . 40
Table 1-6: Maximum CCLK Frequency When Using Compressed Bitstream 41
Table 1-7: Command Line to Review Bitstream Generator Options per Family 46

Chapter 2: Configuration Pins and Behavior during Configuration
Table 2-1: Mode Pin Settings and Associated FPGA Configuration Mode by Family . . 50
Table 2-2: M[2:0] Mode Pin Differences between Spartan-3 Generation FPGAs 50
Table 2-3: Default Post-Configuration Behavior of M[2:0] Pin . 52
Table 2-4: DriveDone Bitstream Generator Option . 53
Table 2-5: DonePin Bitstream Generator Option . 53
Table 2-6: Interaction between DriveDone and DonePin

Bitstream Generator Options for DONE Pin . 54
Table 2-7: PROG_B Operation . 56
Table 2-8: CCLK Differences between Spartan-3 Generation FPGA Families. 57
Table 2-9: Pins with Dedicated Pull-Up Resistors during Configuration

(All Spartan-3 Generation FPGAs). 63
Table 2-10: Pins with Dedicated Pull-Up Resistors during Configuration

(Extended Spartan-3A Family FPGAs Only) . 63
Table 2-11: Pins with Dedicated Pull-Up Resistors during Configuration

(Spartan-3 FPGA Family Only) . 64
Table 2-12: Pull-Up Resistor during Configuration Control Input. 64
Table 2-13: Pull-Up Resistor Ranges by Spartan-3 Generation Family 65
Table 2-14: Recommended External Pull-Up or Pull-down Resistor Values to

Define Input Values during Configuration . 65
Table 2-15: Spartan-3 Generation Configuration Pins,

Associated Modes, and Function . 66
Table 2-16: Extended Spartan-3A Family FPGAs: Pin Behavior during Configuration . 70
Table 2-17: Spartan-3E FPGAs: Pin Behavior during Configuration 71
Table 2-18: Pin Behavior during Configuration for Spartan-3 FPGA Family. 72
Table 2-19: Default I/O Standard Setting During Configuration . 72
Table 2-20: Supported Configuration Interface Voltages . 73
Table 2-21: Pull-up or Pull-down Values for HSWAP, M[2:0], and VS[2:0] 76

Schedule of Tables

http://www.xilinx.com

22 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Chapter 3: Master Serial Mode
Table 3-1: Spartan-3E/Spartan-3A/3A DSP FPGA Connections . 80
Table 3-2: Spartan-3 FPGA Connections to Platform Flash PROM 82
Table 3-3: Master Serial Configuration Mode Connections. 83
Table 3-4: Number of Bits to Program a Spartan-3 Generation FPGA

and Smallest Platform Flash PROM . 85
Table 3-5: Maximum ConfigRate Settings Using Platform Flash

(Serial Mode, Commercial Range) . 86
Table 3-6: Xilinx Platform Flash Production Programmers . 99

Chapter 4: Master SPI Mode
Table 4-1: Master SPI Mode Support within Spartan-3 Generation FPGAs. 104
Table 4-2: SPI Flash Memory Devices Officially Supported by Xilinx

and Programmed Using iMPACT . 105
Table 4-3: SPI Serial Flash PROMs Supported by iMPACT . 105
Table 4-4: SPI Read Commands Supported by Spartan-3 Generation FPGAs 106
Table 4-5: Other SPI Flash Memory Devices With Data Sheet Compatibility

(Unverified by Xilinx, Unsupported in iMPACT) . 107
Table 4-6: Number of Bits to Program an Extended Spartan-3A family or

Spartan-3E FPGA and Smallest SPI Flash PROM. 108
Table 4-7: Example SPI Flash PROM Connections and Pin Naming 108
Table 4-8: Serial Peripheral Interface (SPI) Connections . 110
Table 4-9: Example Minimum Power-On to Select Times for

Various SPI Flash PROMs . 112
Table 4-10: Spartan-3E and Extended Spartan-3A Family DSP

Power-On Reset Timing and Thresholds . 114
Table 4-11: FPGA ConfigRate Setting and Corresponding SPI Flash PROM

Clock-to-Output Requirements (TV) . 115
Table 4-12: Summary of SPI Flash PROM Programming Options 121
Table 4-13: Xilinx Download Header Signal Description for In-System

SPI Flash PROM Programming . 123
Table 4-14: PROM Generator Command Options . 130
Table 4-15: FPGA Timing Symbols for Serial Peripheral Interface

(SPI) Configuration Mode . 140
Table 4-16: Configuration Timing Requirements for Attached SPI Serial Flash. 141

Chapter 5: Master BPI Mode
Table 5-1: BPI Configuration Mode Differences between

Spartan-3 Generation FPGA Families . 146
Table 5-2: BPI Addressing Control . 147
Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections. 148
Table 5-4: Example Compatible Parallel NOR Flash Families . 151
Table 5-5: Number of Bits to Program an Extended Spartan-3A Family or

Spartan-3E FPGA and Smallest Usable Parallel PROM . 151
Table 5-6: Maximum ConfigRate Settings for Parallel Flash PROMs

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 23
UG332 (v1.5) March 16, 2009

R

(Commercial Temperature Range) . 152
Table 5-7: FPGA Connections to Flash PROM with IO15/A-1 Pin 155
Table 5-8: Maximum ConfigRate Settings Using Parallel Platform Flash 160
Table 5-9: Example Minimum Power-On to Setup Times for

Various Parallel NOR Flash PROMs . 167
Table 5-10: Configuration Timing Requirements for Attached Parallel NOR Flash . . 170
Table 5-11: Spartan-3E: Shared BPI Configuration Pins and

Global Buffer Input Pins . 172

Chapter 6: Master Parallel Mode

Chapter 7: Slave Parallel (SelectMAP) Mode
Table 7-1: Slave Parallel (SelectMAP) Function Overview . 178
Table 7-2: Slave Parallel Mode Connections . 179
Table 7-3: ABORT Status Word . 189
Table 7-4: Example ABORT Sequence . 189
Table 7-5: Pins Affected by Persist . 190
Table 7-6: Bit Ordering for SelectMAP 8-Bit Mode . 191

Chapter 8: Slave Serial Mode
Table 8-1: Slave Serial Mode Connections . 196

Chapter 9: JTAG Configuration Mode and Boundary-Scan
Table 9-1: JTAG Cable Interface and Current-Limiting Resistor Requirements 199
Table 9-2: TAP Controller States . 201
Table 9-3: Spartan-3 Generation TAP Controller Pins . 202
Table 9-4: Spartan-3 Generation JTAG Registers . 203
Table 9-5: Spartan-3 Generation Boundary-Scan Instructions . 205
Table 9-6: Instruction Capture Values . 206
Table 9-7: Mating Connectors for 2 mm pitch, 14 Conductor Ribbon Cable 208

Chapter 10: Internal Master SPI Mode
Table 10-1: Number of Bits to Program a Spartan-3AN FPGA and

Internal SPI Flash Memory . 216
Table 10-2: Spartan-3AN FPGA Supported Variant Select (VS[2:0]) Options 217
Table 10-3: Locations of Default Bitstream and Second MultiBoot Bitstream 224
Table 10-4: PROM Generator Command Options . 227
Table 10-5: Spartan-3AN PROMGen Size Settings . 227
Table 10-6: BPM Microsystems Programmers Supporting Spartan-3AN FPGAs 228
Table 10-7: BPM Microsystems Socket Modules and

Software for Spartan-3AN FPGAs . 229

http://www.xilinx.com

24 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

Chapter 11: Configuration Bitstream Generator (BitGen) Settings
Table 11-1: Command Line to Review Bitstream Generator Options per Family 231
Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options 232

Chapter 12: Sequence of Events
Table 12-1: Power-On Reset Threshold Voltages . 241
Table 12-2: FPGA Power-Up Timing Specifications . 242
Table 12-3: Spartan-3 Generation FPGA Synchronization Word 244
Table 12-4: Spartan-3 Generation FPGA Array ID Codes. 246
Table 12-5: STAT Register. 247
Table 12-6: User-Selectable Cycle of Startup Events . 248
Table 12-7: Default BitGen Sequence of Startup Events . 248
Table 12-8: Signals Relating to Startup Sequencer . 251

Chapter 13: Configuration-Related Design Primitives
Table 13-1: BSCAN Primitives by FPGA Family . 254
Table 13-2: BSCAN Primitive Connections . 254
Table 13-3: STARTUP Primitives by FPGA Family . 255
Table 13-4: STARTUP Primitive Connections . 256
Table 13-5: CAPTURE Primitive by FPGA Family . 257
Table 13-6: CAPTURE Primitive Connections . 257
Table 13-7: CAPTURE Attributes . 257
Table 13-8: ICAP_SPARTAN3A Primitive Connections . 258
Table 13-9: DNA_PORT Primitive Connections. 260
Table 13-10: DNA_PORT Attributes . 260

Chapter 14: Reconfiguration and MultiBoot
Table 14-1: MultiBoot Options on Spartan-3 Generation FPGA Families 262
Table 14-2: Command Sequence to Initiate MultiBoot from a Preloaded Address. . . . 274
Table 14-3: Command Sequence to Initiate MultiBoot to a Specified Address 275
Table 14-4: GENERAL1 Register Definition . 276
Table 14-5: GENERAL2 Register Definition for BPI Mode Options 277
Table 14-6: GENERAL2 Register Definition for SPI Mode Options 277
Table 14-7: CMD Register Definition . 277
Table 14-8: MODE_REG Bit Options . 278

Chapter 15: Protecting FPGA Designs
Table 15-1: Spartan-3 and Spartan-3E Security Levels . 290
Table 15-2: Extended Spartan-3A Family BitGen Security Levels 290
Table 15-3: Relation between ISE Project Navigator and BitGen Options 292
Table 15-4: Programmable Logic Security Options Compared . 292
Table 15-5: DNA_PORT Operations . 295

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 25
UG332 (v1.5) March 16, 2009

R

Table 15-6: DNA_PORT Interface Timing. 295
Table 15-7: Identifier Memory Characteristics . 296
Table 15-8: Example Flash PROMs with Embedded Unique Identifiers 299

Chapter 16: Configuration CRC
Table 16-1: Post-Configuration CRC CONFIG Constraints . 314
Table 16-2: Post-Configuration CRC Bitstream Generator Options 314

Chapter 17: Configuration Details
Table 17-1: Extended Spartan-3A Frame Count and Length . 318
Table 17-2: Type 1 Packet Header Format . 319
Table 17-3: Type 1 Packet Data Format. 319
Table 17-4: Opcode Format . 319
Table 17-5: Type 2 Packet Header . 319
Table 17-6: Type 2 Packet Word Count 1 . 319
Table 17-7: Type 2 Packet Word Count 2 . 320
Table 17-8: Type 2 Packet Data. 320
Table 17-9: Configuration Registers . 320
Table 17-10: Command Register Codes . 321
Table 17-11: Control Register Description . 322
Table 17-12: Frame Address Register Description . 323
Table 17-13: Status Register Description . 324
Table 17-14: Configuration Options Register Description . 324
Table 17-15: Suspend Options Register Description . 326
Table 17-16: Housecleaning Options Register Description . 327
Table 17-17: Configuration Sequence . 328

Chapter 18: Readback
Table 18-1: Status Register Readback Command Sequence (SelectMAP) 333
Table 18-2: Shutdown Readback Command Sequence (SelectMAP). 335
Table 18-3: Shifting in the JTAG CFG_IN and CFG_OUT Instructions 336
Table 18-4: Status Register Readback Command Sequence (JTAG) 337
Table 18-5: Shutdown Readback Command Sequence (JTAG). 339
Table 18-6: Readback Files . 342
Table 18-7: Capture Signals . 346

http://www.xilinx.com

26 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 27
UG332 (v1.5) March 16, 2009

R

Chapter 1

Overview and Design Considerations

Xilinx® Field Programmable Gate Arrays (FPGAs) are highly flexible, reprogrammable
logic devices that leverage advanced CMOS manufacturing technologies, similar to other
industry-leading processors and processor peripherals. Like processors and peripherals,
Xilinx FPGAs are fully user programmable. For FPGAs, the program is called a
configuration bitstream, which defines the FPGA's functionality. The bitstream loads into the
FPGA at system power-up or upon demand by the system.

The process whereby the defining data is loaded or programmed into the FPGA is called
configuration. Configuration is designed to be flexible to accommodate different
application needs and, wherever possible, to leverage existing system resources to
minimize system costs.

Similar to microprocessors, Xilinx FPGAs optionally load or boot themselves
automatically from an external nonvolatile memory device. Alternatively, similar to
microprocessor peripherals, Spartan-3 generation FPGAs can be downloaded or
programmed by an external “smart agent”, such as a microprocessor, DSP processor,
microcontroller, PC, or board tester. In either case, the configuration data path is either
serial to minimize pin requirements or byte-wide for maximum performance or for easier
interfaces to processors or to byte-wide Flash memory.

Similar to both processors and processor peripherals, Xilinx FPGAs can be reprogrammed,
in system, on demand, an unlimited number of times. After configuration, the FPGA
configuration bitstream is stored in highly robust CMOS configuration latches (CCLs).
Although CCLs are reprogrammable like SRAM memory, CCLs are designed primarily for
data integrity, not for performance. The data stored in CCLs is written only during
configuration and remains static unless changed by another configuration event.

This user guide provides both an introduction to the configuration options available to the
user, and a detailed description of the configuration logic. This user guide includes the
Extended Spartan-3A family, which includes the Spartan-3A, Spartan-3AN, and Spartan-
3A DSP platforms. The user guide also includes the earlier Spartan-3 and Spartan-3E
families. Together, these families are sometimes referred to as the Spartan-3 generation.
Most basic configuration features are similar between the families, and differences are
noted where necessary.

Design Considerations
Before starting a new FPGA design, spend a few minutes to consider which FPGA
configuration mode best matches your system requirements. Each configuration mode
dedicates certain FPGA pins and may borrow others. Similarly, the configuration mode
may place voltage restrictions on some FPGA I/O banks.

http://www.xilinx.com

28 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

If you have already selected an FPGA configuration mode, feel free to jump to the relevant
section in the user guide. Otherwise, please evaluate the following design considerations
to understand the options available.

Will the FPGA load configuration data itself from external or internal memory
or will an external processor/microcontroller download configuration data?

Spartan-3 generation FPGAs are designed for maximum flexibility. The FPGA either
automatically loads itself with configuration data, like a processor, or alternatively, another
external intelligent device like a processor or microcontroller can download the
configuration data. It is your choice and Table 1-2 summarizes the available options.

The self-loading FPGA configuration modes, generically called Master modes, are
available with either a serial or byte-wide data path as shown in Figure 1-1. The Master
modes leverage various types of nonvolatile memories to store the FPGA's configuration
information, as shown in Table 1-1. In Master mode, the FPGA's configuration bitstream
typically resides in nonvolatile memory on the same board, generally external to the
FPGA. The FPGA internally generates a configuration clock signal called CCLK and the
FPGA controls the configuration process.

Spartan-3AN FPGAs optionally configure from internal In-System Flash (ISF) memory, as
shown in Figure 1-1c. In this mode, the configuration memory and the control and data
signals are inside the package. Spartan-3AN FPGAs also optionally support all the other
Spartan-3A FPGA configuration modes, as well.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 29
UG332 (v1.5) March 16, 2009

Design Considerations
R

Figure 1-1: Spartan-3 Generation Self-Loading (Master) Configuration Modes

DATA[7:0]D[7:0]

LDC0

Parallel NOR
Flash

D0

CLK

DIN

CCLK

Spartan-3
Generation

FPGA

DATA_IN

DATA_OUT

MOSI

CSO_B

SPI Serial
Flash

Xilinx
Platform Flash

PROM

SELECT

CLOCK

DIN

CCLK

Spartan-3E/
Spartan-3A/3AN/3A DSP

FPGA

ADDR[n:0]

CE#

ADDR[n:0]

OE#

WE#

BYTE#

LDC1

HDC

LDC2

Spartan-3E/
Spartan-3A/3AN/3A DSP

FPGA

D[7:0]

CLK

D[7:0]

CCLK

Spartan-3
FPGA(1)

Xilinx XCFxxP
Platform Flash

PROM

ediW-etyBlaireS

8

8
(a) Master Serial mode

(b) Master SPI Flash mode

(d) Master BPI mode (parallel NOR Flash)

(e) Master Parallel mode

n+1

UG332_c1_01_052207

XCFxxS
XCFxxP

XCFxxP

Spartan-3AN
FPGA

In-System Flash
(ISF) Memory

(c) Internal Master SPI Flash mode

 Notes:
1. Remaining Spartan-3 Generation FPGAs support XCFxxP Platform Flash PROMs via Master BPI mode.

Table 1-1: Spartan-3 Generation Self-Loading Configuration Modes and Memory Sources

External Memory
Information on

FPGA Configuration Mode
Supported Spartan-3 Generation

Families

Xilinx Platform Flash PROM
(either XCFxxS or XCFxxP PROMs)

Chapter 3, “Master Serial Mode” All

Xilinx Platform Flash PROM
(XCFxxP PROMs only)

Chapter 6, “Master Parallel Mode”

Primarily Spartan-3 FPGAs,
but possible in

Spartan-3E/3A/3AN/3A DSP FPGAs
using BPI mode or Slave Parallel mode

http://www.xilinx.com/products/silicon_solutions/proms/pfp/
http://www.xilinx.com/products/silicon_solutions/proms/pfp/
http://www.xilinx.com

30 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

The downloaded FPGA configuration modes, generically called Slave modes, are also
available with either a serial or byte-wide data path. In Slave mode, an external “intelligent
agent” such as a processor, microcontroller, DSP processor, or tester downloads the
configuration image into the FPGA, as shown in Figure 1-2. The advantage of the Slave
configuration modes is that the FPGA bitstream can reside just about anywhere in the
overall system. The bitstream could reside in Flash, on board, along with the host
processor's code. It could reside on a hard disk. It could originate somewhere over a
network connection. The possibilities are nearly endless.

The Slave Parallel mode, also called SelectMAP mode in other FPGA architectures, is
essentially a simple byte-wide processor peripheral interface, including a chip-select input
and a read/write control input. The Slave Serial mode is extremely simple, consisting only
of a clock and serial data input.

The four-wire JTAG interface is common on many board testers and debugging hardware.
In fact, the Xilinx programming cables for Spartan-3 generation FPGAs, listed below, use
the JTAG interface for prototype download and debugging. Regardless of which
configuration mode is ultimately used in the application, it is best to also include a JTAG

Commodity Parallel
NOR Flash PROM

Chapter 5, “Master BPI Mode”
Spartan-3E, Extended Spartan-3A

family FPGAs

Commodity SPI Serial Flash PROM Chapter 4, “Master SPI Mode”
Spartan-3E, Extended Spartan-3A

family FPGAs

Table 1-1: Spartan-3 Generation Self-Loading Configuration Modes and Memory Sources (Cont’d)

External Memory
Information on

FPGA Configuration Mode
Supported Spartan-3 Generation

Families

Figure 1-2: Spartan-3 Generation Downloaded (Slave) Configuration Modes

DIN

CCLK

SERIAL_DATA

CLOCK

Spartan-3
Generation

FPGA
Processor,

Microcontroller

TDI

TMS

DATA_OUT

CLOCK

Spartan-3
Generation

FPGA

JTAG Tester,
Processor,

Microcontroller

TCK

TDO

MODE_SELECT

DATA_IN

D[7:0]

RDWR_B

CCLK

BUSY

CSI_B

DATA[7:0]

SELECT

READ/WRITE

READY/BUSY

CLOCK

Spartan-3
Generation

FPGA
Processor,

Microcontroller

(c) Slave Parallel mode (SelectMAP)

8

(a) Slave Serial mode

(b) JTAG mode

ediW-etyBlaireS

UG332_c1_02_080706

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 31
UG332 (v1.5) March 16, 2009

Design Considerations
R

configuration path for easy design development. Also see “Programming Cables and
Headers,” page 207.

• Platform Cable USB II
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

• Parallel Cable IV
http://www.xilinx.com/products/devkits/HW-PC4.htm

Table 1-2: Spartan-3 Generation Configuration Options

Master
Serial SPI BPI

Master
Parallel

Internal
Master SPI

Slave
Parallel Slave Serial JTAG

Spartan-3
Generation
Families

All Spartan-3A
Spartan-3AN
Spartan-3A DSP

Spartan-3E

Spartan-3A
Spartan-3AN
Spartan-3A DSP

Spartan-3E

Spartan-3
only

Spartan-3AN
only

All All All

M[2:0] mode
pin settings

<0:0:0> <0:0:1> <0:1:0>=Up
Spartan-3E

only:
<0:1:1>=Dow

n

<0:1:1: <0:1:1> <1:1:0> <1:1:1> <1:0:1>

Data width Serial Serial Byte-wide Byte-wide Serial Byte-wide Serial Serial

Configuration
memory
source

Xilinx
Platform
Flash

Commodity
SPI serial
Flash

Commodity
parallel NOR
Flash or Xilinx
parallel
Platform
Flash

Xilinx
parallel
Platform
Flash, etc.

Internal In-
System
Flash (ISF)
memory

Any source
via micro-
controller,
CPU, Xilinx
parallel
Platform
Flash, etc.

Any source
via micro-
controller,
CPU, Xilinx
Platform
Flash, etc.

Any source
via micro-
controller,
CPU, System
ACE™ CF,
etc.

Clock source
Internal oscillator External clock signal

applied on CCLK pin
External
clock on TCK
pin

Total I/O pins
borrowed
during
configuration

8 13 46 12 7 21 8 0

Configuration
mode for
downstream
daisy-chained
FPGAs

Slave
Serial

Slave Serial Slave Parallel
Extended

Spartan-3A
family only:
Slave Serial

Slave
Serial

Not
Supported

Slave
Parallel or
Memory
Mapped

Slave Serial JTAG

Stand-alone
FPGA
applications
(no external
download
host)

Possible
using
XCFxxP
Platform
Flash, which
optionally
generates
CCLK

Possible
using
XCFxxP
Platform
Flash,
which
optionally
generates
CCLK

http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/system_ace/
http://www.xilinx.com/products/silicon_solutions/proms/system_ace/
http://www.xilinx.com
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm
http://www.xilinx.com/products/devkits/HW-PC4.htm

32 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Does the application use a single FPGA or multiple FPGAs?

Most Spartan-3 generation FPGA applications use a single FPGA. However, some
applications require multiple FPGAs for increased logic density or I/O. Obviously, each
FPGA in a multi-FPGA design could have its own separate configuration source. However,
using a configuration daisy-chain, multiple FPGAs share a single configuration source.
Daisy-chaining reduces system costs and simplifies programming and logistics.

The most common style is a serial daisy chain, illustrated in Figure 1-3a. Generally, the first
device in the chain may use any one of the configuration modes, except JTAG mode. When
the first device finishes loading its configuration bitstream, it passes data to the
downstream FPGAs via its DOUT serial data output pin.

The JTAG interface also supports multi-FPGA configuration as shown in Figure 1-3b. The
TDO serial data output is connected to the TDI serial data input of the next device in the
chain. The mode select input, TMS, and the clock input, TCK, are common to all devices in
the JTAG chain. The TDO serial data output of the last device in the chain feeds back to the
JTAG connector.

Lastly, Figure 1-3c shows a parallel daisy chain. All of the FPGA connections are common,
except for the chip select inputs, which are unique per FPGA.

Caution! The Spartan-3AN FPGA family does not support configuration daisy-chains when
configured using the Internal Master SPI mode.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 33
UG332 (v1.5) March 16, 2009

Design Considerations
R

Is the “easiest possible” configuration solution the more important
consideration?

Let's face it, in some applications, the easiest solution is the best solution. The best solution
for these applications is either Internal Master SPI mode supported only by Spartan-3AN
FPGAs or Master Serial mode using a Xilinx Platform Flash PROM, which is available for
any Spartan-3 generation FPGA. These solutions use the fewest FPGA pins, have flexible
I/O voltage support, and is fully supported by iMPACT, the Xilinx JTAG-based
programming software.

Figure 1-3: Spartan-3 Generation Configuration Daisy-Chain Options

DIN

CCLK

Xilinx
FPGA

DOUT DIN

CCLK

Xilinx
FPGA

DOUT

TDI

TMS

TCK

TDO

Xilinx
FPGA

TDI

TMS

TCK

TDO

Xilinx
FPGA

TDI

TMS

TCK

TDO

Xilinx
FPGA

DIN

CCLK

Xilinx
FPGA

DOUT

CCLK

First FPGA

DOUT

(a) Serial Daisy Chain (using Slave Serial mode)

D[7:0]

RDWR_B

CCLK

BUSY

CSI_B

Spartan-3
Generation

FPGA

D[7:0]

RDWR_B

CCLK

BUSY

CSI_B

Spartan-3
Generation

FPGA

DATA[7:0]

Select_FPGA1

Select_FPGA2

(b) Multi-FPGA configuration JTAG mode

(c) Parallel Daisy Chain (using Slave Parallel mode)
UG332_c1_03_080706

http://www.xilinx.com

34 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Will the application require a nonvolatile FPGA?

A nonvolatile FPGA provides convenience, security, and a cost-effective single-chip
solution. Multiple FPGA bitstream options can be stored in a single device, plus any
nonvolatile data needed for the system. Up to 11 Mb of user data is available in the
Spartan-3AN family. For more information on using this memory space, see
UG333, Spartan-3AN FPGA In-System Flash user guide.

Is the “lowest cost” solution the more important consideration?

For cost-sensitive applications, obviously the lowest-cost configuration solution is best.
However, which option is lowest cost? The answer depends on your specific application.

• Is there spare external nonvolatile memory already available in the system in which to
store the FPGA configuration bitstream(s)? The bitstream image can be stored in
system memory, stored on a hard drive, or even downloaded remotely over a network
connection. If so, consider one of the downloaded modes, Master Parallel Mode, Slave
Serial Mode, or JTAG Configuration Mode and Boundary-Scan.

• Is there a way to consolidate the nonvolatile memory required in the application? For
example, can the FPGA configuration bitstream(s) be stored with any processor code
for the board? If the processor is a MicroBlaze™ soft processor core embedded in the
FPGA, the FPGA configuration data and the MicroBlaze code can easily share the
same nonvolatile memory device.

• Spartan-3A and Spartan-3E FPGAs optionally configure from commodity SPI serial
Flash and parallel NOR Flash memories. Because these memories have common
footprints and multiple suppliers, they may have lower pricing due to the highly-
competitive marketplace.

Is “fastest possible configuration time” the more important consideration?

Some applications require that the logic be operational within a short time. Certain FPGA
configuration modes and methods are faster than others. The configuration time includes
the initialization time plus the configuration time. Configuration time depends on the size
of the device and speed of the configuration logic. For example, an XC3S1400A
programming at 10 MHz will require 4755296 bits / 10 MHz or approximately 500 ms.

• At the same clock frequency, parallel configuration modes are inherently faster than
the serial modes, since they program 8 bits at a time.

• Configuring a single FPGA is inherently faster than configuring multiple FPGAs in a
daisy-chain. In a multi-FPGA design where configuration speed is a concern,
configure each FPGA separately and in parallel.

• In Master modes, the FPGA internally generates the CCLK configuration clock signal.
By default, the CCLK frequency starts out low but can be increased using the
ConfigRate bitstream option. The maximum supported CCLK frequency setting
depends on the read specifications for the attached nonvolatile memory. A faster
memory may allow for faster configuration.

• Furthermore, in Master modes, the FPGA's CCLK output frequency varies with
process, voltage, and temperature. The fastest guaranteed configuration rate depends
on the slowest guaranteed CCLK frequency as shown in the respective data sheet. If
an external clock is available on the board, it is also possible to configure the FPGA in
a Slave mode while still using an attached nonvolatile memory.

http://www.xilinx.com/microblaze
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 35
UG332 (v1.5) March 16, 2009

Design Considerations
R

Will the FPGA or FPGAs be loaded with a single configuration image or
loaded with multiple images?

In most FPGA applications, the FPGA is loaded only when the system is powered on.

However, some applications reload the FPGA multiple times while the system is
operating, with different FPGA bitstreams for different functions. For example, the FPGA
may be loaded with one bitstream to implement a power-on self-test, followed by a second
bitstream with the final application. In many test equipment applications, the FPGA is
loaded with different bitstreams to execute hardware-assisted tests. In this way, one
smaller FPGA can implement the equivalent functionality of a larger ASIC or gate array
device.

The downloaded or Slave configuration modes easily support reloading the FPGA with
multiple images. However, this is also possible on Spartan-3E and Extended Spartan-3A
family FPGAs using the MultiBoot feature.

See Chapter 14, “Reconfiguration and MultiBoot” for more information.

What I/O voltages are required in the end application?

The chosen FPGA configuration mode places some constraints on the FPGA application,
specifically the I/O voltage allowed on the FPGA's configuration banks.

For example, the SPI or BPI modes leverage third-party Flash memory components that
are usually 3.3V-only devices. This then requires that the I/O voltage on the bank or banks
attached to the memory also be 3.3V. In most applications, this is not an issue.

However, if a voltage other than 3.3V is required, specifically 2.5V, consider using a Xilinx
Platform Flash PROM, which supports a range of output voltages via a separate supply on
the Platform Flash PROM.

Will the FPGA application need to store nonvolatile data?

Some FPGA applications store data in external nonvolatile memory. Spartan-3E or
Spartan-3A/3A DSP FPGAs provide some useful enhancements for these applications.

• Spartan-3E and Spartan-3A/3A DSP FPGAs can configure directly from external
commodity serial or parallel Flash PROMs.

• The Flash PROM address, data, and control pins are only borrowed by the FPGA
during configuration. After configuration, the FPGA has full read/write control over
these pins.

• The FPGA configuration bitstreams and the application’s nonvolatile data can share
the same PROM, reducing overall system cost.

See Chapter 4, “Master SPI Mode” or Chapter 5, “Master BPI Mode” for additional
information.

Should the FPGA I/O pins be pulled High via resistors during configuration?

Some of the FPGA pins used during configuration have dedicated pull-up resistors during
configuration. However, the majority of user-I/O pins have optional pull-up resistors that can
be enabled during the configuration process. During configuration, a single control line
determines whether the pull-up resistors are enabled or disabled. The name of the control pin
varies by Spartan-3 generation family. On Extended Spartan-3A family FPGAs, this pin is called
PUDC_B (pull-up during configuration, active Low) and on Spartan-3E FPGAs, this same pin is
called HSWAP, short for hot-swap. On Spartan-3 FPGAs, the same pin is called HSWAP_EN.

http://www.xilinx.com

36 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Why enable the pull-up resistors during configuration? Floating signal levels are problematic in
CMOS logic systems. Other logic components in the system may require a valid input level
from the FPGA. The internal pull-up resistors generate a logic High level on each pin.
Generally, a device driving signals into the FPGA can overcome the pull-up resistor. Similarly,
an individual pin can be pulled down using an appropriately-sized external pull-down resistor.

Why disable pull-up resistors during configuration? In hot-swap or hot-insertion applications,
the pull-up resistors provide a potential current path to the I/O power rail. Turning off the pull-
up resistors disables this potential path. However, then external pull-up or pull-down resistors
may be required on each individual I/O pin.

See “Pull-Up Resistors During Configuration,” page 62 for additional information.

Does the application target a specific FPGA density or should it support
migrating to other FPGA densities in the same package footprint?

The package footprint and pinouts for Xilinx Spartan-3 generation FPGAs are designed to
allow migration between different densities within a specific family. For example, three
different Spartan-3E FPGAs support the identical package footprint when using the 320-
ball fine-pitch ball grid array package (FG320). As shown in Table 1-4, the smallest of
devices, the XC3S500E, requires approximately 2.2 Mbits for configuration. The largest of
these devices, the XC3S1600E, requires 5.7 Mbits for configuration.

Likewise, an FPGA application may store other nonvolatile data in the Flash memory,
requiring a larger storage device.

To support design migration between device densities, allow sufficient configuration
memory to cover the largest device in the targeted package. In the example provided
above, allow up to 5.7 Mbits for configuration. This allows the application to use any
Spartan-3E FPGA available in the FG320 package.

In downloaded applications, simply reserve enough space in memory for the largest
anticipated, uncompressed FPGA bitstream.

In self-loaded applications, use a PROM footprint and the associated FPGA configuration
mode to facilitate easy migration. Table 1-3 provides example migration options using
different FPGA configuration modes, different PROM families, and different package
options. For example, Xilinx Platform Flash provides excellent migration between 1 to 4
Mbits using the XCFxxS serial family and between 8 to 32 Mbits using the XCFxxP parallel
family. If an application spans between the two, use two separate footprints, one for each
Platform Flash sub family. Be aware that the XCFxxP Flash family requires a 1.8V core
supply voltage input while the XCFxxS requires 3.3V. Both families provide 3.3V I/O.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 37
UG332 (v1.5) March 16, 2009

Design Considerations
R

The SPI serial Flash vendors offer a wider migration range but do require a multi-package
footprint. For example, the Atmel DataFlash SPI serial Flash family spans the range of
1 Mbit to 64 Mbit using a single footprint that accommodates the JEDEC and EIAJ versions
of the 8-pin SOIC package along with the 8-connector CASON package. The STMicro
(Numonyx) SPI serial Flash has uses a different footprint that uses a combined 8-pin and
16-pin SOIC footprint and is also compatible with devices from multiple SPI Flash
vendors. See “Multi-Package Layout,” page 141.

Similarly, parallel Flash supports a wide density range in a common, multi-vendor
package footprint.

What is the anticipated production lifetime for the end product?

Consider whether your application has a relatively short or a relatively long production
lifetime. Commodity memories generally have a shorter production lifetime than the
proprietary Xilinx Platform Flash PROMs. For example, if building an industrial
application that will be manufactured for five years or more, then Xilinx Platform Flash
PROMs may provide better long-term availability. Similarly, the In-System Flash (ISF)
memory on Spartan-3AN comes integrated with the FPGA.

Products with shorter production lifetimes may benefit from the multi-vendor pricing and
multi-sourcing of commodity memories.

Table 1-3: PROM Families and Footprint Compatible Package Migration

Config.
Mode

PROM
Family

Package
Option

PROM Density in Bits/Associated Part Numbers

1M 2M 4M 8M 16M 32M 64M

Master
Serial
Mode

XCFxxS serial
Platform Flash VO20 XCF01S XCF02S XCF04S – – – –

XCFxxP parallel
Platform Flash

VO48 – – – XCF08P XCF16P XCF32P –

FS48 – – – XCF08P XCF16P XCF32P –

Master
SPI Mode

ST-compatible
SPI Flash
(Multi-Package
Footprint)

8SOIC JEDEC
8SOIC EIAJ

16SOIC
8MLP

Part number varies by vendor.

Atmel
AT45DBxxxD
SPI Flash
(Multi-Package
Footprint)

8SOIC JEDEC
8SOIC EIAJ

8CASON
‘011D ‘021D ‘041D ‘081D ‘161D ‘321D ‘642D

Master
BPI Mode

x8 Parallel NOR
Flash 40-pin TSOP Part number varies by vendor. – –

x8/x16 Parallel
NOR Flash

48-pin TSOP – Part number varies by vendor.

x8 or x8/x16
Parallel NOR
Flash

48-ball FBGA – Part number varies by vendor.

Notes:
1. Platform Flash PROMs also work in Master BPI mode, as described in “Using Xilinx Platform Flash PROMs with Master BPI Mode,”

page 158.

http://www.xilinx.com

38 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Do you want to protect your FPGA bitstream against unauthorized
duplication?

Like processor code, the bitstream that defines the FPGA’s functionality loads into the
FPGA during power-on. Consequently, this means that an unscrupulous company can
capture the bitstream and create an unauthorized copy of the design.

Like processors, there are multiple techniques to protect the FPGA bitstream and any
intellectual property (IP) cores embedded in the FPGA. The most powerful of these is
called authentication and is more fully described in Chapter 15, “Protecting FPGA
Designs.”

Do you want to load multiple FPGAs with the same configuration bitstream?

Generally, there is one configuration bitstream image per FPGA in a system. As shown in
Figure 1-3, multiple, different FPGA bitstream images can share a single configuration
PROM by leveraging a configuration daisy-chain. However, what if all the FPGAs in the
application have the same part number and use the same bitstream? Fortunately, in this
case, only a single bitstream image is required. An alternative solution, called a ganged or
broad-side configuration, loads multiple, similar FPGAs with the same bitstream. See
Figure 3-5, page 87 or Figure 4-7, page 120 for an example.

Caution! The Spartan-3AN FPGA family does not support configuration daisy-chains when
configured using the Internal Master SPI mode.

Will the FPGA be used in a PCI™ application?

The PCI™ Local Bus Specification, Revision 3.0 (“the PCI specification”) defines a number
of power and reset requirements. These requirements, when considered in an FPGA
implementation, create several challenges that must be addressed for long term reliability
and broad interoperability. See XAPP457, “Powering and Configuring Spartan-3
generation FPGAs in Compliant PCI Applications”, for more details.

Where to go for debugging support

This user guide attempts to make FPGA configuration easy and straight forward. Should
problems occur, please visit the interactive Configuration Debug Guide to you through the
configuration debugging process.

• Configuration Debug Guide
http://survey.xilinx.com/ss/wsb.dll/Xilinx/Configuration_Debug_Guide.htm

FPGA Configuration Bitstream Sizes
By default, FPGA configuration images are uncompressed. In an uncompressed FPGA
bitstream, the size of the image is constant regardless of the complexity of the underlying
FPGA application. Put another way, a single inverter requires the same bitstream size as a
complex MPEG4 encoder implemented in the same FPGA array.

Uncompressed Bitstream Image Size
Table 1-4 provides the number of bits in an uncompressed FPGA bitstream for each
specific part number of the Spartan-3 generation.

http://www.xilinx.com/support/documentation/application_notes/xapp457.pdf
http://www.xilinx.com
http://survey.xilinx.com/ss/wsb.dll/Xilinx/Configuration_Debug_Guide.htm

Spartan-3 Generation Configuration User Guide www.xilinx.com 39
UG332 (v1.5) March 16, 2009

FPGA Configuration Bitstream Sizes
R

Bitstream Format
The typical FPGA user does not need a bit-level understanding of the configuration
stream. However, for the purpose of understanding configuration options and for
debugging, an overview of the bitstream format is helpful. For more details, see the
chapter Configuration Details and XAPP452: Spartan-3 Advanced Configuration Architecture.

Synchronization Word

Embedded at the beginning of an FPGA configuration bitstream is a special
synchronization word. The synchronization word alerts the FPGA to upcoming
configuration data and aligns the configuration data with the internal configuration logic.
Any data on the configuration input pins prior to synchronization is ignored. Because the
synchronization word is automatically added by the Xilinx bitstream generation software,
this step is transparent in most applications. The length and contents of the
synchronization word differ between the Extended Spartan-3A family FPGA families and
the Spartan-3 and Spartan-3E FPGA families, as outlined in Table 12-3.

Table 1-4: Number of Bits in an Uncompressed FPGA Bitstream Image

Spartan-3 Generation
FPGA Family

FPGA Part Number
Number of

Configuration Bits

Spartan-3A/3AN FPGA

XC3S50A/AN 437,312

XC3S200A/AN 1,196,128

XC3S400A/AN 1,886,560

XC3S700A/AN 2,732,640

XC3S1400A/AN 4,755,296

Spartan-3A DSP
XC3SD1800A 8,197,280

XC3SD3400A 11,718,304

Spartan-3E FPGA

XC3S100E 581,344

XC3S250E 1,353,728

XC3S500E 2,270,208

XC3S1200E 3,841,184

XC3S1600E 5,969,696

Spartan-3 FPGA

XC3S50 439,264

XC3S200 1,047,616

XC3S400 1,699,136

XC3S1000 3,223,488

XC3S1500 5,214,784

XC3S2000 7,673,024

XC3S4000 11,316,864

XC3S5000 13,271,936

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf

40 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Array ID

Next the array IDCODE is embedded in the bitstream so that the FPGA can check that it
matches its internal array ID. This prevents the FPGA from mistakenly attempting to load
configuration data intended for a different FPGA array. For example, the array ID check
prevents an XC3S1000 from being configured with an XC3S200 bitstream. Table 12-4 shows
the array ID codes.

Data Frames

Next is the internal configuration memory, partitioned into segments called "data frames."
The configuration memory can be visualized as a rectangular array of bits. The bits are
grouped into vertical frames that are one-bit wide and extend from the top of the array to
the bottom. A frame is the atomic unit of configuration. It is the smallest portion of the
configuration memory that can be written to or read from. The number and size of frames
varies with device size (see Table 1-5). The total number of configuration bits for a
particular device is calculated by multiplying the number of frames by the number of bits
per frame, and then adding the total number of bits needed to perform the configuration
register writes.

Table 1-5: Configuration Data Frames

FPGA Family FPGA Part Number
Number of

Frames
Frame Length

in Bits

Spartan-3A/3AN FPGA

XC3S50A/AN 367 1,184

XC3S200A/AN 540 2,208

XC3S400A/AN 692 2,720

XC3S700A/AN 844 3,232

XC3S1400A/AN 996 4,768

Spartan-3A DSP
XC3SD1800A 1,414 5,792

XC3SD3400A 1,718 6,816

Spartan-3E FPGA

XC3S100E 368 1,568

XC3S250E 577 2,336

XC3S500E 729 3,104

XC3S1200E 958 4,000

XC3S1600E 1,186 5,024

Spartan-3 FPGA

XC3S50 368 1,184

XC3S200 615 1,696

XC3S400 767 2,208

XC3S1000 995 3,232

XC3S1500 1,223 4,384

XC3S2000 1,451 5,280

XC3S4000 1,793 6,304

XC3S5000 1,945 6,816

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 41
UG332 (v1.5) March 16, 2009

FPGA Configuration Bitstream Sizes
R

CRC

Next is the Cyclic Redundancy Check (CRC) value. As the configuration data frames are
loaded, the FPGA calculates a CRC value. After the configuration data frames are loaded,
the configuration bitstream issues a Check CRC instruction to the FPGA. If the CRC value
calculated by the FPGA does not match the expected CRC value in the bitstream, then the
FPGA pulls INIT_B Low and aborts configuration. Refer to “CRC Checking during
Configuration,” page 309 for additional information.

Bitstream Compression
By default, FPGA bitstreams are uncompressed. However, Spartan-3 generation FPGAs
support basic bitstream compression. The compression is fairly simple, yet effective for
some applications. The ISE® bitstream generator software examines the FPGA bitstream
for any duplicate configuration data frames. These duplicates occur often in the following
situations.

• FPGA designs with unused block RAM or hardware multipliers.

• FPGA design with low logic utilization, i.e., most of the FPGA array is empty.

The ISE software can then generate a compressed FPGA bitstream. When the FPGA
configures, the internal configuration controller copies the redundant data frame to
multiple locations. Because of the extra processing required by the FPGA configuration
controller, the maximum configuration clock frequency is reduced to 20 MHz on Spartan-
3 and Spartan-3E FPGAs, as shown in Table 1-6. Extended Spartan-3A family FPGAs
support the full CCLK frequency range, even with compressed bitstreams.

The amount of compression is non-deterministic. Changes to the source FPGA design may
cause the size of the compressed bitstream to grow. Sparse, mostly-empty FPGA designs
have the greatest overall compression factor. Similarly, FPGA designs with an empty
column of block RAM have a high compression factor.

The overall benefits of a compressed bitstream are as follows.

• Smaller memory footprint.

• Faster programming time for nonvolatile memory.

There are two methods to generate a compressed bitstream, from within the ISE Project
Navigator or from the command line.

From Project Navigator, check the Enable BitStream Compression option, shown as Step
4 in Figure 1-6.

From the command line, add the -g Compress option to the BitGen command line.

bitgen -g Compress <other options>...

Furthermore, the parallel Platform Flash PROMs offer their own compression
mechanisms.

Table 1-6: Maximum CCLK Frequency When Using Compressed Bitstream

Spartan-3
FPGA

Spartan-3E
FPGA

Spartan-3A
Spartan-3AN

Spartan-3A DSP
FPGA

Maximum CCLK Frequency When
Using Compressed Bitstream

20 MHz 20 MHz 80 MHz

http://www.xilinx.com

42 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Packet Format
A Spartan-3 generation bitstream consists of a specific sequence of writes to the
configuration registers. After synchronization, all data, register writes, and frame data are
encapsulated in packets. There are two kinds of packets: Type 1 and Type 2. A Type 1
packet consists of two parts: a header and the data. The header (see Figure 1-4) describes
which register is being accessed, whether it is a read or write operation, and the size of the
data to follow. The data portion, always immediately following the header, is the number
of 32-bit words specified in the header.

For information on Spartan-3 FPGA packet formats, see XAPP452 Spartan-3 Advanced
Configuration Architecture.

Setting Bitstream Options, Generating an FPGA Bitstream
After specifying and compiling an FPGA design, generate an FPGA bitstream using either
the ISE Project Navigator or the bitstream generator command-line utility, BitGen. The
specific details of the bitstream options are described throughout this user guide.

ISE Software Project Navigator
Figure 1-5 shows how to set options for the Bitstream Generator from within the ISE
Project Navigator window.

1. Right-click Generate Programming File.

2. Click Properties.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Register Address Word Count

0 0 1 x x x x x x x x x x x x x

1. Type = "001" for Type 1 and "010" for Type 2
2. Op = "10" for Write and "01" for Read

Figure 1-4: Extended Spartan-3A Family Type 1 Packet
Header

Figure 1-5: Setting Bitstream Generator Options from ISE Project Navigator

2

1

UG332_c1_04_120306

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 43
UG332 (v1.5) March 16, 2009

Setting Bitstream Options, Generating an FPGA Bitstream
R

3. Click General Options, as shown in Figure 1-6.

4. To compress the FPGA bitstream, check Enable BitStream Compression.

5. To enter specific bitstream generator command-line options that are not already
supported by the graphical interface, enter the option strings in the space provided.

Figure 1-6: Bitstream Generator General Options

ug332_C1_05_091106

4

3

5

http://www.xilinx.com

44 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

6. Click Configuration Options, as shown in Figure 1-7.

7. If using one of the Master configuration modes, set the CCLK Configuration Rate
frequency. This setting is not used for Slave mode configuration. The specific setting
depends on the specific FPGA family, the attached configuration memory, and the
configuration mode. Specific values are recommended in later chapters, depending on
the speed of the attached memory.

8. The FPGA’s DONE and PROG_B (Program) pins each have a dedicated pull-up
resistor during configuration. These resistors become optional after configuration. The
specific example is from a Spartan®-3E FPGA application. Spartan-3 and Spartan-3A
FPGAs have additional options.

9. The FPGA’s JTAG pins each have a dedicated pull-up resistor during configuration.
These resistors become optional after configuration.

10. By default, unused I/O blocks are configured as inputs with a pull-down resistor.
Other options are available. See UnusedPin bitstream option.

11. Each FPGA bitstream can include an 8-digit hexadecimal (32-bit) identifier that can be
read via the FPGA’s JTAG port.

Figure 1-7: Bitstream Generator Configuration Options

UG332_c1_06_091106

7

6

8

10

11

9

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 45
UG332 (v1.5) March 16, 2009

Setting Bitstream Options, Generating an FPGA Bitstream
R

12. Click Startup Options, as shown in Figure 1-8.

13. After the FPGA configuration bitstream is loaded into the FPGA, the FPGA enters its
Startup phase. The timing of each Startup cycle is controlled by a selectable clock
source. See “Startup Clock Source,” page 250.

14. The Startup phase of FPGA configuration provides six different cycles to synchronize
the following startup events. The event can be assigned to a specific cycle or be
synchronized to the DONE signal. See “Startup,” page 248.

♦ The timing of when output drivers are enabled

♦ The timing of when the write-protect lock is removed from writable clocked
elements

♦ The timing of when the DONE pin goes active.

15. If the DCM_WAIT=TRUE attribute is set on a Digital Clock Manager (DCM) within the
FPGA, the FPGA optionally waits for the Delay-Locked Loop (DLL) within the DCM
to lock to the incoming clock signal before finishing configuration. See “Waiting for
DCMs to Lock, DCI to Match,” page 250.

16. The FPGA’s DONE pin can actively drive High after configuration. This option should
only be set for single-FPGA applications or for the last FPGA in a multi-FPGA
configuration daisy chain. See “DONE Pin,” page 52.

Figure 1-8: Bitstream Generator Startup Options

13

12

14

15

16

UG332_c1_07_120106

http://www.xilinx.com

46 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

17. Click Readback Options, as shown in Figure 1-9.

18. By default, FPGA bitstreams can be read back via JTAG. Other options exist to disable
FPGA readback. See “Basic FPGA Hardware-Level Security Options,” page 289.

19. Click OK when finished.

BitGen Command Line Utility
For designers that prefer command-line processing and to support scripting, the ISE
software also provides a command-line bitstream generator utility called BitGen.

For a quick summary of available options for particular FPGA family, type the command
shown in Table 1-7 in a DOS box or command window.

For complete documentation on the bitstream generator software, please refer to the
BitGen chapter of the following software manual.

• ISE 10.1 Development System Reference Guide
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf

Figure 1-9: Bitstream Generator Readback Options

18

17

19

UG332_c1_08_091106

Table 1-7: Command Line to Review Bitstream Generator Options per Family

FPGA Family Command Line

Spartan-3 FPGAs bitgen -help spartan3

Spartan-3E FPGAs bitgen -help spartan3e

Spartan-3A FPGAs bitgen -help spartan3a

Spartan-3AN FPGAs bitgen -help spartan3an

Spartan-3A DSP FPGAs bitgen -help spartan3adsp

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 47
UG332 (v1.5) March 16, 2009

Additional Resources
R

Additional Resources
The following also provide information related to FPGA configuration.

Data Sheets
DS529, Spartan-3A FPGA Family: Data Sheet

DS557, Spartan-3AN FPGA Family Data Sheet

DS610, Spartan-3A DSP FPGA Family: Data Sheet

DS312, Spartan-3E FPGA Family: Complete Data Sheet

DS099, Spartan-3 FPGA Family Data Sheet

Application Notes

Configuration

www.xilinx.com/support/documentation/topicfpgafeaturedesign_configur.htm

Reference Designs for Boards

Spartan-3A/3AN: www.xilinx.com/products/boards/s3astarter/reference_designs.htm

Spartan-3E: www.xilinx.com/products/boards/s3estarter/reference_designs.htm

Spartan-3: www.xilinx.com/products/boards/DO-SPAR3-DK/reference_designs.htm

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf
www.xilinx.com/support/documentation/data_sheets/ds610.pdf
www.xilinx.com/support/documentation/data_sheets/ds312.pdf
www.xilinx.com/support/documentation/data_sheets/ds099.pdf
www.xilinx.com/support/documentation/data_sheets/ds529.pdf
www.xilinx.com/support/documentation/topicfpgafeaturedesign_configur.htm
www.xilinx.com/products/boards/s3astarter/reference_designs.htm
www.xilinx.com/products/boards/s3estarter/reference_designs.htm
www.xilinx.com/products/boards/DO-SPAR3-DK/reference_designs.htm

48 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 49
UG332 (v1.5) March 16, 2009

R

Chapter 2

Configuration Pins and Behavior during
Configuration

The FPGA’s configuration flexibility means that many pins serve multiple purposes. Some
pins are merely borrowed during configuration, only to be released back to the FPGA
application as user-defined I/O pins. Other pins are dedicated to configuration. This
chapter describes how these various pins behave during the configuration process. During
configuration includes the time when the FPGA first powers up, after PROG_B is pulsed
Low, or during configuration or re-configuration including MultiBoot.

General Configuration Control Pins
A few pins control the overall FPGA configuration process. These include the following
and are similar on all Spartan®-3 generation FPGAs. The four-wire JTAG interface is a
separate and independent configuration interface discussed primarily in Chapter 9, “JTAG
Configuration Mode and Boundary-Scan”.

• The mode select pins, M[2:0], define the configuration mode that the FPGA uses to
load its configuration data.

• The DONE pin, when High, indicates when the FPGA successfully completed loading
its configuration data.

• The program pin, PROG_B, initiates the configuration process. The FPGA also
automatically initiates configuration on power-up. The JTAG interface has a separate
JTAG command to initiate configuration. The PROG_B pin also forces a master reset
on the FPGA.

• The configuration clock pin, CCLK, defines the timing for the FPGA’s configuration
process. If the M[2:0] mode select pins define a Master mode, then the FPGA
internally generates CCLK. If the M[2:0] mode select pins define a Slave mode, then
CCLK is an input to the FPGA from an external timing reference.

• The INIT_B pins performs multiple functions. At the start of configuration, INIT_B
goes Low indicating that the FPGA is clearing its internal configuration memory--a
process called housecleaning. Later, when the FPGA is actively loading its
configuration bitstream, INIT_B goes Low if the bitstream fails its CRC check. On
Extended Spartan-3A family FPGAs, if so enabled in the FPGA application, the
INIT_B pin also potentially signals a post-configuration CRC error.

• During configuration, some pins have built-in pull-up resistors. The remaining pins
each have an optional pull-up resistor controlled by a single control input pin. This
pin has different names on different architectures as shown in Table 2-12.

http://www.xilinx.com

50 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Choose a Configuration Mode: M[2:0]
The mode select pins, M[2:0], define the configuration mode that the FPGA uses to load its
bitstream, as shown in Table 2-1. The logic levels applied to the mode pins is sampled on
the rising edge of INIT_B, immediately after the FPGA completes initializing its internal
configuration memory.

M[2:0] Functional Differences between Spartan-3 Generation Families

Table 2-2 summarizes the slight differences in functionality between the Spartan-3
generation families.

Table 2-1: Mode Pin Settings and Associated FPGA Configuration Mode by Family

M[2:0]

FPGA Family

Spartan-3 Spartan-3E
Spartan-3A

Spartan-3A DSP
Spartan-3AN

<0:0:0> Master Serial (Platform Flash) Mode

<0:0:1> Reserved Master SPI Mode

<0:1:0> Reserved BPI Up

<0:1:1> Master Parallel BPI Down Reserved
Internal Master

SPI

<1:0:0> Reserved

<1:0:1> JTAG Mode

<1:1:0> Slave Parallel Mode

<1:1:1> Slave Serial Mode

Table 2-2: M[2:0] Mode Pin Differences between Spartan-3 Generation FPGAs

Spartan-3
FPGA

Spartan-3E
FPGA

Extended
Spartan-3A

Family FPGAs

Available as possible user I/O pin after
configuration?

No Yes Yes

Dedicated internal pull-up resistor
during configuration?

Yes No Yes

Mechanism to define post-configuration
behavior

M2Pin,
M1Pin,
M0Pin

bitstream
options

User I/O User I/O

Input supply voltage VCCAUX VCCO_2 VCCO_2

Output supply voltage N/A VCCO_2 VCCO_2

Same voltage as other pins in the
configuration interface?

Only when
interface is at

2.5V
Yes Yes

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 51
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

Extended Spartan-3A Family and Spartan-3E FPGA Families

On the Extended Spartan-3A and Spartan-3E FPGA families, the M[2:0] mode select pins
are borrowed during configuration and become full user I/O after configuration
successfully completes. The M[2:0] pins are powered by the VCCO_2 supply.

Spartan-3E FPGAs

The Spartan-3E FPGA mode pins do not have dedicated pull-up resistors during
configuration. However, these pins have optional pull-up resistors during configuration,
controlled by the Spartan-3E HSWAP pin. If the mode pins are unconnected and if the
HSWAP is Low, then the Spartan-3E FPGA defaults to the Slave Serial configuration mode
(M[2:0] = <1:1:1>.

Extended Spartan-3A Family FPGAs

The Extended Spartan-3A family FPGA mode pins have dedicated internal pull-up
resistors during configuration, regardless of the PUDC_B pin. If the mode pins are
unconnected, then the Extended Spartan-3A family FPGA defaults to the Slave Serial
configuration mode (M[2:0] = <1:1:1>.

Spartan-3 FPGA Family

On the Spartan-3 FPGA family, the M[2:0] mode select pins are dedicated inputs, powered
by the VCCAUX supply.

Before and during configuration, the mode pins have a relatively strong internal pull-up
resistor to the VCCAUX supply, regardless of the HSWAP_EN pin.

If the mode pins are unconnected, then the FPGA defaults to the Slave Serial configuration
mode (M[2:0] = <1:1:1>. These resistors can be controlled after the Spartan-3 FPGA
successfully configures using the bitstream generator options M2Pin, M1Pin, and M0Pin.
These options define whether a pull-up resistor, pull-down resistor, or no resistor is
present on its respective mode pin, M0, M1, or M2. By default, all three pins will have an
internal pull-up resistor to VCCAUX.

Defining M[2:0] after Configuration for Minimum Power Consumption

During configuration, the M[2:0] pin may be tied directly to power or ground, tied High or
Low using external resistors, or actively driven by an external component. To further
minimize power consumption, adjust the post-configuration behavior of the M[2:0] pins so
that they match the required configuration setting shown in Table 2-1, page 50, either by
defining their value in the FPGA application or by adjusting the associated bitstream
options. Essentially, avoid any unnecessary current paths through pull-up or pull-down
resistors.

Table 2-3 summarizes the default post-configuration behavior on both Spartan-3 and
Spartan-3E/3A/-3AN FPGA families, which have slightly different functionality.

http://www.xilinx.com

52 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

DONE Pin
The FPGA actively drives the DONE pin Low during configuration. When the
configuration process successfully completes, the FPGA either actively drives the DONE
pin High (“DriveDone”) or allows the DONE pin to float High using either an internal or
external pull-up resistor, controlled by the DonePin bitstream generator option.

In a multi-FPGA daisy-chain or broadside configuration, the open-drain option permits
the DONE lines of multiple FPGAs to be tied together, so that the common node transitions
High only after all of the FPGAs have successfully completed configuration. Externally
holding the open-drain DONE pin Low stalls the “Startup” sequence.

The DONE pin is powered by the VCCAUX supply. The DONE pin functionality is common
to all Spartan-3 generation FPGAs.

Associated Bitstream Generator (BitGen) Options

The DONE pin has various option bits that controls this pin’s behavior during and after
configuration. These options are summarized immediately below and described in detail
on the next few pages.

• DriveDone defines whether the DONE pin is an active driver or an open-drain
output.

• DonePin defines whether or not the DONE pin has an internal pull-up resistor.

• DONE_cycle defines the Startup state where is DONE driven High or released to float
High.

• DonePipe adds an extra pipelining stage before the FPGA actually completes
configuration.

Table 2-3: Default Post-Configuration Behavior of M[2:0] Pin

Spartan-3 FPGAs Spartan-3E, Extended Spartan-3A Family FPGAs

After configuration, the M[2:0]
pins have optional pull-up and
pull-down resistors controlled by
the M2Pin, M1Pin, and M0Pin
bitstream options. Unless changed
in the bitstream, all three M[2:0]
have pull-up resistors.

After configuration, the M[2:0] pin are available as user-
I/O pins. If these pins are not defined in the FPGA
application, then these pins are treated as unused I/O
pins. The behavior of unused I/O pins is defined by the
UnusedPin bitstream option. Unless defined in the
FPGA application or changed via the UnusedPin option,
all three M[2:0] have internal pull-down resistors.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 53
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

DriveDone

The DriveDone bitstream generator option, shown in Table 2-4, defines whether the DONE
pin has a totem-pole output that actively drives High or acts an open-drain output. If
configured as an open-drain output—which is the default behavior—then a pull-up
resistor is required to produce a High logic level. The DonePin bitstream option controls
the pull-up resistor.

Set DriveDone:Yes in single-FPGA applications or for the first design in a multi-FPGA
design.

This option is set graphically in the “ISE Software Project Navigator,” page 42 by checking
Drive Done Pin High during Step 16 in Figure 1-8, page 45.

See Table 2-6 for the interaction between DriveDone and DonePin.

DonePin

The DonePin bitstream generator option, shown in Table 2-5, defines whether or not an
internal pull-up resistor is present on the DONE pin to pull the pin to VCCAUX. If the
pull-up resistor is eliminated, then the DONE pin must be pulled High using an external
300Ω to 3.3kΩ pull-up resistor.

This option is set graphically in the “ISE Software Project Navigator,” page 42 by selecting
the Configuration Pin Done setting during Step 8 in Figure 1-7, page 44.

See Table 2-6 for the interaction between DriveDone and DonePin.

Table 2-4: DriveDone Bitstream Generator Option

Setting Description

No
Default. The DONE pin is an open-drain output. A pull-up resistor to VCCAUX is
required. An internal pull-up resistor is available using the DonePin:Pullup
bitstream generator option.

Yes
The DONE pin actively drives High when the FPGA completes the configuration
process.

Table 2-5: DonePin Bitstream Generator Option

Setting Description

Pullup Default. After configuration, the DONE pin has an internal pull-up
resistor to VCCAUX.

Pullnone

There is no internal pull-up resistor on DONE. An external 300Ω to 3.3kΩ
pull-up resistor to VCCAUX is required. The pull-up resistor must be
strong enough to pull the DONE pin to a valid High within less than one
CCLK cycle.

http://www.xilinx.com

54 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

DONE_cycle

The DONE_cycle option controls during which cycle the DONE pin is asserted during the
Startup sequence, just prior to the completion of a successful configuration. See “Startup,”
page 248.

This option is set graphically in the “ISE Software Project Navigator,” page 42 by adjusting
the Done (Output Events) setting during Step 14 in Figure 1-8, page 45.

DonePipe

The DonePipe option is used in a some multi-FPGA applications.

After all DONE pins are released in a multi-FPGA configuration, the DONE pin must
transition from Low to High in a single Startup clock cycle (StartupClk). If additional time
is required for the DONE signal to rise within a single Startup cycle, set the DonePipe:Yes
bitstream generator option for all devices in the daisy chain or broadside configuration.

Set this option graphically in “ISE Software Project Navigator,” page 42 by checking the
Enable Internal Done Pipe option box shown in Figure 1-8, page 45.

DONE Synchronizes Multiple FPGAs in a Daisy Chain or Broadside
(Ganged) Configuration

In a single-FPGA application, the DONE pin merely indicates when the FPGA successfully
configures.

In a multi-FPGA daisy-chain or broadside application, however, the DONE pin also
synchronizes the “Startup” sequence of all the FPGAs, ensuring that the FPGAs transition
smoothly from the configuration process to the active FPGA application.Figure 2-1
provides a three-FPGA example. In a daisy-chain application, FPGAs of different densities

Table 2-6: Interaction between DriveDone and DonePin Bitstream Generator Options for DONE Pin

DONE Actively Drives
Open-Drain with

Internal Pull-up (Default)
Open-Drain with
External Pull-Up

Diagram

DriveDone: Yes No No

DonePin: Pullnone Pullup Pullnone

Recommended Usage for Various Configuration Topographies

Single FPGA Best OK OK but requires external pull-up

Daisy-Chain Only on first FPGA
in the chain

For all down-stream FPGAs in
the chain. Also allowed on the

first FPGA in the chain.
OK but requires external pull-up

Broadside Do Not Use!
All FPGAs in a broadside

configuration
OK but requires external pull-up

FPGA

DONE

Active driver

VCCAUX

UG332_c2_01_120106a

LVCMOS

Startup
Sequencer

FPGA

DONE

VCCAUX

VCCAUX

UG332_c2_01_120106b

Startup
Sequencer

FPGA

DONE

VCCAUX

VCCAUX

330Ω to
3.3kΩ

UG332_c2_01_120106c

Startup
Sequencer

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 55
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

and architectures are configured in series with different bitstreams. In a broad-side
example, multiple, identical FPGAs are simultaneously loaded with the same bitstream.

Connect All DONE Pins

Connect the DONE pins for all devices in a multi-FPGA daisy chain or broadside
configuration. For debugging purposes, it is often helpful to have a way of disconnecting
individual DONE pins from the common DONE signal, so that devices can be individually
configured through the serial or JTAG interface. In Figure 2-1, the FPGAs can be
disconnected by temporarily remove the 0-ohm resistors on the board. Stake-pin or wire
jumpers also work.

DONE Pin Bitstream Generator Options

When generating the bitstream files for each of the FPGAs in the daisy-chain or broadside
configuration, set the DONE pin options as indicated in Table 2-6, page 54.

Also, to successfully configure a daisy-chain, the GTS_cycle bitstream option must be set
to a Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the
software default setting. Optionally, set GTS_cycle:Done.

Cautions When Mixing Spartan-3A FPGAs with VCCAUX = 3.3V and Other
Spartan-3 Generation FPGAs in a Daisy-Chain Configuration

The DONE pin is powered by the FPGA’s VCCAUX supply. The VCCAUX voltage on
Spartan-3 and Spartan-3E FPGAs is solely 2.5V. For Spartan-3A FPGAs, however, the
VCCAUX voltage can be either 2.5V or 3.3V. Spartan-3AN FPGAs require VCCAUX at 3.3V.
See “VCCAUX Level”.

Caution! In a multi-FPGA configuration that mixes Extended Spartan-3A family and other
Xilinx® FPGAs where the Extended Spartan-3A family VCCAUX = 3.3V, check for voltage
compatibility on the common DONE node.

Figure 2-1: DONE and INIT_B Synchronize Daisy-Chain or Broadside Configurations

INIT_B

DONE

FPGA

0Ω

0Ω
INIT_B

DONE

FPGA

0Ω

0Ω
INIT_B

DONE

FPGA

0Ω

0Ω

33
0Ω

VCCO_2

4.
7k

Ω

VCCAUX

Common INIT_B node
synchronizes initialization
(clearing configuration memory)
between different array sizes

Common DONE node
synchronizes the Startup
sequence between
different FPGAs

0Ω resistors provide a means
to isolate an individual FPGA to
easily debug a configuration
issue UG332_c2_02_111406

http://www.xilinx.com

56 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Program or Reset FPGA: PROG_B
The PROG_B pin is an asynchronous control input to the FPGA. When Low, the PROG_B
pin resets the FPGA, initializing the configuration memory. When released, the PROG_B
begins the configuration processes. The initialization process does not start until PROG_B
returns High. Asserting PROG_B Low for an extended period delays the configuration
process. The various PROG_B functions are outlined in Table 2-7.

At power-up or after a master reset, PROG_B always has a pull-up resistor to VCCAUX,
regardless of the “Pull-Up Resistors During Configuration” control input. After
configuration, the bitstream generator option ProgPin defines whether or not the pull-up
resistor is remains active. By default, the ProgPin option retains the pull-up resistor.

After configuration, hold the PROG_B input High. Any Low-going pulse on PROG_B,
lasting 500 ns or longer (300 ns in the Spartan-3 FPGAs), restarts the configuration process.

The PROG_B pin functionality is identical among all Spartan-3 generation FPGAs.

Configuration Clock: CCLK
The configuration clock signal, CCLK, synchronizes the reading or writing of
configuration data. In Master modes, CCLK is generated from an internal oscillator within
the FPGA. In Slave modes, CCLK is an input, driven by the external device providing the
configuration data.

CCLK Differences between Spartan-3 Generation FPGA Families

Table 2-8 summarizes the primary differences between the various Spartan-3 generation
FPGA families. On Spartan-3 FPGAs, the CCLK pin is a dedicated function while on the
other families, CCLK becomes available as a user-programmable I/O pin after
configuration successfully completes.

The CCLK pin is an input-only pin for the Slave Serial and Slave Parallel configuration
modes.

Table 2-7: PROG_B Operation

PROG_B Input Response

Power-up
Internal “Power-On Reset (POR)” circuit automatically initiates FPGA
configuration process.

Low-going pulse Initiate (re)configuration process and continue to completion.

Extended Low Initiate (re)configuration process and stall process in the “Clear
Configuration Memory (Initialization)” step. Configuration is stalled
until PROG_B returns High.

1 If the configuration process is started, continue to completion. If
configuration process is complete, the FPGA remains configured.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 57
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

In the Master configuration modes, the FPGA internally generates the CCLK clock source.
As shown in Figure 2-2, there are slight differences in the CCLK circuitry between the
Spartan-3 / Spartan-3E FPGA families and the Extended Spartan-3A family.

As shown in Figure 2-2a, Spartan-3/3E FPGAs drive the internally-generation CCLK
signal to an output. Like the configuration PROM connected to the FPGA, the FPGA’s
internal configuration logic is clocked by the CCLK signal at the FPGA pin, which
simplifies the interface timing. However, any switching noise on the CCLK pin potentially
also affects the FPGA. Therefore, treat CCLK as a full bidirectional I/O pin for signal
integrity analysis; the FPGA uses the value at the pin to clock internal logic. See “CCLK
Design Considerations,” page 58.

As shown in Figure 2-2b, CCLK is strictly an output on Extended Spartan-3A family
FPGAs in the Master configuration modes. The FPGA’s internal configuration logic is
clocked by the internally-generated CCLK signal and is not susceptible to external
switching noise. That said, good signal integrity on the CCLK board trace is a good design
practice.

Table 2-8: CCLK Differences between Spartan-3 Generation FPGA Families

Spartan-3 Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

CCLK pin becomes full user-I/O
after configuration

No;
dedicated pin Yes Yes

CCLK pin supply voltage VCCAUX VCCO_2 VCCO_2

CCLK pin behavior after
configuration

Pull-up or pull-
down resistor
controlled by

CclkPin
bitstream

option

User I/O User I/O

CCLK pin directionality during
Master mode configuration I/O I/O

Output only for
improved signal

integrity

CCLK frequency options during
Master mode configuration
(ConfigRate)

3, 6, 12, 25, 50 1, 3, 6, 12, 25, 50
1, 3, 6, 7, 8, 10, 12,
13, 17, 22, 25, 27,

33, 44, 50, 100

CCLK frequency variation ±50% of
ConfigRate
frequency

Fully
characterized.

Specified in
data sheet.

Fully
characterized.

Specified in data
sheet.

http://www.xilinx.com

58 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

CCLK Design Considerations

The FPGA’s configuration process is controlled by the CCLK configuration clock.
Consequently, signal integrity of CCLK is important to guarantee successful configuration.
Poor CCLK signal integrity caused by ringing or reflections potentially causes double-
clocking, which might result in failed configuration.

Although the CCLK frequency is relatively low, the FPGA’s output edge rates are fast.
Therefore, pay careful attention to the CCLK signal integrity on the printed circuit board.
Signal integrity simulation with IBIS is recommended. For all configuration modes except
JTAG, the signal integrity must be considered at every CCLK trace destination, including
the FPGA’s CCLK pin.

This analysis is especially important for Spartan-3E FPGAs where the FPGA re-uses the
CCLK pin as a user-I/O after configuration. In these cases, there might be unrelated
devices attached to CCLK, which add additional trace length and signal destinations.

In the Master Serial, SPI, and BPI configuration modes, the FPGA drives the CCLK pin and
CCLK should be treated as a full bidirectional I/O pin for signal integrity analysis. In BPI
mode, CCLK is only connected to other devices in multi-FPGA daisy-chains, but switching
noise at the FPGA pin could potentially cause false clocking.

The best signal integrity is ensured by following these basic PCB guidelines:

• Route the CCLK signal as a 50 Ω controlled-impedance transmission line.

• Route the CCLK signal without any branching. Do not use a “star” topology.

• Keep stubs, if required, shorter than 12.5 mm (0.5 inches).

• Terminate the end of the CCLK transmission line.

The clock termination examples shown below use parallel termination (Thevenin), but
other approaches are acceptable. In parallel termination, the resistor values are twice the
characteristic impedance of the board trace. The examples shown assume 50 Ω trace
impedance. The disadvantage of parallel termination is that there is always a current path.
Using series termination at the source and the end minimizes power, but use IBIS
simulation to optimize resistor values for the specific application.

Figure 2-2: Differences between Spartan-3/3E and Extended Spartan-3A Family
FPGAs for Master Configuration Modes

Internal
Oscillator

Configuration
Logic

CCLK
ConfigRate

Spartan-3/-3E FPGA

LVCMOS
Internal

Oscillator

Configuration
Logic

CCLK

ConfigRate

Spartan-3A/3AN/3A DSP FPGA

LVCMOS

a) Spartan-3 and Spartan-3E FPGAs b) Spartan-3A/3AN/3A DSP
UG332_c2_03_040107 FPGAs

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 59
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

Figure 2-3 shows the basic point-to-point topology where the CCLK output from the
Master FPGA drives one clock input receiver, either on the configuration PROM or on a
slave FPGA.

Caution! On Spartan-3E and Extended Spartan-3A family FPGAs, be sure to define a valid
logic level on CCLK. Otherwise, the clock trace might float and cause spurious clocking to other
devices in the system.

Figure 2-4 shows the basic multi-drop flyby topology where the CCLK output from the
Master FPGA drives two or more clock input receivers. Constrain the trace length on any
clock stubs.

Figure 2-3: Point-to-Point: Master CCLK Output Drives Single Clock Load

Figure 2-4: Multi-Drop: Master CCLK Output Drives Two Clock Inputs

UG332_c2_05_112206

Z0 (50Ω)

Z
0 (50Ω

)

2 x Z0 (100Ω)

2 x Z0 (100Ω)

VCCO_2

CCLK

Master FPGA PROM Clock Input
Slave FPGA CCLK Input

Z0 (50Ω)

Clock Input 2

Z
0 (50 Ω

)

Clock Input 1

Z
0 (50 Ω

)

2 x Z0 (100Ω)

2 x Z0 (100Ω)

VCCO_2

Z0 (50Ω)

Length <
 12.5 m

m

UG332_c2_06_112206

CCLK

Master FPGA

S
tu

b
:

http://www.xilinx.com

60 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Figure 2-5 shows a star topology where the Master FPGA CCLK transmission line
branches to the multiple clock receiver inputs. The branch point creates a significant
impedance discontinuity. Do not use this topology.

ConfigRate: Bitstream Option for CCLK

For Master configuration mode, the ConfigRate bitstream generator option defines the
frequency of the internally-generated CCLK oscillator. The actual frequency is
approximate due to the characteristics of the silicon oscillator and varies by up to 50% over
the temperature and voltage range. On Spartan-3E and Extended Spartan-3A family
FPGAs, the resulting frequency for every ConfigRate setting is fully characterized and
specified in the associated FPGA family data sheet. At power-on, CCLK always starts
operation at its lowest frequency. Use the ConfigRate option to set the oscillator frequency
to one of the other values shown in Table 2-8.

Set this option graphically in “ISE Software Project Navigator,” page 42, as shown in Step 7
in Figure 1-7, page 44.

The FPGA does not start operating at the higher CCLK frequency until the ConfigRate
control bits are loaded during the configuration process.

Persist: Reserve CCLK As Part of SelectMAP Interface

By default, any clocks applied to CCLK after configuration are ignored unless the
bitstream option Persist:Yes is set, which retains the configuration interface. If Persist:Yes,
then all clock edges are potentially active events, depending on the other configuration
control signals. On Spartan-3E and Extended Spartan-3A family FPGAs, CCLK becomes a
full-featured user-I/O pin after configuration.

Figure 2-5: Star Topology Is Not Recommended

UG191_c2_07_112206

Z0

Impedance
Discontinuity

Z0

Clock Input 1

Z0

Clock Input 2

Clock In

ock Inp

CC

CCLK

Master FPGA

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 61
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

Extended Spartan-3A Family and Spartan-3E FPGA Families

On the Extended Spartan-3A and Spartan-3E FPGA families, the CCLK pin is borrowed
during configuration and becomes a full user I/O after configuration successfully
completes.

The CCLK pin does not have a dedicated pull-up resistor during configuration. However,
CCLK has an optional pull-up resistor to VCCO_2 during configuration, controlled by the
Spartan-3E HSWAP pin or the Extended Spartan-3A family PUDC_B pin.

If the CCLK pin is not otherwise used by the FPGA application, then drive the pin High or
Low.

Spartan-3 FPGA Family

During configuration, the CCLK pin has a dedicated internal pull-up resistor to VCCAUX,
regardless of the HSWAP_EN pin. After configuration, the CCLK pin is pulled High to
VCCAUX by default as defined by the CclkPin bitstream selection, although this behavior is
programmable.

Any clocks applied to CCLK after configuration are ignored unless the bitstream option
Persist:Yes is set, which retains the configuration interface. The Persist:No by default.
However, if Persist:Yes, then all clock edges are potentially active events, depending on the
other configuration control signals.

Initializing Configuration Memory, Configuration Error: INIT_B
The INIT_B pin serves multiple purposes during configuration. Shortly after power is
applied, the FPGA drives the INIT_B pin Low, indicating that initialization (i.e.,
housecleaning) of the configuration memory has in progress. When INIT_B returns High,
the FPGA samples the M[2:0] mode select pins and begins the configuration process.

During configuration, the INIT_B pin is an open-drain, bidirectional I/O pin with a
dedicated, internal pull-up resistor, required to produce a High logic level. On Extended
Spartan-3A family and Spartan-3E FPGAs, the INIT_B pull-up resistor connects to
VCCO_2; on Spartan-3 FPGAs, the pull-up resistor connects to VCCO_4 or
VCCO_BOTTOM (the connected VCCO_4 and VCCO_5), depending on the package style.

In a multi-FPGA daisy-chain or broadside configuration, connect (wire-AND) the INIT_B
pins from all FPGAs together, as shown in Figure 2-1, page 55. The common node ensures
that all FPGAs in the design complete their respective housecleaning before any of the
FPGAs is allowed to start configuring. The common node transitions High only after all of
the FPGAs have been successfully initialized.

Externally holding this pin Low beyond the initialization phase delays the start of
configuration. This action stalls the FPGA at the configuration step just before the M[2:0]
mode select pins are sampled. See “Delaying Configuration,” page 243.

During configuration, the FPGA indicates the occurrence of a configuration data error (i.e.,
CRC error) by asserting INIT_B Low. See “CRC Checking during Configuration,”
page 309.

After Configuration

After configuration successfully completes, i.e., when the DONE pin goes High, the
INIT_B pin is available as a full user-I/O pin. The only exception if the “Extended Spartan-
3A Family FPGA Post-Configuration CRC” feature is enabled in the application, in which
case the INIT_B is dedicated after configuration as well.

http://www.xilinx.com

62 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

If the INIT_B pin is not used by the FPGA application after configuration, actively drive it
High or Low. If left undefined, INIT_B, like all other unused pins, is defined by default as
an input with an internal pull-down resistor. If the FPGA board uses an external pull-up
resistor on INIT_B, then the unused pin will float at an intermediate value due to the
presence of both a pull-up and pull-down resistor. To change the default configuration for
unused pins, change the UnusedPin bitstream generator option setting.

If the bitstream generator option Persist:Yes is set, then INIT_B is reserved after
configuration completes.

Extended Spartan-3A Family FPGA Post-Configuration CRC

If using a Spartan-3A FPGA, and if using the post-configuration CRC feature, then the
INIT_B pin becomes a dedicated pin and flags any difference in the CRC signature during
normal FPGA operation. See “Post-Configuration CRC (Extended Spartan-3A Family
Only),” page 310 for more information.

Extended Spartan-3A Family and Spartan-3E FPGA Families

INIT_B is located in I/O Bank 2 and its output voltage determined by VCCO_2.

Spartan-3 FPGA Family

INIT_B is located in I/O Bank 4 and its output voltage determined by VCCO_4 or
VCCO_BOTTOM, depending on package style.

Pull-Up Resistors During Configuration
The FPGA’s configuration control pins have a dedicated, internal pull-up resistor that is
active during the configuration process. All other I/O or Input-only pins have an optional
pull-up resistor during configuration, controlled by a separate control input. The name of
the control input varies by Spartan-3 generation family, as shown in Table 2-12.

Pins with Dedicated Pull-Up Resistors during Configuration

Table 2-9 shows the configuration control pins on all Spartan-3 generation FPGAs that
have a built-in, dedicated, pull-up resistor during configuration. The table also indicates
the supply rail to which the resistor is connected. The dedicated configuration pins also
have a separate bitstream generator (BitGen) option setting that controls the pin’s behavior
after configuration.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 63
UG332 (v1.5) March 16, 2009

General Configuration Control Pins
R

As highlighted in Table 2-2, page 50, the Extended Spartan-3A family FPGAs add a few
more dedicated internal pull-up resistors, as shown in Table 2-10. On Spartan-3E FPGAs,
these pins do not have a dedicated internal pull-up resistor, but do have an optional pull-
up resistor controlled when HSWAP = 0.

The Spartan-3 FPGA family uses dedicated configuration pins, as shown in Table 2-11. The
post-configuration behavior is controlled by bitstream settings.

Table 2-9: Pins with Dedicated Pull-Up Resistors during Configuration (All
Spartan-3 Generation FPGAs)

Pin Name
Pull-Up Resistor Supply

Rail
Post Configuration Control

PROG_B VCCAUX ProgPin BitGen setting

DONE VCCAUX DonePin and DriveDone BitGen settings

Pull-up during
Configuration
control input,

HSWAP,
PUDC_B, or
HSWAP_EN

(see Table 2-12)

VCCO_0

Spartan-3E and Extended Spartan-3A family
FPGAs: User I/O after configuration.
Controlled by the FPGA application

Spartan-3 FPGA: Controlled by HswapenPin
BitGen setting

INIT_B

Spartan-3E/3A/3AN/
Spartan-3A DSP FPGAs:

VCCO_2

Spartan-3 FPGA:
VCCO_4 or

VCCO_BOTTOM

User I/O after configuration. Controlled by
the FPGA application

TDI VCCAUX TdiPin BitGen setting

TMS VCCAUX TmsPin BitGen setting

TCK VCCAUX TckPin BitGen setting

TDO VCCAUX TdoPin BitGen setting

Table 2-10: Pins with Dedicated Pull-Up Resistors during Configuration (Extended
Spartan-3A Family FPGAs Only)

Pin Name
Pull-Up Resistor

Supply Rail
Post Configuration Control

M[2:0] VCCO_2 User I/O after configuration. Controlled by the FPGA
application

VS[2:0] VCCO_2

Pull-up resistors only active when M[2:0]=<0:0:1>, Master
SPI mode, or in Spartan-3AN FPGAs when M[2:0]=<0:1:1>,
Internal Master SPI mode. User I/O after configuration.
Controlled by the FPGA application

http://www.xilinx.com

64 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Pins with Optional Pull-Up Resistors during Configuration

All user-I/O pins, input-only pins, and dual-purpose pins that are not actively involved in
the currently-selected configuration mode are high impedance (floating, three-stated,
Hi-Z) during the configuration process. These pins are indicated in Table 2-17 as gray
shaded table entries or cells.

A control input determines whether all user-I/O pins, input-only pins, and dual-purpose
pins have a pull-up resistor to the supply rail or not. The control input has different names
on different FPGA families as shown in Table 2-12, but all function similarly. When the
control is Low, each pin has an internal pull-up resistor that is active throughout
configuration, starting immediately on power-up. Once the Mode pins are read, some of
the dual-purpose pins will take on their configuration function for the remainder of the
configuration process. After configuration, pull-up and pull-down resistors are available
in the FPGA application by instantiating PULLUP or PULLDOWN primitive or by
applying similarly-named constraints to a specific pin.

The control pin itself has a pull-up resistor enabled during configuration. However, the
VCCO_0 supply voltage must be applied before the pull-up resistor becomes active. If the
VCCO_0 supply ramps after the VCCO_2 power supply, do not let the control input pin
float; tie the pin to the desired logic level externally. Note that Spartan-3E step 0 silicon
requires that VCCINT be applied before VCCAUX when using a pull-up on HSWAP.

FPGA Pull-Up Resistor Values

The value of the dedicated and optional pull-up resistors is specified as a current, symbol
IPU in the respective Spartan-3 generation data sheet. The equivalent resistor values
provided in Table 2-13 are for reference. The pull-up resistors on the Spartan-3 FPGA
family are stronger than the other families.

Caution! The pull-up resistors in Spartan-3 FPGAs are strong, especially at higher VCCO
voltages.

Table 2-11: Pins with Dedicated Pull-Up Resistors during Configuration (Spartan-3
FPGA Family Only)

Pin Name
Pull-Up Resistor

Supply Rail
Post Configuration Control

M2 VCCAUX M2Pin BitGen setting

M1 VCCAUX M1Pin BitGen setting

M0 VCCAUX M0Pin BitGen setting

CCLK VCCAUX CclkPin BitGen setting

Table 2-12: Pull-Up Resistor during Configuration Control Input

FPGA Family Pin Name Function

Spartan-3A/3AN/
3A DSP FPGA

PUDC_B 0: Pull-up resistors enabled during configuration

1: No pull-up resistors during configuration. Pins
that are not active during the configuration
process float Hi-Z.

Spartan-3E FPGA HSWAP

Spartan-3 FPGA HSWAP_EN

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 65
UG332 (v1.5) March 16, 2009

Pin Descriptions
R

Pin Descriptions
Table 2-15 lists the various pins involved in the configuration process, including which
configuration mode, the pin’s direction, and a summary description. The table also
describes how to use the pin during and after configuration.

Table 2-13: Pull-Up Resistor Ranges by Spartan-3 Generation Family

Voltage Range
Spartan-3

FPGA
Spartan-3E

FPGA

Spartan-3A/3AN
Spartan-3A DSP

FPGA
Units

VCCAUX or VCCO = 3.0 to 3.6V
5.1 to 23.9

kΩ
VCCO = 3.0 to 3.45V 1.27 to 4.11 2.4 to 10.8

VCCAUX or VCCO = 2.3 to 2.7V 1.15 to 3.25 2.7 to 11.8 6.2 to 33.1

VCCO = 1.7 to 1.9V 2.45 to 9.10 4.3 to 20.2 8.4 to 52.6

Table 2-14: Recommended External Pull-Up or Pull-down Resistor Values to Define Input Values during
Configuration

PUDC_B, HSWAP, or
HSWAP_EN

Desired Pull
Direction

I/O Standard
Spartan-3

FPGA
Spartan-3E

FPGA

Spartan-3A/3AN
Spartan-3A DSP

FPGA

= 0
(also applies to all
pins that have a

dedicated pull-up
resistor during

configuration, see
“Pins with Dedicated

Pull-Up Resistors
during

Configuration,”
page 62)

Pull-Up All
No pull-up required. Internal pull-up resistors are

enabled. See Table 2-13 for resistor range.

Pull-Down
(required to

overcome maximum
IRPU current and
guarantee VIL)

LVCMOS33
LVTTL

≤ 330 Ω ≤ 620 Ω ≤ 1.1 kΩ

LVCMOS25 ≤ 470 Ω ≤ 820 Ω ≤ 1.8 kΩ
LVCMOS18 ≤ 510 Ω ≤ 820 Ω ≤ 3.3 kΩ
LVCMOS15 ≤ 820 Ω ≤ 1.2 kΩ ≤ 5.4 kΩ
LVCMOS12 ≤ 1.5 kΩ ≤ 1.5 kΩ ≤ 9.6 kΩ

= 1
(optional pull-up

resistors are disabled
during

configuration. Does
not apply to pins

with dedicated pull-
up resistors during

configuration)

Pull-Up
(required to

overcome single-
load, maximum IL

leakage current and
guarantee VIH)

LVCMOS33
LVTTL

≤ 40 kΩ ≤ 100 kΩ

LVCMOS25 ≤ 60 kΩ
LVCMOS18 ≤ 37 kΩ
LVCMOS15 ≤ 28 kΩ
LVCMOS12 ≤ 38 kΩ

Pull-Down
(required to

overcome single-
load, maximum IL

leakage current and
guarantee VIL)

LVCMOS33
LVTTL

≤ 32 kΩ ≤ 80 kΩ

LVCMOS25 ≤ 70 kΩ
LVCMOS18

≤ 38 kΩ
LVCMOS15

LVCMOS12 ≤ 59 kΩ

http://www.xilinx.com

66 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function

Pin Name
Config.
Mode(s)

FPGA
Direction

Description During Configuration After Configuration

HSWAP

or

PUDC_B

or

HSWAP_EN

(depends on
FPGA family)

All Input User I/O Pull-Up Control.
When Low during
configuration, enables
pull-up resistors in all I/O
pins to respective I/O bank
VCCO input.

0: Pull-ups during
configuration
1: No pull-ups

Drive at valid logic
level throughout
configuration.

Spartan-3:
Dedicated pin (don’t
care after
configuration)
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

User I/O

M[2:0] All Input Mode Select. Selects the
FPGA configuration mode
as defined in Table 2-1.

Must be at the logic
levels shown in
Table 2-1, page 50.
Sampled when INIT_B
goes High.

User I/O (dedicated
on Spartan-3 FPGAs)

DIN Serial
Modes, SPI

Input Serial Data Input. for all
serial configuration modes

Receives serial data
from PROM serial data
output.

User I/O

CCLK Master
Modes, SPI,

BPI

Output

(treat as
I/O for
signal

integrity)

Configuration Clock.
Generated by FPGA
internal oscillator.
Frequency controlled by
ConfigRate bitstream
generator option. See
“Configuration Clock:
CCLK,” page 56.

Drives PROM’s clock
input.

User I/O (dedicated
on Spartan-3 FPGAs)

Slave
Modes

Input Configuration clock input. Input configuration
clock source.

DOUT Output Serial Data Output. Not used in single-
FPGA designs; DOUT
is pulled up, not
actively driving. In a
serial daisy-chain
configuration, this pin
connects to DIN input
of the next FPGA in the
chain.

User I/O

INIT_B All Open-drain
bidirec-

tional I/O

Initialization Indicator.
Active Low. See
“Initializing Configuration
Memory, Configuration
Error: INIT_B,” page 61.

Drives Low after
power-on reset (POR)
or when PROG_B
pulsed Low while the
FPGA is clearing its
configuration memory.
If a CRC error detected
during configuration,
FPGA again drives
INIT_B Low.

User I/O. If unused
in the application,
drive INIT_B High or
Low to avoid a
floating value. See
INIT_B “After
Configuration”.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 67
UG332 (v1.5) March 16, 2009

Pin Descriptions
R

DONE All Open-drain
bidirec-

tional I/O

FPGA Configuration
Done. Low during
configuration. Goes High
when FPGA successfully
completes configuration.
Powered by VCCAUX
supply.

0: FPGA not configured

1: FPGA configured

See “DONE Pin,” page 52

Actively drives Low
during configuration.

 When High,
indicates that the
FPGA successfully
configured.

PROG_B All Input Program FPGA. Active
Low. When asserted Low
for 500 ns or longer, forces
the FPGA to restart its
configuration process by
clearing configuration
memory and resetting the
DONE and INIT_B pins. If
driving externally with a
3.3V output, use an open-
drain or open-collector
driver or use a current
limiting series resistor. See
“Program or Reset FPGA:
PROG_B,” page 56.

Must be High during
configuration to allow
configuration to start.

Drive PROG_B Low
and release to
reprogram FPGA.

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
VS[2:0]

Master SPI Input Variant Select. Instructs the
FPGA how to communicate
with the attached SPI Flash
PROM.

Must be at the logic
levels shown in
Table 4-2, page 105.
Sampled when INIT_B
goes High.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
MOSI

Master SPI Output Serial Data Output. FPGA sends SPI Flash
memory read
commands and
starting address to the
PROM’s serial data
input.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP
FPGA:CSO_B

Master SPI Output Chip Select Output. Active
Low.

Connects to the SPI
Flash PROM’s Slave
Select input. If
HSWAP/PUDC_B = 1,
connect this signal to a
4.7 kΩ pull-up resistor
to 3.3V.

Drive CSO_B High
after configuration to
disable the SPI Flash
and reclaim the
MOSI, DIN, and
CCLK pins.
Optionally, re-use
this pin and MOSI,
DIN, and CCLK to
continue
communicating with
SPI Flash.

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function (Cont’d)

Pin Name
Config.
Mode(s)

FPGA
Direction

Description During Configuration After Configuration

http://www.xilinx.com

68 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
CSI_B

Spartan-3
FPGA:

CS_B

BPI, Slave
Parallel

Input Chip Select Input. Active
Low.

Active-Low. User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

RDWR_B BPI, Slave
Parallel

Input Read/Write Control. Active
Low write enable. Read
functionality typically only
used after configuration, if
bitstream option
Persist:Yes.

Must be Low
throughout
configuration. Do not
change logic level
while CSI_B is Low

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
LDC0

BPI Output PROM Chip Enable Connect to parallel
PROM chip-select
input (CS#). FPGA
drives this signal Low
throughout
configuration.

User I/O. If the
FPGA does not access
the PROM after
configuration, drive
this pin High to
deselect the PROM.
A[23:0], D[7:0],
LDC[2:1], and HDC
then become
available as user I/O.

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
LDC1

BPI Output PROM Output Enable Connect to the parallel
PROM output-enable
input (OE#). The FPGA
drives this signal Low
throughout
configuration.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
HDC

BPI Output PROM Write Enable Connect to parallel
PROM write-enable
input (WE#). FPGA
drives this signal High
throughout
configuration.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
LDC2

BPI Output PROM Byte Mode This signal is not used
for x8 PROMs. For
PROMs with a x8/x16
data width control,
connect to PROM byte-
mode input (BYTE#).

User I/O. Drive this
pin High after
configuration to use a
x8/x16 PROM in x16
mode.

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function (Cont’d)

Pin Name
Config.
Mode(s)

FPGA
Direction

Description During Configuration After Configuration

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 69
UG332 (v1.5) March 16, 2009

Pin Behavior During Configuration
R

Pin Behavior During Configuration
Table 2-16, Table 2-17, and Table 2-18 show how various pins on Spartan-3 generation
FPGAs behave during the configuration process. The actual behavior depends on the
settings applied to the M2, M1, and M0 (M[2:0]) mode select pins and the pin that controls
the optional pull-up resistors, called HSWAP, PUDC_B, or HSWAP_EN depending on the
specific Spartan-3 generation FPGA family. The M[2:0] mode select pins determine which
of the I/O pins are active and borrowed during configuration and how they function. In
JTAG configuration mode, no user-I/O pins are borrowed for configuration.

The Dedicated Pull-Up Resistor column indicates pins that always have a pull-up resistor
enabled during configuration, regardless of the PUDC_B, HSWAP, or HSWAP_EN input.
After configuration, the behavior of these pins is either defined by specific bitstream
generator options or by the FPGA application itself.

Table 2-16, Table 2-17, and Table 2-18 show the FPGA pins that are either borrowed or
dedicated during configuration. The specific pins are listed by FPGA configuration mode
along the top. For each pin, the table also indicates the power rail that supplies the pin
during configuration. A numeric value such as “2”, indicates that the associated pin is
located in I/O Bank 2 and powered by the VCCO_2 supply inputs. Spartan-3E and
Extended Spartan-3A family FPGAs have four I/O banks; the Spartan-3 FPGA family has
eight I/O banks.

The pin names are color-coded using the same colors used in the package pinout tables and
footprint diagrams found in the respective Spartan-3 generation data sheet. Black
represents the dedicated JTAG pins; yellow represents the dedicated configuration pins;
light blue represents the dual-purpose configuration pins that become user-I/O pins after
configuration.

Spartan-3E
FPGA:
A[23:0]

Spartan-3A
Spartan-3AN

Spartan-3A DSP
FPGA:

A[25:0]

BPI Output Parallel PROM Address
outputs

Connect to PROM
address inputs.

User I/O.

D[7:0] Master
Parallel,

BPI, Slave
Parallel,

SelectMAP

Input Data Input Data captured by
FPGA

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

Spartan-3/
Spartan-3E

FPGA:
BUSY

BPI, Slave
Parallel

(SelectMAP)

Output FPGA Busy Indicator. Used
primarily in Slave Parallel
interfaces that operate at
50 MHz and faster. Same
function is on DOUT pin in
the Extended Spartan-3A
family.

Not used during BPI
mode configuration
but actively drives.

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function (Cont’d)

Pin Name
Config.
Mode(s)

FPGA
Direction

Description During Configuration After Configuration

http://www.xilinx.com

70 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Extended Spartan-3A Family FPGA
Table 2-16 shows the various Extended Spartan-3A family FPGA pins that are either
borrowed or dedicated during configuration.

Table 2-16: Extended Spartan-3A Family FPGAs: Pin Behavior during Configuration

Pin Name
Dedicated

Pull-Up
Resistor

Master
Serial

SPI
(Serial
Flash)

Internal
Master

SPI

BPI
(Parallel
Flash)

JTAG
Slave
Serial

Slave
Parallel

Supply/
I/O Bank

IO* (user-I/O)

IP* (input-only)
–

See pinout
table

TDI Yes TDI TDI TDI TDI TDI TDI TDI VCCAUX

TMS Yes TMS TMS TMS TMS TMS TMS TMS VCCAUX

TCK Yes TCK TCK TCK TCK TCK TCK TCK VCCAUX

TDO Yes TDO TDO TDO TDO TDO TDO TDO VCCAUX

PROG_B Yes PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE Yes DONE DONE DONE DONE DONE DONE DONE VCCAUX

PUDC_B Yes PUDC_B PUDC_B PUDC_B PUDC_B PUDC_B PUDC_B PUDC_B 0

M2 Yes 0 0 0 0 1 1 1 2

M1 Yes 0 0 1 1 0 1 1 2

M0 Yes 0 1 1 0 1 1 0 2

CCLK
–

CCLK
(OUTPUT)

CCLK
(OUTPUT)

CCLK
(OUTPUT)

CCLK
(INPUT)

CCLK
(INPUT)

2

INIT_B Yes INIT_B INIT_B INIT_B INIT_B INIT_B INIT_B 2

CSO_B – CSO_B CSO_B CSO_B 2

DOUT – DOUT DOUT DOUT(5) DOUT DOUT(5) 2

MOSI/CSI_B – MOSI CSI_B CSI_B 2

D[7:1] – D[7:1] D[7:1] 2

D0/DIN – DIN DIN D0 DIN D0 2

RDWR_B – RDWR_B RDWR_B 2

VS[2:0] Yes VS[2:0] VS[2:0] 2

A[25:0] – A[25:0] 1

LDC2 – LDC2 1

LDC1 – LDC1 1

LDC0 – LDC0 1

HDC – HDC 1

Notes:
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an

optional internal pull-up resistor to their respective VCCO supply pin that is active during configuration if the PUDC_B input is Low.
See “Pull-Up Resistors During Configuration,” page 62.

2. The Spartan-3E HSWAP pin and the Extended Spartan-3A family PUDC_B pin have identical behavior, just different names. See
“Pull-Up Resistors During Configuration,” page 62.

3. The Internal Master SPI mode, M[2:0] = <0:1:1>, is only available on the Spartan-3AN FPGA family. VCCAUX must be 3.3V when
using this mode.

4. CCLK is always an input pin in Slave configuration modes. For Master modes, CCLK must be treated as a bidirectional I/O pin for
Spartan-3E FPGAs and is an output pin for Extended Spartan-3A family FPGAs.

5. The DOUT output is not labeled as BUSY and the BUSY function is not required on Extended Spartan-3A family FPGAs. However,
the pin can still toggle during Slave Parallel configuration and therefore should not be tied to user functions during configuration.
Unlike Spartan-3E FPGAs, Extended Spartan-3A family FPGAs do use the DOUT pin in BPI serial daisy-chains, which are only
supported on Extended Spartan-3A family FPGAs.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 71
UG332 (v1.5) March 16, 2009

Pin Behavior During Configuration
R

Spartan-3E FPGAs
Table 2-17 shows the various Spartan-3E FPGA pins that are either borrowed or dedicated
during configuration.

Table 2-17: Spartan-3E FPGAs: Pin Behavior during Configuration

Pin Name
Dedicated

Pull-Up
Resistor

Master
Serial

SPI
(Serial
Flash)

BPI
(Parallel
Flash)

JTAG
Slave
Serial

Slave
Parallel

Supply/
I/O Bank

IO* (user-I/O)
IP* (input-only)

–
See pinout

table

TDI Yes TDI TDI TDI TDI TDI TDI VCCAUX

TMS Yes TMS TMS TMS TMS TMS TMS VCCAUX

TCK Yes TCK TCK TCK TCK TCK TCK VCCAUX

TDO Yes TDO TDO TDO TDO TDO TDO VCCAUX

PROG_B Yes PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE Yes DONE DONE DONE DONE DONE DONE VCCAUX

HSWAP Yes HSWAP HSWAP HSWAP HSWAP HSWAP HSWAP 0

M2 – 0 0 0 1 1 1 2

M1 – 0 0 1 0 1 1 2

M0
– 0 1

0 = Up
1 = Down

1 1 0 2

CCLK
–

CCLK
(I/O)

CCLK
(I/O)

CCLK
(I/O)

CCLK
(INPUT)

CCLK
(INPUT)

2

INIT_B Yes INIT_B INIT_B INIT_B INIT_B INIT_B 2

CSO_B – CSO_B CSO_B CSO_B 2

DOUT/BUSY – DOUT DOUT BUSY DOUT BUSY 2

MOSI/CSI_B – MOSI CSI_B CSI_B 2

D[7:1] – D[7:1] D[7:1] 2

D0/DIN – DIN DIN D0 DIN D0 2

RDWR_B – RDWR_B RDWR_B 2

VS[2:0] – VS[2:0] (Note 4) 2

A[23:17] – (Note 4) A[23:17] 2

A[16:0] – A[16:0] 1

LDC2 – LDC2 1

LDC1 – LDC1 1

LDC0 – LDC0 1

HDC – HDC 1

Notes:
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an

optional internal pull-up resistor to their respective VCCO supply pin that is active during configuration if the HSWAP input is Low.
See “Pull-Up Resistors During Configuration,” page 62.

2. The Spartan-3E HSWAP pin and the Extended Spartan-3A family PUDC_B pin have identical behavior, just different names. See
“Pull-Up Resistors During Configuration,” page 62.

3. CCLK is always an input pin in Slave configuration modes. For Master modes, CCLK must be treated as a bidirectional I/O pin for
Spartan-3E FPGAs.

4. On Spartan-3E FPGAs, the VS[2:0] pins used in Master SPI mode are shared with the A[19:17] address pins used in BPI mode.

http://www.xilinx.com

72 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

Spartan-3 FPGAs
Table 2-18 shows the various Spartan-3 FPGA pins that are either borrowed or dedicated
during configuration.

Default I/O Standard During Configuration
During configuration, which includes the time when the FPGA first powers up, after
PROG_B is pulsed Low, or during configuration or re-configuration including MultiBoot,
the FPGA’s I/O pins are unconfigured. However, the FPGA pins involved in the
configuration process are predefined to the settings shown in Table 2-19.

Table 2-18: Pin Behavior during Configuration for Spartan-3 FPGA Family

Pin Name
Dedicated

Pull-Up
Resistor

Master
Serial

Master
Parallel

JTAG Slave Serial
Slave

Parallel
Supply/
I/O Bank

IO* (user-I/O)
IP* (input-only)

–
See pinout

table

TDI Yes TDI TDI TDI TDI TDI VCCAUX

TMS Yes TMS TMS TMS TMS TMS VCCAUX

TCK Yes TCK TCK TCK TCK TCK VCCAUX

TDO Yes TDO TDO TDO TDO TDO VCCAUX

PROG_B Yes PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE Yes DONE DONE DONE DONE DONE VCCAUX

HSWAP_EN Yes HSWAP_EN HSWAP_EN HSWAP_EN HSWAP_EN HSWAP_EN VCCAUX

M2 Yes 0 0 1 1 1 VCCAUX

M1 Yes 0 1 0 1 1 VCCAUX

M0 Yes 0 1 1 1 0 VCCAUX

CCLK
Yes

CCLK
(I/O)

CCLK
(I/O)

CCLK
(INPUT)

CCLK
(INPUT)

VCCAUX

INIT_B Yes INIT_B INIT_B INIT_B INIT_B 4

CS_B – CS_B CS_B 5

DOUT/BUSY – DOUT BUSY DOUT BUSY 4

D[7:4] – D[7:4] D[7:4] 5

D[3:1] – D[3:1] D[3:1] 4

D0/DIN – DIN D0 DIN D0 4

RDWR_B – RDWR_B RDWR_B 5

Notes:
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an

optional internal pull-up resistor to their respective VCCO supply pin that is active during configuration if the HSWAP_EN input is
Low.

2. CCLK is always an input pin in Slave configuration modes. For Master modes, CCLK must be treated as a bidirectional I/O pin.

Table 2-19: Default I/O Standard Setting During Configuration

Pin(s) I/O Standard
Output
Drive

Slew Rate

All, including CCLK LVCMOS25 8 mA Slow

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 73
UG332 (v1.5) March 16, 2009

Default I/O Standard During Configuration
R

By default, the I/O pins are set for LVCMOS25 operation or 2.5V low-voltage CMOS. The
setting is the same for both the Dedicated and Dual-Purpose pins. However, the Dual-
Purpose pins can drive at different voltages, depending on the voltage applied to the
relevant I/O bank.

The Dedicated configuration pins (see Table 2-17, page 71 and Table 2-18, page 72) are
always powered by VCCAUX. On Spartan-3 and Spartan-3E FPGA families, VCCAUX is
always 2.5V, as shown in Table 2-18. On Spartan-3A/3A DSP FPGAs, VCCAUX can be either
2.5V or 3.3V. On Spartan-3AN FPGAs, VCCAUX is always 3.3V. See “VCCAUX Level”.

The Dual-Purpose configuration pin outputs operate at other voltages by appropriately
setting the voltage on the associated VCCO power rail. For Spartan-3A/3A DSP (and for
Spartan-3AN FPGAs in modes other than Internal Master SPI) and Spartan-3E FPGAs, the
Dual-Purpose configuration pins are supplied by the VCCO_2 rail, plus VCCO_1 in BPI
mode. In Spartan-3 FPGAs, the Dual-Purpose configuration pins are supplied by VCCO_4,
plus VCCO_5 in any of the parallel configuration modes. In general, set the configuration
voltage to either 2.5V or 3.3V. The change on the VCCO supply also changes the I/O drive
characteristics. For example, with VCCO = 3.3V, the output current when driving High,
IOH, increases to approximately 12 to 16 mA, while the current when driving Low, IOL,
remains 8 mA.

If required, VCCO may be set to 1.8V in the Spartan- 3 and Spartan-3E families. See
“VCCAUX Level”. At VCCO = 1.8V, the output current when driving High, IOH, decreases
slightly to approximately 6 to 8 mA. Again, the current when driving Low, IOL, remains
8 mA. The output voltages will be determined by the VCCO level, LVCMOS18 for 1.8V,
LVCMOS25 for 2.5V, and LVCMOS33 for 3.3V.

Lowering VCCO_2 After Configuration in Extended Spartan-3A Family
The Extended Spartan-3A family families have a VCCO2T threshold requirement of 2.0V
minimum and therefore cannot have VCCO_2 at 1.8V during configuration; however
VCCO2T does not apply after configuration and therefore VCCO_2 can be lowered to 1.8V
or lower after DONE goes High.

Table 2-20: Supported Configuration Interface Voltages

FPGA Family

Dedicated Pins Dual-Purpose Pins

Supported VCCAUX
Voltage Options

Dual-Purpose
Configuration Pin

Supply Rails

Supported
Configuration Supply

Voltage Options

Spartan-3A
Spartan-3A DSP

FPGAs

2.5V

3.3V VCCO_2

(sometimes VCCO_1)

2.5V

3.3V
Spartan-3AN(1) 3.3V

Spartan-3E
FPGAs

2.5V
VCCO_2

(sometimes VCCO_1)

2.5V

3.3V

Spartan-3
FPGAs

2.5V
VCCO_4

(sometimes VCCO_5)

2.5V

3.3V

Notes:
1. Spartan-3AN FPGAs in Internal Master SPI mode only require the 3.3V VCCAUX supply because there

are no Dual-Purpose pins involved. In all other configuration modes, the Dual-Purpose pins are
involved.

http://www.xilinx.com

74 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

This could be accomplished by using an adjustable regulator with a feedback loop to set
the output voltage, using a resistor divider network to define the voltage values. One
resistor would be connected to an I/O which is disabled before configuration (using
PUDC_B High) and Low after configuration (driving it to GND in the design). In
Figure 2-6, R1 in series with R2 would set the regulator output voltage at 2.0V or higher for
power-on and during configuration. Resistor R3 is enabled after configuration, and the
parallel resistance of R2 and R3 would replace R2 to set the regulator voltage at 1.8V or
lower after configuration.
X-Ref Target - Figure 2-6

Figure 2-6: Using Resistor Divider Network to Meet VCCO_2 POR Threshold

Spartan-3A

I/O

CCO_2V

Regulator

Output

Feedback

R1

R2

R3

UG332_c2_08_012709

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 75
UG332 (v1.5) March 16, 2009

Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins
R

Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins
Spartan-3E and Extended Spartan-3A family FPGAs are unlike previous Spartan FPGA
families. Nearly all of the Spartan-3E/3A/3AN/3A DSP dual-purpose configuration pins
are available as full-featured user I/O pins after successful configuration.

The HSWAP or PUDC_B pin, the mode select pins (M[2:0]), and the variant-select pins
(VS[2:0]) must have valid and stable logic values at the start of configuration. VS[2:0] are
only used in the Master SPI configuration mode. The levels on the M[2:0] pins and VS[2:0]
pins are sampled when the INIT_B pin returns High. See Figure 2-7 for a timing example.

The HSWAP or PUDC_B pin defines whether FPGA user I/O pins have a pull-up resistor
connected to their associated VCCO supply pin during configuration or not, as shown
Table 2-20. HSWAP or PUDC_B must be valid at the start of configuration and remain
constant throughout the configuration process.

The detailed schematics for each configuration mode indicate the required logic values for
HSWAP or PUDC_B, M[2:0], and VS[2:0] but do not specify how the application provides
the logic Low or High value. The HSWAP or PUDC_B, M[2:0], and VS[2:0] pins can be
either dedicated or reused by the FPGA application.

Dedicating the HSWAP, PUDC_B, M[2:0], and VS[2:0] Pins
If the HSWAP or PUDC_B, M[2:0], and VS[2:0] pins are not required by the FPGA
application after configuration, simply connect these pins directly to the VCCO or GND
supply rail shown in the appropriate configuration schematic.

Optionally, use external pull-up or pull-down resistors to define the appropriate logic
level. The external resistors provide the ability to temporarily change the logic level for
debugging purposes. Some of these pins have dedicated pull-up resistors during
configuration. See Table 2-14, page 65 for recommended resistor values.

Be sure to define the post-configuration behavior for these pins to avoid unnecessary
current paths. For example, see “Defining M[2:0] after Configuration for Minimum Power
Consumption,” page 51.

Reusing HSWAP, PUDC_B, M[2:0], and VS[2:0] After Configuration
To reuse the HSWAP or PUDC_B, M[2:0], and VS[2:0] pins after configuration, use pull-up
or pull-down resistors to define the logic values shown in the appropriate configuration
schematic. Some of these pins have dedicated pull-up resistors during configuration. See
Table 2-14, page 65 for recommended resistor values.

Use the weakest external pull-up or pull-down resistor value acceptable in the application.
The resistor must be strong enough to define a logic Low or High during configuration.
However, when driving the HSWAP or PUDC_B, M[2:0], or VS[2:0] pins after
configuration, an external output driver must be strong enough to overcome the pull-up or
pull-down resistor value and generate the appropriate logic levels. For example, to
overcome a 560 Ω pull-down resistor, a 3.3V FPGA I/O pin must use a 6 mA or stronger
driver.

Spartan-3E HSWAP Considerations

For Spartan-3E FPGAs, the logic level on HSWAP dictates how to define the logic levels on
M[2:0] and VS[2:0], as shown in Table 2-21, page 76. If the application requires HSWAP to
be High, a dedicated internal pull-up to VCCO_0 is available, although an external 3.3 to

http://www.xilinx.com

76 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

4.7 kΩ resistor is recommended, especially if VCCO_2 (configuration) might be applied
before VCCO_0 (HSWAP). Note that initial Spartan-3E silicon (step 0) required that
VCCINT be applied before VCCAUX when using a pull-up on HSWAP.

If the application requires HSWAP to be Low during configuration, then HSWAP is either
connected to GND or pulled Low using an appropriately sized external pull-down resistor
to GND. The pin itself has an internal pull-up resistor to VCCO_0, so the external pull-
down resistor must be strong enough to define a logic Low on HSWAP for the I/O
standard used during configuration, as shown in Table 2-14, page 65.

Once HSWAP is defined, use Table 2-21 to define the logic values for M[2:0] and VS[2:0].

Dual-Purpose Pins Become User I/O
All dual-purpose I/O pins that are borrowed during configuration become full-function
I/O pins after configuration successfully completes. Figure 2-7 shows stylized waveforms
for some of the configuration control signals. On Spartan-3E and Extended Spartan-3A
family FPGAs, the M[2:0] mode pins, the VS[2:0] pin in Master SPI mode, the CCLK pin,
and the HSWAP or PUDC_B pin are borrowed during configuration. After configuration
completes, the pins become available as user-I/O pins.

All dual-purpose I/O pins, except for CCLK, become available to the FPGA application
immediately following the GTS cycle during the FPGA Startup sequence. The GTS cycle
timing is controlled by the GTS_cycle bitstream option.

The CCLK configuration clock does not become a user-defined I/O until after the entire
configuration sequence is complete.

See Chapter 12, “Sequence of Events” for more information.

Table 2-21: Pull-up or Pull-down Values for HSWAP, M[2:0], and VS[2:0]

HSWAP Value
I/O Pull-up Resistors
during Configuration

Required Resistor Value to Define Logic Level on
HSWAP, M[2:0], or VS[2:0]

High Low

0 Enabled Pulled High via an internal
pull-up resistor to the associated
VCCO supply. No external
pull-up resistor is necessary.

Pulled Low using an appropriately
sized pull-down resistor to GND, as
shown in Table 2-14, page 65.

1 Disabled Pulled High using a 3.3 to 4.7 kΩ
resistor to the associated VCCO
supply.

Pulled Low using a 3.3 to 4.7 kΩ resistor
to GND.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 77
UG332 (v1.5) March 16, 2009

VCCAUX Level
R

VCCAUX Level
In the Spartan-3A and Spartan-3A DSP platforms, the VCCAUX level is programmable as
either 2.5V (default) or 3.3V. The user specifies the value in the software through the
CONFIG VCCAUX=2.5 or CONFIG VCCAUX=3.3 constraint. In the Spartan-3AN platform,
the user must set CONFIG VCCAUX=3.3 (default) for using the In-System Flash. The
Spartan-3 and Spartan-3E families have a fixed VCCAUX at 2.5V.

Figure 2-7: Stylized Configuration Waveforms Showing When Dual-Purpose Pins Become Active

INIT_B

M[2:0]

VS[2:0]

HSWAP

DONE

CCLK

0 1 2 3 4 5 6 7Startup Sequence

DONE_cycle

GTS_cycle

Setup Startup

Bitstream Loading

VALID

VALID

VALID

User I/O

User I/O

User I/O

User I/O

User
I/O

UG332_c2_04_111506

PUDC_B

(Master SPI)

http://www.xilinx.com

78 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 79
UG332 (v1.5) March 16, 2009

R

Chapter 3

Master Serial Mode

The Master Serial configuration mode leverages the purpose-designed Xilinx® Platform
Flash PROMs to configure Spartan®-3 generation FPGAs. Master Serial mode uses the
serial interface offered on XCFxxS serial PROMs and the serial interface option on XCFxxP
serial/parallel PROMs.

Xilinx Platform Flash PROMs offer the following system advantages.

• Simple interface. Fewest number of FPGA pins used during configuration.

• Low cost per configuration bit.

• Highest bandwidth between PROM and FPGA for any serial PROM, resulting in
fastest configuration time.

• Small package footprint.

• In-system programmable and reprogrammable via an integrated JTAG interface.

• Fully supported by the Xilinx iMPACT programming software.

• Multiple I/O and JTAG voltage ranges for maximum system flexibility.

• Density migration within a common package footprint. See Table 1-3, page 37.

• Sold and supported by Xilinx, with the long product lifetime and reliability associated
with Xilinx products.

In Master Serial mode (M[2:0] = <0:0:0>), the Spartan-3 generation FPGA configures itself
from an attached Xilinx Platform Flash PROM, as illustrated in Figure 3-1, Figure 3-2, and
Figure 3-3.

The figures show optional components in gray and designated “NO LOAD”. For example,
the Bitstream Generator option ProgPin Pullup internally connects a pull-up resistor
between the PROG_B pin and VCCAUX. An external 4.7 kΩ pull-up resistor to VCCAUX is
still recommended. The external pull-up provides a known pull-up value, and can be
stronger than the internal pull-up alone, which the data sheet specifies at up to 12 kΩ.

The FPGA supplies the CCLK output clock from its internal oscillator to the attached
Platform Flash PROM. In response, the Platform Flash PROM supplies bit-serial data to the
FPGA’s DIN input, and the FPGA accepts this data on each rising CCLK edge.

All the FPGA mode-select pins, M[2:0], must be Low when sampled, which occurs when
the FPGA’s INIT_B output initially goes High.

The FPGA's DOUT pin is used in daisy-chain applications, described in “Daisy-Chained
Configuration,” page 86. In a single-FPGA application, the FPGA’s DOUT pin is inactive,
but pulled High via an internal resistor.

The Master Serial interface varies slightly between Spartan-3 generation FPGAs.

• Figure 3-1, page 80 illustrates the Master Serial configuration interface for Spartan-3E and
Spartan-3A/3A DSP FPGAs when the FPGA’s VCCAUX supply is at 2.5V. Spartan-3E FPGAs

http://www.xilinx.com/products/silicon_solutions/proms/pfp/
http://www.xilinx.com
http://www.xilinx.com/products/silicon_solutions/proms/pfp/
http://www.xilinx.com/products/silicon_solutions/proms/pfp/

80 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

always have VCCAUX =2.5V. Spartan-3A and Spartan-3A DSP FPGAs support both
VCCAUX = 2.5V or 3.3V. Table 3-1, page 80 lists the FPGA/PROM connections.

• Figure 3-2, page 81 illustrates the Master Serial configuration interface for Extended Spartan-3A
family FPGAs when VCCAUX = 3.3V. Spartan-3AN FPGAs always have VCCAUX=3.3V. Table 3-1,
page 80 lists the FPGA/PROM connections.

• Figure 3-3, page 82 illustrates the Master Serial configuration interface for Spartan-3 FPGAs.

Figure 3-1: Master Serial Mode Using Platform Flash PROM
(Spartan-3E or Spartan-3A/3A DSP FPGA, VCCAUX = 2.5V)

TMS

TDO

TCK

TDI

VCCINT

VCCAUX +2.5V

INIT_B

VCCO_2

CCLK
DIN

PROG_B DONE

GND

+1.2V

D0

CF

VCCINT

CLK

HSWAP VCCO_0P VCCO_0

Spartan-3E

XCFxxS = +3.3V
XCFxxP = +1.8V

CE

M2
M1

‘0’
‘0’

M0

Serial Master
Mode

‘0’
OE/RESET

V

GND

TMS
TCK

TDI

TDO
VCCJ

VCCO V

CEO

Platform Flash
XCFxx3

30
�

4.
7k
�

DOUT

J

N
O

 L
O

A
D

N
O

 L
O

A
D

PUDC_B

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

J

2.5V
3.3V >68�

0�

JTAG
Voltage Resistors

Spartan-3A (2.5V)

UG332_c3_03_040107

+2.5V

PROGRAM

1

14

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

= Dedicated internal pull-up resistor

V

4.
7k
�

N
O

 L
O

A
D

S
partan-3A

Spartan-3A DSP (2.5V)

S
partan-3A

 D
S

P

Table 3-1: Spartan-3E/Spartan-3A/3A DSP FPGA Connections

FPGA Pin
Platform Flash

PROM Pin
Comments

DIN D0

CCLK CLK Watch signal integrity on this trace. See “CCLK Design
Considerations,” page 58.

INIT_B OE/RESET FPGA resets PROM during initialization, then enables the
PROM data out during configuration.

DONE CE FPGA enables PROM during configuration. DONE output
powered by FPGA VCCAUX supply.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 81
UG332 (v1.5) March 16, 2009

R

PROG_B CF

VCCO_2 VCCO Spartan-3E FPGA: 1.8V, 2.5V, or 3.3V

Spartan-3A/3A DSP FPGA: 2.5V or 3.3V (not 1.8V due to
VCCO2T, which does not apply after configuration)

VCCJ PROM JTAG output voltage. If 3.3V, then protect the FPGA
JTAG inputs with current-limiting resistors (>68Ω)

Table 3-1: Spartan-3E/Spartan-3A/3A DSP FPGA Connections

FPGA Pin
Platform Flash

PROM Pin
Comments

Figure 3-2: Master Serial Mode Using Platform Flash PROM (Extended Spartan-3A Family FPGA,
VCCAUX = 3.3V)

TMS

TDO

TCK

TDI

VCCINT

VCCAUX +3.3V

INIT_B

VCCO_2

CCLK
DIN

PROG _B DONE

GND

+1.2V

D0

CF

VCCINT

CLK

VCCO_0P VCCO_0

Spartan-3A/3AN (3.3V)

PROGRAM

XCFxxS = +3.3V
XCFxxP = +1.8V

CE

M2
M1

‘0’
‘0’

M0

Serial Master
Mode

‘0’
OE /RESET

GND

TMS

TCK

TDI

TDO

VCCJ

VCCO

CEO

Platform Flash
XCFxx3

30
Ω

VCCAUX

4.
7k

Ω
4.

7k
Ω

DOUT

N
O

 L
O

A
D

N
O

 L
O

A
D

N
O

 L
O

A
D

PUDC_B

VREF

TMS

TCK

TDO

TDI

N .C.
N .C.

1

14

+3.3V

+3.3V

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

UG332_c3_15_052107= Dedicated internal pull-up resistor

+3.3V
+3.3V

+3.3V

Spartan-3A DSP (3.3V)

http://www.xilinx.com

82 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

Figure 3-3: Master Serial Mode Using Platform Flash PROM (Spartan-3 FPGA)

UG332_c3_16_112206

+2.5VVCCAUX

PROG_B DONE

GND

VCCO_4 V

Master
Serial
Mode

V

4
.7

kΩ

TMS

TDO

TCK

TDI

N
O

 L
O

A
D

M2
M1

‘0’
‘0’

M0‘0’

CCLK

INIT_B

VCCINT

+1.2V

P HSWAP_EN

Spartan-3

D0

CF

VCCINT

CLK

XCFxxS = +3.3V
XCFxxP = +1.8V

CE

OE/RESET

GND

TMS
TCK

TDI

TDO
VCCJ

VCCO V

CEO

J

DOUT

DIN

3
30

Ω

N
O

 L
O

A
D

V

Platform Flash
XCFxx

4
.7

kΩ

N
O

 L
O

A
DVREF

TMS

TCK

TDO

TDI

N.C.
N.C.

1

14

J

X
ili

n
x

C
ab

le
 H

ea
d

er
(J

T
A

G
 I

nt
er

fa
ce

)

PROGRAM

2.5V
3.3V 68Ω

0Ω

JTAG
Voltage Resistors

= Dedicated internal pull-up resistor

Table 3-2: Spartan-3 FPGA Connections to Platform Flash PROM

FPGA Pin
Platform Flash

PROM Pin
Comments

DIN D0

CCLK CLK Watch signal integrity on this trace. See “CCLK Design
Considerations,” page 58. CCLK output powered by
FPGA’s VCCAUX supply

INIT_B OE/RESET FPGA resets PROM during initialization, then enables the
PROM’s data out during configuration.

DONE CE FPGA enables PROM during configuration. DONE output
powered by FPGA’s VCCAUX supply.

PROG_B CF

VCCO_4 VCCO 1.8V, 2.5V, or 3.3V

VCCJ PROM’s JTAG output voltage. If 3.3V, then protect the
FPGA JTAG inputs with current-limiting resistors (>68Ω)

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 83
UG332 (v1.5) March 16, 2009

Master Serial Mode Connections
R

Master Serial Mode Connections
Table 3-3 lists the various FPGA pins involved in Master Serial mode configuration.

Table 3-3: Master Serial Configuration Mode Connections

Pin Name
FPGA

Direction
Description During Configuration

After
Configuration

Spartan-3E FPGA:
HSWAP

Extended
Spartan-3A

FPGA:

PUDC_B

Spartan-3 FPGA:
HSWAP_EN

Input

User I/O Pull-Up Control. When
Low during configuration, enables
pull-up resistors in all I/O pins to
respective I/O bank VCCO input.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level
throughout configuration.

Spartan-3:
Dedicated pin
(don’t care after
configuration)
Extended
Spartan-3A:

User I/O

M[2:0] Input
Mode Select. Selects the FPGA
configuration mode.

M2 = 0, M1 = 0, M0 = 0.
Sampled when INIT_B goes
High.

User I/O

DIN Input
Serial Data Input. Receives serial data from

PROM’s D0 output.
User I/O

CCLK Output

Configuration Clock. Generated by
FPGA internal oscillator. Frequency
controlled by ConfigRate bitstream
generator option. If CCLK PCB trace
is long or has multiple connections,
terminate this output to maintain
signal integrity.

Drives PROM’s CLK clock
input.

Spartan-3:
Dedicated pin.
Spartan-3E
Extended
Spartan-3A:

User I/O. Drive
High or Low if
not used.

DOUT Output

Serial Data Output. Not used in single-FPGA
designs; DOUT is pulled up,
not actively driving. In a daisy-
chain configuration, this pin
connects to DIN input of the
next FPGA in the chain. See
Figure 3-4, page 87.

User I/O

INIT_B
Open-drain
bidirectional

I/O

Initialization Indicator. Active Low.
Goes Low at start of configuration
during Initialization memory
clearing process. Released at end of
memory clearing, when mode select
pins are sampled.

Connects to PROM’s
OE/RESET input. FPGA clears
PROM’s address counter at
start of configuration, enables
outputs during configuration.
PROM also holds FPGA in
Initialization state until PROM
reaches Power-On Reset (POR)
state. If CRC error detected
during configuration, FPGA
drives INIT_B Low.

User I/O. If
unused in the
application,
drive INIT_B
High to avoid a
floating value.
See INIT_B
“After
Configuration”.

P

http://www.xilinx.com

84 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

Voltage Compatibility

Platform Flash PROM
The Platform Flash PROM VCCINT supply must be either 3.3V for the serial XCFxxS
Platform Flash PROMs or 1.8V for the serial/parallel XCFxxP PROMs.

FPGA

Spartan-3E and Spartan-3A/3A DSP FPGAs with VCCAUX at 2.5V

The Spartan-3E or Spartan-3A/3A DSP FPGA VCCO_2 supply input and the Platform
Flash PROM VCCO supply input must be the same voltage. A 2.5V-only interface is easiest
as all signals are the same voltage. A 3.3V interface is also supported but the FPGA
PROG_B and DONE pins require special attention as they are powered by the FPGA
VCCAUX supply, nominally 2.5V. For Spartan-3E FPGAs see application note XAPP453: The
3.3V Configuration of Spartan-3 FPGAs, and for Spartan-3A/3A DSP FPGAs see application
note XAPP459: Interfacing Large-Swing Signals for additional information.

Spartan-3 FPGAs

The Spartan-3 FPGA’s VCCO_4 supply input and the Platform Flash PROM VCCO supply
input must be the same voltage. A 2.5V-only interface is easiest as all signals are the same
voltage. A 3.3V interface is also supported but the FPGA PROG_B, DONE, and CCLK pins
require special attention as they are powered by the FPGA VCCAUX supply, nominally 2.5V.
See application note XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional
information.

JTAG Interface
If the Platform Flash PROM is the last device in the chain, then the JTAG interface voltage
is easily controlled by the PROM’s VCCJ supply. If the FPGA’s VCCAUX supply is 2.5V and
the JTAG chain is also 2.5V, the interface is simple. To create a 3.3V JTAG interface, even
when the FPGA’s VCCAUX supply is 2.5V, connect VCCJ to 3.3V and provide current-
limiting resistors on the FPGA’s TDI, TMS, and TCK JTAG inputs.

DONE
Open-drain
bidirectional

I/O

FPGA Configuration Done. Low
during configuration. Goes High
when FPGA successfully completes
configuration.

Connects to PROM’s chip-
enable (CE) input. Enables
PROM during configuration.
Disables PROM after
configuration.

When High,
indicates that
the FPGA
successfully
configured.

PROG_B Input

Program FPGA. Active Low. When
asserted Low for 500 ns or longer,
forces the FPGA to restart its
configuration process by clearing
configuration memory and resetting
the DONE and INIT_B pins once
PROG_B returns High.

Must be High during
configuration to allow
configuration to start. Connects
to PROM’s CF pin, allowing
JTAG PROM programming
algorithm to reprogram the
FPGA.

Drive PROG_B
Low and release
to reprogram
FPGA.

Table 3-3: Master Serial Configuration Mode Connections (Cont’d)

Pin Name
FPGA

Direction
Description During Configuration

After
Configuration

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp459.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 85
UG332 (v1.5) March 16, 2009

Supported Platform Flash PROMs
R

For Spartan-3A/3A DSP FPGA, the VCCAUX supply can be either 2.5V or 3.3V. If VCCAUX
is 3.3V, then a 3.3V JTAG interface is also easy. No current-limiting resistors are required.

See also “JTAG Cable Voltage Compatibility,” page 198.

Supported Platform Flash PROMs
Table 3-4 shows the smallest available Platform Flash PROM to program one Spartan-3
generation FPGA. A multiple-FPGA daisy-chain application requires a Platform Flash
PROM large enough to contain the sum of the various FPGA bitstream sizes.

There are two possible design solutions for FPGA designs that require 8 Mbit PROMs: use
either a single 8 Mbit XCF08P parallel/serial PROM or two cascaded XCFxxS serial

Table 3-4: Number of Bits to Program a Spartan-3 Generation FPGA and Smallest
Platform Flash PROM

Family FPGA
Number of

Configuration Bits
Smallest Possible

Platform Flash PROM

Spartan-3A

(Spartan-3AN)

XC3S50A 437,312 XCF01S

XC3S200A 1,196,128 XCF02S

XC3S400A 1,886,560 XCF02S

XC3S700A 2,732,640 XCF04S

XC3S1400A 4,755,296
XCF08P

or XCF04S + XCF02S

Spartan-3A DSP
XC3SD1800A 8,197,280

XCF08P
or two XCF04S PROMs

XC3SD3400A 11,718,304 XCF16P

Spartan-3E

XC3S100E 581,344 XCF01S

XC3S250E 1,353,728 XCF02S

XC3S500E 2,270,208 XCF04S

XC3S1200E 3,841,184 XCF04S

XC3S1600E 5,969,696
XCF08P

or XCF04S + XCF02S

Spartan-3

XC3S50 439,264 XCF01S

XC3S200 1,047,616 XCF01S

XC3S400 1,699,136 XCF02S

XC3S1000 3,223,488 XCF04S

XC3S1500 5,214,784
XCF08P

or XCF04S + XCF02S

XC3S2000 7,673,024
XCF08P

or 2 x XCF04S

XC3S4000 11,316,864 XCF16P

XC3S5000 13,271,936 XCF16P

http://www.xilinx.com

86 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

PROMs as listed in Table 3-4. The two XCFxxS PROMs have a 3.3V VCCINT supply while
the XCF08P requires a 1.8V VCCINT supply. If the board does not already have a 1.8V
supply available, the two cascaded XCFxxS PROM solution is recommended.

CCLK Frequency
In Master Serial mode, the FPGA’s internal oscillator generates the configuration clock
frequency. The FPGA provides this clock on its CCLK output pin, driving the PROM’s CLK
input pin. The FPGA starts configuration at its lowest frequency and increases its
frequency for the remainder of the configuration process if so specified in the
configuration bitstream. The maximum frequency is specified using the ConfigRate
bitstream generator option. Table 3-5 shows the maximum ConfigRate settings,
approximately equal to the frequency measured in MHz, for various Platform Flash
PROMs and I/O voltages. These values are determined using the minimum CCLK period
from the appropriate Spartan-3E or Extended Spartan-3A family data sheet. The maximum
ConfigRate for the serial XCFxxS PROMs is reduced at 1.8V. Extended Spartan-3A family
FPGAs do not support a 1.8V configuration interface due to their higher VCCO_2 Power-
On Reset voltage threshold. See “Power-On Reset (POR),” page 240.

Daisy-Chained Configuration
If the application requires multiple FPGAs, each with different configurations, then
configure the FPGAs using a daisy chain, as shown in Figure 3-4, page 87. Use Master
Serial mode (M[2:0] = <0:0:0>) for the FPGA connected to the Platform Flash PROM and
Slave Serial mode (M[2:0] = <1:1:1>) for all other FPGAs in the daisy chain. After the
master FPGA—the FPGA on the left in the diagram—finishes loading its configuration
data from the Platform Flash, the master device supplies data using its DOUT output pin
to the next device in the daisy chain, on the falling CCLK edge.

Also, to successfully configure a daisy chain, the GTS_cycle bitstream option must be set to
a Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the
software default setting. Optionally, set GTS_cycle:Done.

Ganged or Broadside Configuration
“Daisy-Chained Configuration” is designed to load multiple FPGAs, each with a different
design and typically of different array size. However, some applications include multiple,
identical FPGAs, all programmed with the same bitstream. Instead of daisy chaining the
FPGAs and storing multiple copies of the same bitstream, “Ganged or Broadside

Table 3-5: Maximum ConfigRate Settings Using Platform Flash (Serial Mode,
Commercial Range)

Platform Flash Part
Number

I/O Voltage
(VCCO_2, VCCO)

 Spartan-3E
ConfigRate Setting

 Extended Spartan-3A
Family ConfigRate

Setting

XCF01S
XCF02S
XCF04S

3.3V or 2.5V 25 33

1.8V 12 N/A

XCF08P
XCF16P
XCF32P

3.3V or 2.5V
25

44

1.8V N/A

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 87
UG332 (v1.5) March 16, 2009

Ganged or Broadside Configuration
R

Configuration” programs multiple, identical FPGAs with the same bitstream, as shown in
Figure 3-5, page 87.

Figure 3-4: Multi-FPGA Daisy-Chain Configuration Using Xilinx Platform Flash PROM

CLK

DO

CE

OE/RESET

CF

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘0’ ‘0’ ‘0’

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘1’ ‘1’ ‘1’VCCO_2 VCCO_2
VCCAUXPlatform Flash

XCFxxx

Master FPGA Slave FPGA

PROGRAM

0Ω 0Ω 0Ω 0Ω

20
0Ω

20
0Ω

4.
7k

Ω

33
0Ω

4.
7k

Ω

UG332_c3_02_111906

Figure 3-5: Multiple, Identical FPGAs Programmed with the Same Bitstream

CLK

DO

CE

OE/RESET

CF

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘0’ ‘0’ ‘0’ VCCO_2

Platform Flash
XCFxxx

Master FPGA

PROGRAM

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘1’ ‘1’ ‘1’

Slave FPGA

VCCO_2

VCCAUX

0Ω

0Ω

0Ω

0Ω20
0Ω

20
0Ω

33
0Ω

4.
7k

Ω

4.
7k

Ω

UG332_c3_03_111906

http://www.xilinx.com

88 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

JTAG Interface
Spartan-3 generation FPGAs and the Platform Flash PROMs both have a four-wire IEEE
1149.1/1532 JTAG port. Both the FPGA and the PROM share the JTAG TCK clock input
and the TMS mode select input. The devices may connect in either order on the JTAG chain
with the TDO output of one device feeding the TDI input of the following device in the
chain. The TDO output of the last device in the JTAG chain drives the JTAG connector.

The JTAG interface on the FPGA is powered by the VCCAUX supply. Consequently, the
PROM’s VCCJ supply input must also be 2.5V. To create a 3.3V JTAG interface, refer to
XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional information.

Storing Additional User Data in Platform Flash
Typically, there is some additional space leftover in the Platform Flash after storing the
FPGA bitstream. If desired, the application can store additional data in the Platform Flash
PROM and make it available to the FPGA after configuration.

The FPGA application does not have easy write-access to the PROM but read-access is
relatively simple, as described in the referenced application notes below. For applications
that also require easy write-access, consider using the Master SPI configuration interface,
described in Chapter 4, “Master SPI Mode”.

Use the available space in the Platform Flash PROM, or even the next larger PROM size, to
hold additional nonvolatile application data such as MicroBlaze® processor code, or other
user data such as serial numbers and Ethernet MAC IDs. Using a MicroBlaze application as
an example, the FPGA configures from the Platform Flash PROM. Then using FPGA logic
after configuration, the FPGA copies MicroBlaze code from Platform Flash into external
DDR SDRAM for code execution, providing simple and cost-effective code shadowing.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 89
UG332 (v1.5) March 16, 2009

Storing Additional User Data in Platform Flash
R

A few simple modifications are required to the standard interface. As shown in
Figure 3-6a, the FPGA uses its DONE output to enable the Platform Flash PROM CE input.
However, once configured, the FPGA cannot re-enable the PROM because the DONE is a
dedicated pin and the FPGA application cannot control it.

The simplest solution, shown in Figure 3-6b, is to connect the PROM’s CE input to ground.
The PROM consumes slight more power if constantly enabled, but then the FPGA has
direct access. On Spartan-3 FPGAs, the CCLK pin is a dedicated pin. To control the PROM,
use an FPGA I/O in parallel with CCLK. Also be sure to set the CclkPin:Pullnone
bitstream option.

Figure 3-6c shown an alternative solution. In this case, connect the PROM’s CE input to an
FPGA I/O pin. The FPGA pin has a sufficiently large pull-down resistor to guarantee that
CE is Low during configuration. The exact size of the pull-down resistor depends on
whether pull-up resistors are enabled during configuration and the I/O standard used in
the application. See Table 2-15, page 66 for pull-down resistor values. After configuration,
the FPGA can selective enable the PROM by driving the associated I/O pin High or Low.

See the following application notes for specific details on how to implement such an
interface.

Figure 3-6: Various Methods to Use Platform Flash PROM after Configuration

DIN
CCLK

INIT_B
DONE

D0
CLK
OE/RESET
CE

FPGA Platform Flash

a) Standard interface

b) PROM always enabled

DIN
CCLK

INIT_B
DONE

D0
CLK
OE/RESET
CE

FPGA Platform Flash

DIN
CCLK

INIT_B
DONE

D0
CLK

OE/RESET
CE

FPGA Platform Flash

User I/O

Spartan-3

c) PROM enabled by FPGA

DIN
CCLK

INIT_B

DONE

D0
CLK
OE/RESET
CE

FPGA Platform Flash

DIN
CCLK

INIT_B

DONE

D0
CLK

OE/RESET
CE

FPGA Platform Flash

User I/O

Spartan-3

User-I/O
User-I/O

UG332_c3_17_040107

Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

http://www.xilinx.com

90 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

• XAPP482: MicroBlaze Platform Flash/PROM Boot Loader and User Data Storage
http://www.xilinx.com/support/documentation/application_notes/xapp482.pdf

• XAPP694: Reading User Data from Configuration PROMs
http://www.xilinx.com/support/documentation/application_notes/xapp694.pdf

Generating the Bitstream for a Master Serial Configuration
The create the FPGA bitstream for a Master Serial mode configuration, follow the steps
outlined in “Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an
FPGA configured in Master SPI mode, set the following bitstream generator options.

ConfigRate: CCLK Frequency
Set the ConfigRate option as described in “CCLK Frequency,” page 86. Using the ISE®
software Project Navigator, the Configuration Rate frequency is set in Step 7 in Figure 1-7,
page 44.

-g ConfigRate:25

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA
to actively drive the DONE pin after successfully completing the configuration process.
Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in
Figure 1-8, page 45.

-g DriveDone:Yes

GTS_cycle: Global Three-State Release Timing for Daisy Chains
If creating a multi-FPGA daisy chain, set the GTS_cycle option to be later than the
DONE_cycle setting, which is the default setting for both. Alternatively, set
GTS_cycle:Done. From ISE Project Navigator, the GTS_cycle setting is the Enable Outputs
(Output Events) option, shown as Step 14 in Figure 1-8, page 45.

Preparing a Platform Flash PROM File
This section provides guidelines to create PROM files for Platform Flash PROM memories.

The Xilinx software tools, “iMPACT” or PROMGen, generate PROM files from the FPGA
bitstream or bitstreams.

iMPACT
The following steps graphically describe how to create a PROM file using iMPACT from
within the ISE Project Navigator.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp482.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp694.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 91
UG332 (v1.5) March 16, 2009

Preparing a Platform Flash PROM File
R

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG
File from within the Process pane, as shown in Figure 3-7.

2. As shown in Figure 3-8, select Prepare a PROM File.

3. Click Next.

Figure 3-7: Double-click Generate PROM, ACE or JTAG File

Figure 3-8: Prepare a PROM File

1

UG332_c4_10_110206

3

2

UG332_c4_11_19

http://www.xilinx.com

92 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

4. As shown in Figure 3-9, format the FPGA bitstream or bitstreams for a Xilinx PROM.

5. Select a PROM File Format.

6. Enter a PROM File Name.

7. Click Next.

8. As shown in Figure 3-10, select the xcf (Platform Flash PROM) family from the drop-
list.

Figure 3-9: Set Options for Xilinx Platform Flash PROM

5

4

6

7

UG332_c3_04_111506

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 93
UG332 (v1.5) March 16, 2009

Preparing a Platform Flash PROM File
R

9. Select the desired Platform Flash part number. The example in Figure 3-10 shows an
XCF04 PROM, which stores up to 4 Mbits, or 524,288 bytes.

10. Click Add. This example assumes that the FPGA is connected to a single Platform
Flash PROM. However, multiple Platform Flash PROMs can also be cascaded to create
a larger memory. If the application cascaded multiple PROMs, then click the Add
button to include additional PROMs.

11. For a design that uses a single Platform Flash PROM, the PROM also is located in
position 0. If the application used multiple, cascaded PROMs, each PROM part name
and position would be listed.

12. Click Next.

13. As shown in Figure 3-11, review that the settings are correct to format the Platform
Flash PROM. Click Finish to confirm the settings or Back to change the settings.

Figure 3-10: Select Platform Flash PROM

11

8

12

9 10

UG332_c3_05_111506

http://www.xilinx.com

94 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

14. As shown in Figure 3-12, click OK to start adding bitstream files.

15. Locate and select the desired FPGA bitstream.

16. Click Open.

Figure 3-11: Review PROM Formatting Settings

Figure 3-12: Add FPGA Configuration Bitstream File(s)

13

UG332_c3_06_111506

10

7

11

8 9

14

15

16

17

UG332_c3_07_111506

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 95
UG332 (v1.5) March 16, 2009

Platform Flash In-System Programming via JTAG using iMPACT
R

17. Click No. This example assumes that the Platform Flash PROM holds only a single
FPGA bitstream. If creating a multi-FPGA configuration daisy chain, click Yes and
select additional FPGA bitstreams.

18. As shown in Figure 3-13, the iMPACT software graphically displays the Platform Flash
PROM and associated FPGA bitstream(s).

19. Click Generate File.

20. The iMPACT software indicates when the PROM file is successfully created.

Platform Flash In-System Programming via JTAG using iMPACT
Both the FPGA and the Platform Flash PROM are in-system programmable via the JTAG
chain. Download support for prototyping purposes is provided by the Xilinx iMPACT
programming software and the associated Xilinx Parallel Cable IV, or Platform Cable
USB II programming cables.

Prepare Board for Programming
Before attempting to program the Platform Flash PROM, complete the following steps.

1. Ensure that the board is powered.

2. Ensure that the programming cable is properly connected both the board and to the
computer or workstation.

Programming via iMPACT
The following steps describe how to program a Platform Flash PROM using the iMPACT
software and a Xilinx programming cable.

Figure 3-13: Generate PROM File

19

20

18

UG332_c3_08_111506

http://www.xilinx.com

96 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

1. Click Configure devices using Boundary-Scan (JTAG) from within iMPACT, as
shown in Figure 3-14. If the Automatically connect... option is selected, iMPACT will
query the devices in the JTAG chain and automatically detect the chain topology.

2. Click Finish.

3. As shown in Figure 3-15, the iMPACT software automatically detects the JTAG chain,
if so enabled. This example application is similar to that shown in Figure 3-1. The
FPGA is an XC3S700A, followed in the chain by an XCF04S Platform Flash PROM.

4. In this example, the XC3S700A precedes the XCF04S Platform Flash PROM in the
chain. The FPGA does not need to be programmed in order to program the Platform
Flash PROM. The iMPACT software prompts for the FPGA bitstream, as shown in
Figure 3-16. Click Bypass to skip programming the FPGA.

Figure 3-14: Program Platform Flash PROM using JTAG

Figure 3-15: iMPACT Automatically Detects JTAG Chain

1

2

UG332_c2_09_111506

3

UG332_c3_10_111506

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 97
UG332 (v1.5) March 16, 2009

Platform Flash In-System Programming via JTAG using iMPACT
R

5. As shown in Figure 3-17, select the PROM data file to be programmed to the Platform
Flash PROM.

6. Click Open.

7. As shown in Figure 3-18, the iMPACT software updates the screen image, showing the
files to be loaded to each device in the JTAG chain. To program the Platform Flash
PROM, first click to highlight the XCF04S PROM.

Figure 3-16: Bypass Programming the FPGA

Figure 3-17: Select the Platform Flash Programming File

4

UG332_c3_11_111506

6

5

UG332_c3_12_111506

http://www.xilinx.com

98 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

8. Double-click Program.

9. Click Programming Properties, as shown in Figure 3-19.

10. Check Verify. Unchecking Verify will reduce programming but iMPACT can only
guarantee correct programming on a verified PROM.

Figure 3-18: Program the Platform Flash PROM

7

8 14

UG332_c3_13_111506

Figure 3-19: PROM Programming Options

9

10

11

12

13

UG332_c3_14_111506

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 99
UG332 (v1.5) March 16, 2009

Production Programmers
R

11. Check Erase Before Programming. Required for reprogramming. Unchecking the
Erase option reduces programming time for a blank device.

12. Check Load FPGA to force the FPGA to automatically reconfigure with the new
PROM data after PROM programming is complete.

13. Click OK.

14. The iMPACT software indicates successful programming, as shown in Figure 3-18.

Production Programmers
The Xilinx Platform Flash PROMs are supported by a variety of third-party production
programmers. These programmers are the best option for high-volume applications and
many offer gang-programming options.

Table 3-6 provides links to vendors that provide Platform Flash programming support.
The links indicate the specific programmer model numbers, software versions, and any
programming adapters required.

Additional Information
• DS123: Platform Flash In-System Programmable Configuration PROMs

www.xilinx.com/support/documentation/data_sheets/ds123.pdf

Table 3-6: Xilinx Platform Flash Production Programmers

Platform Flash
Family

Part
Numbers

Production Programmers

XCFxxS

XCF01S

XCF02S

XCF04S

www.xilinx.com/support/programr/dev_sup.htm#XCF00SP

XCFxxP

XCF08P

XCF16P

XCF32P

www.xilinx.com/support/programr/dev_sup.htm#XCF00SP

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds123.pdf
http://www.xilinx.com/support/programr/dev_sup.htm#XCF00SP
http://www.xilinx.com/support/programr/dev_sup.htm#XCF00SP

100 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 101
UG332 (v1.5) March 16, 2009

R

Chapter 4

Master SPI Mode

The SPI serial Flash configuration mode is ideal for applications with the following
attributes.

• SPI Flash PROMs are already being used in the system.

• The FPGA application needs to store data in nonvolatile memory or to access data
from randomly-accessible, byte-addressable, nonvolatile memory.

• High-volume “consumer” applications with a production run of about a few years or
less. For embedded applications with a five year or longer production lifetime, also
consider Master Serial mode using Xilinx® Platform Flash, which has a longer, more
stable supply lifetime than commodity Flash.

In Master SPI mode (M[2:0] = <0:0:1>), the Spartan®-3E or Extended Spartan-3A family
FPGA configures itself from an attached industry-standard SPI serial Flash PROM, as
illustrated in Figure 4-1 and Figure 4-2. The figure shows optional components in gray and
designated “NO LOAD”. The FPGA supplies the CCLK output clock from its internal
oscillator and drives the clock input of the attached SPI Flash PROM.

More information on configuration from SPI Flash PROMs can be found in the following
application note.

• XAPP951: Configuring Xilinx FPGAs with SPI Serial Flash
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf

102 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Although SPI is a fairly standard and ubiquitous four-wire interface, various available SPI
Flash PROMs use different command protocols. The FPGA’s variant select pins, VS[2:0],
define how the FPGA communicates with the SPI Flash, including which SPI Flash
command the FPGA issues to start the read operation and the number of dummy bytes
inserted before the FPGA expects to receive valid data from the SPI Flash. Table 4-2 shows
the available SPI Flash PROMs tested or expected to operate with Spartan-3E/3A FPGAs.
Other compatible devices might work but have not been hardware verified by Xilinx. All
other VS[2:0] values are reserved for future use. Consult the data sheet for the desired SPI
Flash device to determine its suitability.

Figure 4-1 shows the general connection diagram for SPI Flash PROMs that support the
0x0B FAST READ commands, which are most modern 25-series PROMs. The example
shown is an STMicro (Numonyx) M25Pxx PROM.

Note: Grayed out pull-up resistor on CSO_B is only necessary when HSWAP/PUDC_B is High (I/O Pull-Ups Not Enabled)

Figure 4-1: SPI Flash Configuration Interface for M25P-compatible Devices

UG332_c4_01_063008

VCCINT

CSO_B

VCCO_2

INIT_B

DIN
MOSI

+1.2V

D

S

VCC

Q

C

GND

HSWAP
PUDC_B VCCO_0P

CCLK

VCCO_0

Spartan-3E/3A/AN

M25Pxx
SPI Flash

+3.3V

+3.3V

HOLD‘1’

M2
M1

‘0’
‘0’

M0‘1’

VS2
VS1

‘1’

VS0

Variant
Select

‘1’
DOUT

W

P

4
.7

kΩ

Master
SPI Mode

V
R

E
F

S
S

_B

S
C

K

M
IS

O

M
O

S
I

N
.C

.
N

.C
.

Xilinx Cable Header
(SPI Flash Direct Programming)

‘1’

TMS

TDO

TCK

TDI

VCCAUX VCCAUX

PROG_B DONE

GND

PROGRAM

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

1

14

1

14

J

N
O

 L
O

A
D

N
O

 L
O

A
D

N
O

 L
O

A
D

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

SPI Direct
Programming

Jumper

820Ω

= Dedicated internal pull-up resistor

Spartan-3A DSP

Spartan-3A/3AN,
Spartan-3A DSP
have internal
pull-up resistors

Spartan-3A/3AN,
Spartan-3A DSP
have internal
pull-up resistors

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 103
UG332 (v1.5) March 16, 2009

R

Figure 4-2 shows the connection diagram for Atmel DataFlash serial PROMs, which also
use an SPI-based protocol. Xilinx recommends using ‘C’- or ‘D’-series DataFlash devices.

Figure 4-6, page 119 demonstrates how to configure multiple FPGAs with different
configurations, all stored in a single SPI Flash. The diagram uses standard SPI Flash
memories but the same general technique applies for Atmel DataFlash.

Note: Grayed out pull-up resistor on CSO_B is only necessary when HSWAP/PUDC_B is High (I/O Pull-Ups Not Enabled)

Figure 4-2: SPI Flash Configuration Interface for Atmel DataFlash Devices

UG332_c4_02_040107

VCCINT

CSO_B

VCCO_2

INIT_B

DIN
MOSI

+1.2V

SI

CS

VCC

SO

SCK

GND

HSWAP
PUDC_B VCCO_0P

CCLK

VCCO_0

Atmel
AT45DB
D-Series

+3.3V

+3.3V

RESET‘1’

M2
M1
M0

VS2
VS1
VS0

DOUT

WP

P

4
.7

k�

V
R

E
F

S
S

_B

S
C

K

M
IS

O

M
O

S
I

N
.C

.
N

.C
.

Xilinx Cable Header
(SPI Flash Direct Programming)

TMS

TDO

TCK

TDI

VCCAUX VCCAUX

PROG_B DONE

GND

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

1

14

1

14

J

N
O

 L
O

A
D

N
O

 L
O

A
D

N
O

 L
O

A
D

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

SPI Direct
Programming

Jumper

820�

DataFlash

PROGRAM
= Dedicated internal pull-up resistor

‘0’
‘0’
‘1’

‘1’

Variant
Select

‘1’

Master
SPI Mode

‘1’

Spartan-3A/3AN,
Spartan-3A DSP
have internal
pull-up resistors

Spartan-3A/3AN,
Spartan-3A DSP
have internal
pull-up resistors

Spartan-3E/-3A/AN
Spartan-3A DSP

http://www.xilinx.com

104 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Master SPI Mode Differences between Spartan-3 Generation FPGA
Families

The Master SPI configuration mode is available using either the Extended Spartan-3A or
Spartan-3E FPGA families. It is not provided on the Spartan-3 FPGA family, as
summarized in Table 4-1.

Choosing a Compatible SPI Serial Flash
The Spartan-3E and Extended Spartan-3A family FPGAs are designed to support a wide
range of SPI serial Flash memory devices. Table 4-2, page 105 lists the Xilinx-tested PROMs
that have in-system programming support using the iMPACT software. Many other SPI
Flash PROMs are designed to be form, fit, and functionally equivalent and are listed in
Table 4-5, page 107. The Xilinx ISE® software generates compatible programming files but
Xilinx has not tested these PROMs for complete compatibility. Similarly, the PROMs listed
in Table 4-5, page 107 are not supported by the iMPACT in-system programming software.

The criteria to select an SPI Flash PROM are listed below.

• Ideally, the end application should use a Xilinx-tested SPI PROM, listed in Table 4-2.
Table 4-3, page 105 lists the specific SPI Flash PROM part numbers tested and
supported within iMPACT for in-system programming using Xilinx programming
cables.

Table 4-1: Master SPI Mode Support within Spartan-3 Generation FPGAs

Spartan-3
FPGA

Spartan-3E
FPGA

Spartan-3A/3AN
Spartan-3A DSP

FPGA

Supports multi-FPGA daisy-chain
configurations

Master SPI
mode is not
available on

Spartan-3
FPGAs

Step 1 only Yes

Supports MultiBoot configuration No Yes

Watchdog Timer retry No Yes

CCLK directionality during Master
SPI mode I/O

Output only for
improved signal

integrity

M[2:0] and VS[2:0] pins have
dedicated internal pull-up resistors
during configuration

No

Optional,
controlled by

HSWAP

Yes

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 105
UG332 (v1.5) March 16, 2009

Choosing a Compatible SPI Serial Flash
R

• The specific SPI serial memory must support a compatible read command offered by
the FPGA. The specific command set is selected by defining the FPGA’s VS[2:0] pins
before configuration. Table 4-4 lists the commands supported on Spartan-3E and
Extended Spartan-3A family FPGAs. The command setting defines which SPI Flash
read command that the FPGA issues at the start of configuration, followed by a 24-bit
address starting at 0, followed by the number of dummy bits required for the specific
command.

Table 4-2: SPI Flash Memory Devices Officially Supported by Xilinx and Programmed Using iMPACT

SPI Flash Xilinx
iMPACT
Support

Unique
ID

Read Command

Density (bits)
Fast
Read

(0x0B)

Read
(0x03)

Read
Array
(0xE8)

FPGA VS[2:0] Setting

Vendor Family 1:1:1 1:0:1 1:1:0 512K 1M 2M 4M 8M 16M 32M 64M 128M

STMicro
(Numonyx)

M25P ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

M25PE ◆ ◆ ◆ ◆ ◆ ◆ ◆

M45PE ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Atmel

AT45DB
D-series

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

AT45DB
B-series

◆ ◆ ◆ ◆ ◆ ◆

Notes:
1. Xilinx iMPACT Support indicates that Xilinx has physically tested compatibility for these SPI Flash memory devices and provides

programming support in the iMPACT programming utility using Xilinx approved JTAG cables. The iMPACT software generates
programming information that is compatible with all the devices listed.

2. Unique ID indicates that these SPI Flash memory device have factory-programmed unique identifier bits, useful for protecting
FPGA applications or IP cores.

Table 4-3: SPI Serial Flash PROMs Supported by iMPACT

Vendor STMicro (Numonyx) Atmel

Status Recommended Supported Recommended Supported

Density (bits) M25Pxx M25PExx M45PExx AT45DBxxxD AT45DBxxxB

512K M25P05A

1M M25P10A M25PE10 M45PE10 AT45DB011D AT45DB011B

2M M25P20 M25PE20 M45PE20 AT45DB021D AT45DB021B

4M M25P40 M25PE40 M45PE40 AT45DB041D AT45DB041B

8M M25P80 M25PE80 M45PE80 AT45DB081D AT45DB081B

16M M25P16 M45PE16 AT45DB161D AT45DB161B

32M M25P32
AT45DB321D

AT45DB321C
AT45DB321B

64M M25P64 AT45DB642D

128M M25P128

http://www.xilinx.com
http://www.atmel.com/dyn/products/product_card.asp?family_id=616&family_name=DataFlash%AE&part_id=2471
http://www.atmel.com/dyn/products/product_card.asp?family_id=616&family_name=DataFlash%AE&part_id=2472
http://www.numonyx.com/Documents/Datasheets/M25P128.pdf
http://www.numonyx.com/Documents/Datasheets/M45PE10.pdf
http://www.numonyx.com/Documents/Datasheets/M45PE20.pdf
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/M25P.aspx
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/NumonySerialFlashM25M45.aspx
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/NumonySerialFlashM25M45.aspx
http://www.atmel.com/products/DataFlash/
http://www.atmel.com/products/DataFlash/
http://www.numonyx.com/Documents/Datasheets/M45PE16.pdf
http://www.numonyx.com
http://www.numonyx.com/Documents/Datasheets/M45PE40.pdf
http://www.numonyx.com/Documents/Datasheets/M45PE80.pdf
http://www.atmel.com
http://www.numonyx.com/Documents/Datasheets/M25P05A.PDF
http://www.numonyx.com/Documents/Datasheets/M25P10A.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE20_10.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3937
http://www.atmel.com/dyn/products/product_card.asp?part_id=2467
http://www.numonyx.com/Documents/Datasheets/M25P20.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE20_10.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3936
http://www.atmel.com/dyn/products/product_card.asp?part_id=2468
http://www.numonyx.com/Documents/Datasheets/M25P40.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE40.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3806
http://www.atmel.com/dyn/products/product_card.asp?part_id=2469
http://www.numonyx.com/Documents/Datasheets/M25P80.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE80.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3819
http://www.atmel.com/dyn/products/product_card.asp?part_id=2470
http://www.numonyx.com/Documents/Datasheets/M25P16.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3772
http://www.numonyx.com/Documents/Datasheets/M25P32.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3818
http://www.atmel.com/dyn/products/product_card.asp?part_id=3504
http://www.numonyx.com/Documents/Datasheets/M25P64.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3777

106 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

♦ The Fast Read command (command code 0x0B) is supported on modern 25-
series SPI serial Flash devices. Set VS[2:0] <1:1:1> to use this command. SPI Flash
PROMs that support the Fast Read command also support the Read command.

♦ The Read command (command code 0x03) is a legacy command set, offered on
all 25-series SPI serial Flash devices. Set VS[2:0] <1:0:1> to use this command.

♦ The Read Array command (command code 0xE8) is offered on all Atmel AT45-
series DataFlash PROMs. Set VS[2:0] <1:1:0> to use this command.

♦ Some recent SPI Flash PROMs, like the Atmel AT45DB D-series PROMs support
all three read commands.

• The specific SPI serial memory must be large enough to contain one or more FPGA
bitstreams plus any other nonvolatile memory requirements to support the FPGA
application after configuration.

♦ The size of an individual, uncompressed FPGA bitstream is provided in Table 4-6,
page 108, although the size requirements might be reduced by using “Bitstream
Format,” page 39.

♦ If using MultiBoot on an Extended Spartan-3A family FPGA, add the size of each
MultiBoot configuration image. Essentially, it is the same as an individual FPGA
image, but MultiBoot allows multiple selectable images within a single FPGA.

♦ Using a daisy-chained configuration scheme, a single SPI Flash PROM can store
multiple FPGA bitstreams. Add the bitstream sizes for each FPGA in the daisy
chain.

♦ If using the SPI PROM to store MicroBlaze™ code or other nonvolatile data for
the FPGA application after configuration, add the sizes of each of these images.

♦ Add any overhead requirements to align the data to page or sector boundaries as
required by the selected Flash PROM device.

• For possible future migration to a larger FPGA or to allow possible upward migration
for additional data, choose a SPI PROM family that offers larger, compatible densities.

• For Spartan-3E FPGA applications that require anti-cloning protection, choose an SPI
PROM that provides a unique identifier (ID). See “Spartan-3E FPGA: Leveraging
Security Features in Select Commodity Flash PROMs,” page 299. Extended Spartan-
3A family FPGAs provide similar protection features using an SPI PROM. See
“Extended Spartan-3A Family FPGA: Imprinting or Watermarking the Configuration
PROM with Device DNA,” page 298.

• The Xilinx iMPACT software offers direct, in-system programming using Xilinx
programming cables, starting with ISE 8.2i. However, the current software version
only supports the STMicro (Numonyx) and Atmel devices indicated in Table 4-2,
page 105. Many 25-series PROMs are directly compatible with the STMicro
(Numonyx) M25Pxx family and could be substituted in production.

Table 4-4: SPI Read Commands Supported by Spartan-3 Generation FPGAs

VS[2:0] Pins
Read

Command

Hexadecimal
Command

Code
Address Bits Dummy Bits

VS2 VS1 VS0

1 1 1 Fast Read 0x0B

24 bits, all zeros

8 bits, all zeros

1 0 1 Read 0x03 None

1 1 0 Read Array 0xE8 32 bits, all zeros

Others Reserved

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 107
UG332 (v1.5) March 16, 2009

Choosing a Compatible SPI Serial Flash
R

SPI Flash PROM Density Requirements
Table 4-6 shows the smallest usable SPI Flash PROM to program a single Extended
Spartan-3A family or Spartan-3E FPGA. Commercially available SPI Flash PROMs range
in density from 1 Mbit to 128 Mbits. A multiple-FPGA daisy-chained application requires
a SPI Flash PROM large enough to contain the sum of the FPGA file sizes. An application
can also use a larger-density SPI Flash PROM to hold additional data beyond just FPGA
configuration data. For example, the SPI Flash PROM can also store application code for a

Table 4-5: Other SPI Flash Memory Devices With Data Sheet Compatibility (Unverified by Xilinx,
Unsupported in iMPACT)

SPI Flash Xilinx
iMPACT
Support

Unique
ID

Read Command

Density (bits)
Fast
Read

(0x0B)

Read
(0x03)

Read
Array
(0xE8)

FPGA VS[2:0] Setting

Vendor Family 1:1:1 1:0:1 1:1:0 512K 1M 2M 4M 8M 16M 32M 64M 128M

Atmel
AT26 ◆ ◆ ◆ ◆ ◆ ◆

AT25 ◆ ◆ ◆ ◆ ◆ ◆

Spansion
(AMD,
Fujitsu)

S25FL ◆ ◆ ◆ ◆ ◆ ◆

Winbond
(NexFlash)

NX25P

W25P
◆ ◆ ◆ ◆ ◆ ◆ ◆

W25X ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Intel
(Numonyx)

S33 ◆ ◆ ◆ ◆ ◆ ◆

SST
SST25L ◆ ◆ ◆ ◆

SST25V ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Macronix MX25 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Chingis
(PMC)

Pm25 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

AMIC A25L ◆ ◆ ◆ ◆ ◆

Eon EN25 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Notes:
1. Compatibility based on publicly available data sheets.
2. Unique ID indicates that these SPI Flash memory device have factory-programmed unique identifier bits, useful for protecting

FPGA applications or IP cores.

http://www.xilinx.com
http://www.atmel.com/products/SFlash/
http://www.atmel.com/products/SFlash/
http://www.spansion.com/flash_memory_products/mirrorbit.html
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.numonyx.com/Documents/Datasheets/314822_S33_Discrete_DS.pdf
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/B9F4CC53671F91C148256F55004206F9/?OpenDocument
http://www.chingistek.com/products/spi.cfm
http://www.amictechnology.com/
http://www.eonsdi.com/essl2-1.htm

108 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

MicroBlaze™ RISC processor core integrated in the Spartan-3A or Spartan-3E FPGA. See
“SPI Flash Interface after Configuration”.

FPGA Connections to the SPI PROM
Table 4-7 shows the connections between the SPI Flash PROM and the FPGA’s SPI
configuration interface. Each SPI Flash PROM vendor uses slightly different signal
naming.

Table 4-8, page 110 provides a complete list of the FPGA pins involved in the Master SPI
configuration mode.

Table 4-6: Number of Bits to Program an Extended Spartan-3A family or Spartan-
3E FPGA and Smallest SPI Flash PROM

Family FPGA
Number of Configuration Bits

(Uncompressed)
Smallest Usable
SPI Flash PROM

Spartan-3A/3AN

XC3S50A/AN 437,312 512 Kbit

XC3S200A/AN 1,196,128 2 Mbit

XC3S400A/AN 1,886,560 2 Mbit

XC3S700A/AN 2,732,640 4 Mbit

XC3S1400A/AN 4,755,296 8 Mbit

Spartan-3A DSP
XC3SD1800A 8,197,280 8 Mbit

XC3SD3400A 11,718,304 16 Mbit

Spartan-3E

XC3S100E 581,344 1 Mbit

XC3S250E 1,353,728 2 Mbit

XC3S500E 2,270,208 4 Mbit

XC3S1200E 3,841,184 4 Mbit

XC3S1600E 5,969,696 8 Mbit

Table 4-7: Example SPI Flash PROM Connections and Pin Naming

SPI Flash Pin FPGA Connection
STMicro

(Numonyx)
Winbond/
NexFlash

Silicon
Storage

Technology

Atmel
DataFlash

Slave Data Input MOSI D DI SI SI

Slave Data Output DIN Q DO SO SO

Slave Select CSO_B S CS CE# CS

Slave Clock CCLK C CLK SCK SCK

Write Protect Not required for FPGA configuration. Must
be High to program SPI Flash. Optional
connection to FPGA user I/O after
configuration.

W WP WP# WP
W

http://www.xilinx.com/microblaze
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 109
UG332 (v1.5) March 16, 2009

FPGA Connections to the SPI PROM
R

The mode select pins, M[2:0], and the variant select pins, VS[2:0] are sampled when the
FPGA’s INIT_B output goes High and must be at defined logic levels during this time.
After configuration, when the FPGA’s DONE output goes High, these pins are all available
as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP or PUDC_B pin must be defined. Set Low to enable pull-
up resistors on all user-I/O pins during configuration or High to disable the pull-up
resistors. The HSWAP or PUDC_B control must remain at a constant logic level throughout
FPGA configuration. After configuration, when the FPGA’s DONE output goes High, the
HSWAP or PUDC_B pin is available as full-featured user-I/O pin and is powered by the
VCCO_0 supply.

The FPGA's DOUT pin is used in daisy-chain applications, described in “Daisy-Chained
Configuration,” page 119. In a single-FPGA application, the FPGA’s DOUT pin is in-active,
but pulled High via an internal resistor.

 The SPI Flash PROM’s Write Protect and Hold controls are not used by the FPGA
during configuration, although the Hold pin must be High during the configuration
process. The PROM’s Write Protect input must be High in order to write or program the
Flash memory.

Hold

(see Figure 4-1)

Not required for FPGA configuration but
must be High during configuration and
programming. Optional connection to
FPGA user I/O after configuration. Not
applicable to Atmel DataFlash.

HOLD HOLD HOLD# N/A

Reset

(see Figure 4-2)

Only applicable to Atmel DataFlash. Not
required for FPGA configuration but must
be High during configuration and
programming. Optional connection to
FPGA user I/O after configuration. Do not
connect to FPGA’s PROG_B as this
potentially prevents direct programming of
the DataFlash.

N/A N/A N/A RESET

Ready/Busy

(see Figure 4-2)

Only applicable to Atmel DataFlash and
only available on certain packages. Not
required for FPGA configuration. Output
from DataFlash PROM. Optional
connection to FPGA user I/O after
configuration.

N/A N/A N/A RDY/BUS
Y

Table 4-7: Example SPI Flash PROM Connections and Pin Naming (Cont’d)

SPI Flash Pin FPGA Connection
STMicro

(Numonyx)
Winbond/
NexFlash

Silicon
Storage

Technology

Atmel
DataFlash

P

W

http://www.xilinx.com

110 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Table 4-8: Serial Peripheral Interface (SPI) Connections

Pin Name
FPGA

Direction
Description During Configuration After Configuration

HSWAP

PUDC_B

Input User I/O Pull-Up Control. When
Low during configuration, enables
pull-up resistors in all I/O pins to
respective I/O bank VCCO input. See
“Pull-Up Resistors During
Configuration,” page 62.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level
throughout configuration.

User I/O

M[2:0] Input Mode Select. Selects the FPGA
configuration mode. Extended
Spartan-3A family FPGAs have
dedicated internal pull-up resistors
on these pins. See “Choose a
Configuration Mode: M[2:0],”
page 50.

M2 = 0, M1 = 0, M0 = 1.
Sampled when INIT_B goes
High. Extended Spartan-3A
family FPGAs have internal
pull-up resistors to VCCO_2.

User I/O

VS[2:0] Input Variant Select. Instructs the FPGA
how to communicate with the
attached SPI Flash PROM. Extended
Spartan-3A family FPGAs have
dedicated internal pull-up resistors
on these pins.

Must be at the logic levels
shown in Table 4-2. Sampled
when INIT_B goes High.
Extended Spartan-3A family
FPGAs have internal pull-up
resistors to VCCO_2.

User I/O

MOSI Output Master SPI Serial Data Output.
Connect to the SPI Flash PROM’s
Slave Data Input pin.

FPGA sends SPI Flash
memory read commands and
starting address to the
PROM’s serial data input.

User I/O

DIN Input Master SPI Serial Data Input.
Connect to the SPI Flash PROM’s
Slave Data Output pin.

FPGA receives serial data
from PROM’s serial data
output.

User I/O

CSO_B Output Master SPI Chip Select Output.
Active Low. Connect to the SPI Flash
PROM’s Slave Select input.

If HSWAP or PUDC_B = 1,
connect this signal to a 4.7 kΩ
pull-up resistor to 3.3V.

Drive CSO_B High after
configuration to disable
the SPI Flash and reclaim
the MOSI, DIN, and
CCLK pins. Optionally,
re-use this pin and MOSI,
DIN, and CCLK to
continue communicating
with SPI Flash. See “SPI
Flash Interface after
Configuration,”
page 116.

P

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 111
UG332 (v1.5) March 16, 2009

FPGA Connections to the SPI PROM
R

CCLK Output Configuration Clock. Generated by
FPGA internal oscillator. Connect to
the SPI Flash PROM’s Slave Clock
input. Frequency controlled by
ConfigRate bitstream generator
option. If CCLK PCB trace is long or
has multiple connections, terminate
this output to maintain signal
integrity. See “Configuration Clock:
CCLK,” page 56.

Drives PROM’s clock input. User I/O. Drive High or
Low if not used.
Avoid excessive loading
on CCLK to maintain best
signal integrity for
configuration.

DOUT Output Serial Data Output. Used in multi-
FPGA daisy-chain configurations.

Not used in single-FPGA
designs; DOUT is pulled up,
not actively driving. In a
daisy-chain configuration,
this pin connects to DIN
input of the next FPGA in the
chain.

User I/O

INIT_B Open-
drain

bidirectional
I/O

Initialization Indicator. Active Low.
Goes Low at start of configuration
during Initialization memory
clearing process. Released at end of
memory clearing, when mode select
pins are sampled. See “Initializing
Configuration Memory,
Configuration Error: INIT_B,”
page 61.

Active during configuration.
If SPI Flash PROM requires
more than 2 ms to awake after
powering on, hold INIT_B
Low until PROM is ready. See
“Power-On Precautions if
System 3.3V Supply is Last in
Sequence,” page 112.
If CRC error detected during
configuration, FPGA drives
INIT_B Low. See “CRC
Checking during
Configuration,” page 309.

User I/O. If unused in the
application, drive INIT_B
High to avoid a floating
value. See INIT_B “After
Configuration”.

DONE Open-
drain

bidirectional
I/O

FPGA Configuration Done. Low
during configuration. Goes High
when FPGA successfully completes
configuration. See “DONE Pin,”
page 52.

Low indicates that the FPGA
is not yet configured.

Pulled High via external
pull-up. When High,
indicates that the FPGA
successfully configured.

PROG_B Input Program FPGA. Active Low. When
asserted Low for 500 ns or longer,
forces the FPGA to restart its
configuration process by clearing
configuration memory and resetting
the DONE and INIT_B pins once
PROG_B returns High.

Must be High to allow
configuration to start.

Drive PROG_B Low and
release to reprogram
FPGA. Hold PROG_B to
force FPGA I/O pins into
Hi-Z, allowing direct
programming access to
SPI Flash PROM pins.

VCCO_2 Voltage
supply
input

Voltage Supply Input to I/O
Bank 2. Supplies interface pins to
SPI Flash PROM.

3.3V. Ensure that either the
VCCO_2 supply ramps
faster than VCCINT or
VCCAUX or that the PROM
wakes-up sufficiently fast.
See “Power-On Precautions
if System 3.3V Supply is
Last in Sequence,” page 112.

3.3V

Table 4-8: Serial Peripheral Interface (SPI) Connections (Cont’d)

Pin Name
FPGA

Direction
Description During Configuration After Configuration

http://www.xilinx.com

112 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Voltage Compatibility
Available SPI Flash PROMs use a single 3.3V supply voltage. All of the FPGA’s SPI Flash
interface signals are within I/O Bank 2. Consequently, the FPGA’s VCCO_2 supply voltage
must also be 3.3V to match the SPI Flash PROM.

Also, see “Power-On Precautions if System 3.3V Supply is Last in Sequence,” page 112.

See also “JTAG Cable Voltage Compatibility,” page 198.

Power-On Precautions if System 3.3V Supply is Last in Sequence
Spartan-3E and Extended Spartan-3A family FPGAs have a built-in power-on reset (POR)
circuit. The FPGA waits for its three power supplies — VCCINT, VCCAUX, and VCCO to I/O
Bank 2 (VCCO_2) — to reach their respective power-on thresholds before beginning the
configuration process. See “Power-On Reset (POR),” page 240 for more information.

The SPI Flash PROM is powered by the same voltage supply feeding the FPGA's VCCO_2
voltage input, typically 3.3V. SPI Flash PROMs specify that they cannot be accessed until
their VCC supply reaches its minimum data sheet voltage, followed by an additional delay.
For some devices, this additional delay is as little as 10 µs as shown in Table 4-9. For other
vendors, this delay is as much as 20 ms.

In many systems, the 3.3V supply feeding the FPGA's VCCO_2 input is valid before the
FPGA's other VCCINT and VCCAUX supplies, and consequently, there is no issue. However,
if the 3.3V supply feeding the FPGA's VCCO_2 supply is last in the sequence, a potential
race occurs between the FPGA and the SPI Flash PROM, as shown in Figure 4-3.

Table 4-9: Example Minimum Power-On to Select Times for Various SPI Flash PROMs

Vendor
SPI Flash PROM

Part Number
Data Sheet Minimum Time from VCC min to Select = Low

Symbol Value Units

STMicro (Numonyx) M25Pxx TVSL 10 μs

Spansion S25FLxxxA tPU 10 ms

NexFlash NX25xx TVSL 10 μs

Macronix MX25Lxxxx tVSL 10 μs

Silicon Storage Technology SST25LFxx TPU-READ 10 μs

Programmable
Microelectronics
Corporation

Pm25LVxxx TVCS 50 μs

Atmel Corporation AT45DBxxxD tVCSL 50 μs

AT45DBxxxB — 20 ms

Notes:
1. Memory vendors are continuously improving their products and specifications. Please check with the memory vendor’s data

sheets for up-to-date values.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 113
UG332 (v1.5) March 16, 2009

Power-On Precautions if System 3.3V Supply is Last in Sequence
R

If the FPGA's VCCINT and VCCAUX supplies are already powered and valid, then the FPGA
waits for VCCO_2 to reach its minimum threshold voltage before starting configuration.
This threshold voltage is labeled as VCCO2T in the Spartan-3E or Extended Spartan-3A
family data sheet. The range of values is listed in Table 4-10 and are substantially lower
than the SPI Flash PROM's minimum voltage. Once all three FPGA supplies reach their
respective Power-On Reset (POR) thresholds, the FPGA starts the configuration process
and begins initializing its internal configuration memory. After initialization completes,
the FPGA deasserts INIT_B, selects the SPI Flash PROM, and starts sending the
appropriate read command. The SPI Flash PROM must be ready for read operations at this
time. The FPGA typically delays configuration long enough for the configuration source to
be ready. If the configuration source is not ready when the FPGA begins configuration, the
Configuration Watchdog Timer will allow the FPGA to automatically re-attempt
configuration.

There are a few potential solutions if the 3.3V supply is last in the sequence and does not
ramp fast enough, or if the SPI Flash PROM cannot be ready when required by the FPGA.

• Change the power sequence order so that the 3.3V VCCO_2 is powered and valid
before the FPGA’s VCCINT or VCCAUX supply.

• Choose a different SPI Flash PROM family or vendor, one with a faster power-on
timing specification. For example, while the Atmel AT45DBxxxB family has 20 ms
power-on requirement, the compatible AT45DBxxxD family requires just 30 μs.

• Delay the FPGA configuration process by holding either the FPGA's PROG_B input or
INIT_B input Low. Release the FPGA when the SPI Flash PROM is ready. For
example, a simple R-C delay circuit attached to the INIT_B pin forces the FPGA to
wait for a preselected amount of time. Alternately, a Power Good signal from the 3.3V
supply or a system reset signal accomplishes the same purpose. Use an open-drain or
open-collector output when driving PROG_B or INIT_B.

Figure 4-3: SPI Flash PROM/FPGA Power-On Timing if 3.3V Supply is Last in
Power-On Sequence

FPGA VCCO_2 minimum
Power On Reset Voltage

(VCCO2T)

SPI Flash PROM
minimum voltage

SPI Flash available for
read operations

SPI Flash

(tVSL)

SPI Flash cannot be selected

FPGA initializes configuration
memory

3.3V Supply

FPGA accesses
SPI Flash PROM

Time

SPI Flash PROM must
be ready for FPGA

access, otherwise delay
FPGA configuration

UG332_c4_08_102506

(TPOR)
(VCCINT, VCCAUX

already valid)

PROM CS
delay

http://www.xilinx.com

114 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Extended Spartan-3A Family and Configuration Watchdog Timer
Extended Spartan-3A family FPGAs include a configuration watchdog timer (CWDT)
which makes SPI Flash configuration more robust, even when the 3.3V supply is applied
last.

In Master SPI mode, the CWDT ensures that the FPGA reads a valid synchronization word
from the SPI Flash PROM within the first 216-1 cycles of CCLK. The synchronization word
is part of the FPGA configuration bitstream. If the FPGA does not find the synchronization
word, the CWDT forces the FPGA to automatically resend the SPI Flash read command
and to retry the configuration process. The CWDT retries to successfully configure from
SPI Flash three times before failing. If the FPGA fails to configure, it then drives the INIT_B
pin Low, indicating a failure.

CCLK Frequency
In SPI Flash mode, the FPGA’s internal oscillator generates the configuration clock
frequency. The FPGA provides this clock on its CCLK output pin, driving the PROM’s
Slave Clock input pin. The FPGA begins configuring using its lowest frequency setting. If
so specified in the configuration bitstream, the FPGA increases the CCLK frequency to the
specified setting for the remainder of the configuration process. The maximum frequency
is specified using the ConfigRate bitstream generator option. The maximum frequency
supported by the FPGA configuration logic depends on the timing for the SPI Flash device.
Without examining the timing for a specific SPI Flash PROM, use ConfigRate = 12 or
lower. SPI Flash PROMs that support the FAST READ command support higher data rates.
Some such PROMs support up to ConfigRate = 25 and beyond but require careful data
sheet analysis. See “Serial Peripheral Interface (SPI) Configuration Timing,” page 138 for
more detailed timing analysis.

Table 4-11 lists the various ConfigRate setting options and the corresponding clock-to-
output requirement, TV, for the SPI Flash PROM. The TV value is determined according to
the equation in Table 4-16, page 141. Extended Spartan-3A family FPGAs have more
ConfigRate settings than Spartan-3E FPGAs, hence the shaded cells under the Spartan-3E
column. Unless a ConfigRate setting is specified when generating the bitstream, the
Spartan-3E FPGA uses the default, slowest setting of ConfigRate = 1, which lengthens the
overall configuration time. The Extended Spartan-3A family FPGAs use a default setting of
ConfigRate = 6.

Table 4-10: Spartan-3E and Extended Spartan-3A Family DSP Power-On Reset
Timing and Thresholds

Symbol Description Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Units

VCCO2T

VCCO_2 voltage at which Power-On
Reset (POR) circuit is released,
assuming VCCINT and VCCAUX
supplies are already applied and valid.

0.4 to 1.0 0.8 to 2.0 V

TPOR

The time from when the FPGA’s
Power-On Reset (POR) circuit is
released to the rising transition of the
INIT_B pin

Up to 7 Up to 18 ms

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 115
UG332 (v1.5) March 16, 2009

CCLK Frequency
R

Table 4-11: FPGA ConfigRate Setting and Corresponding SPI Flash PROM Clock-
to-Output Requirements (TV)

ConfigRate Bitstream
Setting

SPI Flash Maximum TV Specification

UnitsSpartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Commercial Industrial Commercial Industrial

1

(Spartan-3E default)
< 265 < 224 < 588 < 553

ns

3 <127 < 106 < 189 < 178

6
(Extended Spartan-3A

family default)
< 58 < 47 < 91.3 < 85.6

12 < 23.5 < 18.3 < 41.9 < 39

13 < 37.1 < 34.8

17 < 27.2 < 25.3

22 < 18.6 < 17.2

25 < 6.1 < 3.5 < 15.3 < 14.4

27 < 13.9 < 13

33 < 10.1 < 9.2

44 < 5.3 < 4.9

http://www.xilinx.com

116 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

SPI Flash Interface after Configuration
After the FPGA successfully completes configuration, all of the pins connected to the SPI
Flash PROM are available as user-I/O pins.

If Not Using SPI Flash after Configuration
If not using the SPI Flash PROM after configuration, drive CSO_B High to disable the
PROM, as shown in Figure 4-4. The MOSI, DIN, and CCLK pins are then available as
general-purpose I/O pins in the FPGA application, although avoid additional loading on
CCLK if possible to maintain best signal integrity.

De-selecting CSO_B also places the SPI PROM in the lower-power Standby mode. See
“Deassert CSO_B to Enter Standby Mode,” page 142.

Figure 4-4: If Not Using SPI after Configuration, Drive CSO_B Pin High

FPGA
SPI Flash

PROM

MOSI
DIN

CSO_B
CCLK

D
Q
S
C

User -I/O

a) During configuration

FPGA
SPI Flash

PROM

(User I/O)

‘1’

D
Q
S
C

User -I/O

b) After successful configuration

(User I/O)

(User I/O)

De-selected
(Standby)

UG332_c4_19_040107

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 117
UG332 (v1.5) March 16, 2009

SPI Flash Interface after Configuration
R

If Using SPI Flash Interface after Configuration
Because all the interface pins are user I/O after configuration, the FPGA application can
continue to use the SPI Flash interface pins to communicate with the SPI Flash PROM, as
shown in Figure 4-5. SPI Flash PROMs offer random-accessible, byte-addressable,
read/write, nonvolatile storage to the FPGA application.

Caution! Allow the FPGA configuration logic to use the CCLK pin to complete configuration
and startup before using it to control the SPI Flash interface. Although most dual-purpose pins
become I/O at the GTS cycle, CCLK must wait until the End of Startup (EOS). Delay access by
a couple clock cycles after configuration to avoid conflicts. See “Startup” in Chapter 12.

SPI Master Interface using FPGA Logic

The FPGA does not contain a dedicated SPI interface, except for configuration.
Consequently, to access the SPI Flash or other SPI devices after configuration, the FPGA
application must contain an SPI bus master interface. Xilinx provides SPI interface cores, as
described below.

• For an application that already includes a MicroBlaze processor core, the Xilinx
Embedded Development Kit (EDK) includes an SPI interface that connects to the
MicroBlaze OPB bus. Depending on the options used, the SPI interface core uses
between 147 to 203 slices.

♦ OPB Serial Peripheral Interface Product Specification
http://www.xilinx.com/support/documentation/ip_documentation/opb_spi.pdf

• For general applications, the 8-bit PicoBlaze™ processor core offers an easy-to-use
solution that requires approximately 100 slices and a block RAM. Example design
solutions are available for the Spartan-3E FPGA Starter Kit board.

♦ PicoBlaze STMicro SPI Flash Programmer
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_spi_flash_programmer

♦ PicoBlaze SPI-based D/A Converter Controller
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_dac_control

Figure 4-5: Using the SPI Flash Interface After Configuration

MOSI

DIN

CCLK

CSO_B

DATA_IN

DATA_OUT

CLOCK

SELECT

DATA_IN

DATA_OUT

CLOCK

SELECT

SPI Serial Flash PROM

FPGA
Configuration

MicroBlaze
Code

User Data

0

FFFFF

SPI Peripherals
- A/D Converter
- D/A Converter
- CAN Controller
- Displays
- Temperature Sensor
- ASSP

User I/O
4

.7
k

+3.3V

To other SPI slave peripherals

Spartan-3E/-3A/3AN/3A DSP FPGA

D
D

R
 S

D
R

A
M

UG332_c4_09_040107

FPGA-based
SPI Master

- ASIC

http://www.xilinx.com/support/documentation/ip_documentation/opb_spi.pdf
http://www.xilinx.com/picoblaze
http://www.xilinx.com/s3estarter
http://www.xilinx.com
http://www.xilinx.com/microblaze
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_dac_control
http://www.xilinx.com/edk
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_spi_flash_programmer

118 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Accessing SPI Flash PROM

SPI Flash PROMs are available in densities ranging from 1 Mbit up to 128 Mbits. However,
a single Spartan-3A/3E FPGA requires less than 6 Mbits. A Spartan-3A DSP FPGA
requires a little more than 11 Mbits. If desired, use a larger SPI Flash PROM to contain
additional nonvolatile application data, such as MicroBlaze processor code, or other user
data such as serial numbers and Ethernet MAC IDs. In the example shown in Figure 4-5,
the FPGA configures from SPI Flash PROM. Then using FPGA logic after configuration,
the FPGA copies MicroBlaze code from SPI Flash into external DDR SDRAM for code
execution. Similarly, the FPGA application can store nonvolatile application data within
the SPI Flash PROM.

The FPGA configuration image, or initial configuration image for an Extended Spartan-3A
family MultiBoot application, is always stored at starting address 0. Store any additional
data beginning in the next available SPI Flash PROM sector or page. Do not mix
configuration data and user data in the same sector or page.

After configuration, the FPGA application can exploit any special features of the attached
SPI serial Flash PROM. For example, the Atmel AT45DB-series PROMs support a slightly-
modified serial interface called Rapid-S. The FPGA cannot configure using this mode but
after configuration, the FPGA application can use Rapid-S to increase overall data
throughput. Similarly, the NexFlash/Winbond W25X-series PROMs support a feature
called Dual-Output SPI that transmits two data bits per clock cycle but requires a special
read command. The FPGA does not support this command for configuration, but the
FPGA application can issue the command after configuration.

Accessing other SPI-compatible Peripherals

Similarly, the SPI bus can be expanded to additional SPI peripherals. Because SPI is a
common industry-standard interface, various SPI-based peripherals are available, such as
analog-to-digital (A/D) converters, digital-to-analog (D/A) converters, CAN controllers,
and temperature sensors.

The MOSI, DIN, and CCLK pins are common to all SPI peripherals. Connect the select
input on each additional SPI peripheral to one of the FPGA user I/O pins. If HSWAP or
PUDC_B = 0 during configuration, the FPGA holds the select line High. If HSWAP or
PUDC_B = 1, connect the select line to +3.3V via an external 4.7 kΩ pull-up resistor to avoid
spurious read or write operations. After configuration, drive the select line Low to select
the desired SPI peripheral.

During the configuration process, CCLK is controlled by the FPGA and limited to the
frequencies generated by the FPGA. After configuration, the FPGA application can use
other clock signals to drive the CCLK pin and can further optimize SPI-based
communication.

Caution! Avoid excessive loading on the CCLK pin. Excessive loading will degrade the signal
integrity on this crucial signal. Use the recommended design practices described in “CCLK
Design Considerations,” page 58.

Refer to the individual SPI peripheral data sheet for specific interface and communication
protocol requirements.

Caution! Although many devices claim to have an SPI interface, the timing and even signal
polarity vary between devices and between vendors. Check the data sheet for the specific device
to determine compatibility.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 119
UG332 (v1.5) March 16, 2009

Daisy-Chained Configuration
R

Daisy-Chained Configuration
If the application requires multiple FPGAs with different configurations, then configure
the FPGAs using a daisy chain, as shown in Figure 4-6, page 119. Use SPI Flash mode
(M[2:0] = <0:0:1>) for the FPGA connected to the SPI PROM and Slave Serial mode
(M[2:0] = <1:1:1>) for all other FPGAs in the daisy chain. After the master FPGA—the
FPGA on the left in the diagram—finishes loading its configuration data from the SPI Flash
PROM, the master FPGA supplies data to the next FPGA in the daisy chain via the DOUT
output pin, clocked on the falling CCLK edge.

Also, to successfully configure a daisy chain, the GTS_cycle bitstream option must be set to
a Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the
software default setting. Optionally, set GTS_cycle:Done.

The 0-ohm resistors at the output of each FPGA’s INIT_B and DONE pin is recommended
for debugging purposes. Should there be a configuration error, the FPGAs can be
individually isolated. The jumper on the master FPGA’s DONE pin is recommended for
future in-system programming support as well as for debugging purposes.

The pull-up resistors shown in gray are optional, but should be provided in the board
design. The resistors themselves do not need to be stuffed during board manufacturing. As
described in Table 2-13, page 65, the dedicated pull-up resistors on Spartan-3 generation
FPGAs are sufficiently strong to pull-up the corresponding signal pin. The Thevenin
termination resistors on CCLK are also optional, but also recommended in the board
design.

Caution! SPI mode daisy chains are supported for Spartan-3E FPGAs only in Stepping 1
silicon versions. SPI mode daisy chains are supported on all Spartan-3E Automotive grade
devices, which are all based on Stepping 1 silicon, and all Extended Spartan-3A family FPGA
versions.

Figure 4-6: Daisy Chaining from SPI Flash Mode

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘0’ ‘0’ ‘1’

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘1’ ‘1’ ‘1’VCCO_2 VCCO_2
VCCAUX

Master FPGA Slave FPGA

PROGRAM

0Ω 0Ω 0Ω

20
0Ω

20
0Ω

4.
7k

Ω

33
0Ω

4.
7k

Ω

MOSI

CSO_B

C

Q

D

SPI Serial
Flash PROM

S

UG332_c4_20_111906

JU
M

P
E

R

http://www.xilinx.com

120 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Ganged or Broadside Configuration
“Daisy-Chained Configuration” is designed to load multiple FPGAs, each with a different
design and typically of different array size. However, some applications include multiple,
identical FPGAs, all programmed with the same bitstream. Instead of daisy chaining the
FPGAs and storing multiple copies of the same bitstream, “Ganged or Broadside
Configuration” supports programming multiple, identical FPGAs with the same
bitstream.

Programming Support
In production applications, the SPI Flash PROM is usually preprogrammed before it is
mounted on the printed circuit board. The Xilinx ISE development software produces
industry-standard programming files that can be used with third-party gang
programmers. Consult your specific SPI Flash vendor for recommended production
programming solutions.

There are multiple programming methods for the attached SPI memory as described
below.

Starting with ISE 9.1i, Service Pack 2 and later, the iMPACT programming software
supports two different methods to program an attached SPI Flash PROM, as summarized
in Table 4-12.

Using the Direct Programming Method, the programming cable communicates directly to
the SPI Flash PROM. The FPGA is not involved in the programming process and the FPGA

Figure 4-7: Multiple, Identical FPGAs Programmed with the Same Bitstream

VCCO_2

Master FPGA
PROGRAM

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘1’ ‘1’ ‘1’

Slave FPGA

VCCO_2

VCCAUX

0Ω

0Ω

0Ω20
0Ω

20
0Ω

4.
7k

Ω

4.
7k

Ω

C

Q

D

SPI Serial
Flash PROM

S

CCLK

DIN

M2 M1 M0

DOUT

PROG_B DONE

INIT_B

‘0’ ‘0’ ‘1’

MOSI

CSO_B

33
0Ω

VCCAUX

UG332_c4_21_111906

JUMPER

http://www.xilinx.com/ise
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 121
UG332 (v1.5) March 16, 2009

Programming Support
R

I/O pins that connect to the PROM must be in their high-impedance state (Hi-Z) during
programming. Hold the FPGA’s PROG_B input Low to place the I/Os in Hi-Z; the FPGA’s
DONE pin remains Low.

Using the Indirect Programming Method, the programming cable connects to the FPGA’s
JTAG port. The iMPACT software first programs the FPGA with a special design that
performs the actual SPI PROM programming and uses the JTAG interface as a serial
communications port. During the process, the FPGA’s DONE output is High because the
FPGA is configured with the programming application. All pins that are not connected to
the SPI Flash PROM or the JTAG interface have an internal pull-up resistor to the VCCO
voltage supply associated with the pin.

For the Spartan-3AN family, iMPACT supports programming of the internal Flash and
does not support indirect programming of external Flash.

Third-Party Programmer (Off-board Programming)
Off-board programming, before board assembly, using a third party programmer is likely
the preferred method for high-volume production. Most Xilinx distributors offer
programming services or can arrange for such services. Check the PROM vendor’s web
site for a list of approved and qualified third-party device programmers. See “Preparing an
SPI PROM File,” page 126 to properly format the programming file.

Table 4-12: Summary of SPI Flash PROM Programming Options

Direct Method Indirect Method

Detailed Instructions
“Direct SPI Programming
using iMPACT,” page 131

“Indirect SPI Programming
using iMPACT,” page 134

ISE Version Required ISE 9.1i or later

ISE 9.1i, Service Pack 2 or
later for Spartan-3A/3A DSP

FPGAs; ISE 10.1 for
Spartan-3E FPGAs

Interface/Cable Connection Directly to SPI PROM FPGA’s JTAG Port

DONE Pin Status during
Programming

Low
High

(FPGA is configured with
special programming design)

Required PROG_B Control PROG_B = Low N/A

Status of non-SPI Pins
during Programming

High-impedance because
PROG_B = Low

Pulled High using internal
pull-up resistor to associated

VCCO supply input

http://www.xilinx.com
http://www.xilinx.com/company/sales/ww_disti.htm

122 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Direct, SPI In-System Programming
For systems requiring in-system programming support, there are different options for
production and prototyping phases. For production programming, some third party
PROM programmers utilize a socket adapter with attached wires to program the SPI flash
memory in-system. For prototype programming, the Xilinx iMPACT software provides
direct, in-system programming support for limited set of STMicro (Numonyx) and Atmel
SPI Flash memories.

Requirements for iMPACT Direct Programming Support

The following are required to successfully perform in-system programing on the attached
SPI serial Flash PROM.

• A Xilinx programming cable

♦ Platform Cable USB II
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

♦ Parallel Cable IV
http://www.xilinx.com/products/devkits/HW-PC4.htm

• A compatible cable connector on-board

• Properly installed Xilinx ISE 8.2i software (or later)

Programmable Cable Connections

All modern Xilinx programming cables use a standard 14-pin ribbon cable and associated
socket. The socket connections appear in Figure 4-1, page 102 and Figure 4-2, page 103,
along with a detail pinout table in Table 4-13. The mechanical dimensions are provided in
Figure 9-6, page 208 and vendor part numbers provided in Table 9-7, page 208.

As shown in Table 4-13, one side of the socket connects entirely to GND for better signal
integrity. The other side of the cable includes the VREF voltage connection and the four SPI
Flash control signals. When used for SPI programming, the programming cable behaves as
an SPI Master, controlling all transactions on the SPI bus.

http://www.xilinx.com
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm
http://www.xilinx.com/products/devkits/HW-PC4.htm

Spartan-3 Generation Configuration User Guide www.xilinx.com 123
UG332 (v1.5) March 16, 2009

Programming Support
R

The specified surface-mount cable connector requires only 0.162 square inches of board
space. The Xilinx iMPACT programming solution is only qualified for system prototyping
so the socket can be removed from the production bill of materials to save cost.

Alternatively, the Xilinx programming cables optionally support “flying leads” that push
on to standard 0.1-inch stake pins. However the ribbon cable and associated socket have
superior signal integrity and provide fast programming speeds. Also ensure that the
programming cable leads are connected correctly. The SPI programming capability is new
for the Xilinx programming cables and existing cables may have different signal labels, as
indicated in Table 4-13.

Forcing FPGA SPI Bus Pins to High-impedance During Programming

Because the programming cable acts as an SPI bus Master, the FPGA’s SPI pins must be
floating, or high-impedance (Hi-Z). This requirement also applies for third party
programmers that directly program the SPI Flash PROM. Ensure that the FPGA MOSI,
DIN, CSO_B, and CCLK pins are all high impedance (floating, Hi-Z), allowing the
programmer to have full and direct control over the SPI PROM. There are three different
methods to place the FPGA SPI signals in high-impedance, listed below.

Table 4-13: Xilinx Download Header Signal Description for In-System SPI Flash PROM Programming

Signal
Socket Pin
(top view)

Direction Signal Connections to SPI PROM, System
“Flying Lead”

Label/
Wire Color(1)

GND 1 2
VREF: Connect to 3.3V (VCCO_2), which is common to the
FPGA and SPI PROM. The voltage reference must be
regulated and must not have a current limiting series resistor.

VREF

(red)

GND 3 4
SPI Slave Select: Connect to the SPI PROM’s Slave Select
input.

TMS/PROG

(green)

GND 5 6
SPI Clock: Connect to the SPI PROM’s Slave Clock input. TCK/CCLK

(yellow)

GND 7 8
SPI Master Input/Slave Output: Connect to the SPI PROM’s
Slave Data Output.

TDO/DONE

(magenta)

GND 9 10
SPI Master Output /Slave Input: Connect to the SPI PROM’s
Slave Data Input.

TDI/DIN

(white)

GND 11 12 –
Reserved. Do not connect.

–

GND 13 14
D.N.C. Do not connect. Although the cable leads label this as
INIT, do not connect it to the FPGA’s INIT_B pin.

–/INIT

(gray)

Notes:
1. The “Flying Lead” adapter is only required if using stake pins instead of the recommended 14-pin socket.

http://www.xilinx.com

124 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

If using Option 1 or Option 2, be aware that pull-up resistors to VCCO_2 are enabled on the
FPGA’s SPI pins if the FPGA's HSWAP or PUDC_B pin is Low. Using Option 3, the FPGA’s
SPI pins are fully controlled by the FPGA application.

Direct, In-system SPI Programming Using FPGA as Intermediary
This method is typically used to update the SPI serial Flash, using the FPGA as the actual
programmer. The advantage is that the FPGA’s flexibility allows the FPGA to connect to
practically any digital interface to receive the programming data. The FPGA-based
“programmer” can be included as part of the application or, alternatively, downloaded
temporarily into the FPGA using the FPGA’s JTAG interface.

The Spartan-3E FPGA Starter Kit includes a design example that programs the attached
STMicro (Numonyx) M25P16 SPI Flash using an RS-232 connection to a PC or workstation.

• PicoBlaze RS-232 to STMicro SPI Flash Programmer
www.xilinx.com/products/boards/s3estarter/reference_designs.htm
#picoblaze_spi_flash_programmer

The Spartan-3A FPGA Starter Kit includes a design example that programs the attached
Atmel AT45DB161D DataFlash PROM using an RS-232 connection to a PC or workstation.

• PicoBlaze RS-232 to Atmel DataFlash Programmer
www.xilinx.com/products/boards/s3astarter/reference_designs.htm
#atmel_spi_flash_programmer

Indirect, In-System SPI Programming Using FPGA JTAG Chain
The FPGA has JTAG test capabilities which include the standard PRELOAD and EXTEST
commands. When using these commands, it is possible to drive and sample the pins of the
FPGA with the JTAG chain and thereby stimulate the pins of the SPI memory via the
associated FPGA pins and the traces routed on the PCB. This method, shown in Figure 4-8,
is supported by many third-party JTAG tool vendors. However, this method is often much
slower than the “Direct, SPI In-System Programming” technique.

Option 1 Hold the FPGA's PROG_B pin Low throughout the programming process. The
FPGA is unconfigured during the programming process and automatically
loads the new SPI Flash PROM image when PROG_B is released High.

Option 2 Change the FPGA's mode pins to JTAG mode (M[2:0] = <1:0:1>) and pulse the
FPGA’s PROG_B pin. Do not perform any JTAG operations. All FPGA I/O pins
are forced to their high-impedance state. The FPGA is unconfigured during the
programming process. The FPGA’s M[2:0] pins must be returned to the SPI
Flash setting and PROG_B pin must be pulsed Low before the FPGA reloads the
new SPI Flash PROM image.

Option 3 Within a functioning FPGA application, use an internal control signal that
three-states the MOSI, DIN, CCLK, and CSO_B pins. The FPGA remains
configured with the current configuration. Pulse the PROG_B pin Low or,
on Extended Spartan-3A family FPGAs, issue a MultiBoot reconfiguration
operation with a start address of zero.

http://www.xilinx.com
www.xilinx.com/products/boards/s3astarter/reference_designs.htm#atmel_spi_flash_programmer
http://www.xilinx.com/s3astarter
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_spi_flash_programmer
http://www.xilinx.com/s3estarter

Spartan-3 Generation Configuration User Guide www.xilinx.com 125
UG332 (v1.5) March 16, 2009

Generating the Bitstream for a Master SPI Configuration
R

The advantage to this approach is that it requires minimal wiring for in-system
programming and that the SPI Flash PROM can be programmed during other JTAG-based
board test operations.

For easier development, Xilinx recommends including the JTAG programming cable
socket shown in Figure 4-1, page 102 and Figure 4-2, page 103. The FPGA configuration
can be downloaded directly into the FPGA for development purposes without requiring
that the SPI Flash PROM be programmed.

For more information on the JTAG interface, see Chapter 9, “JTAG Configuration Mode
and Boundary-Scan,”especially “Programming Cables and Headers,” page 207.

Generating the Bitstream for a Master SPI Configuration
To create the FPGA bitstream for a Master SPI configuration, follow the steps outlined in
“Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an FPGA
configured in Master SPI mode, set the following bitstream generator options.

ConfigRate: CCLK Frequency
Set the ConfigRate option as described in “CCLK Frequency,” page 114. Using ISE Project
Navigator, the Configuration Rate frequency is set in Step 7 in Figure 1-7, page 44.

-g ConfigRate:12

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA
to actively drive the DONE pin after successfully completing the configuration process.

Figure 4-8: Using FPGA’s JTAG Test Chain to Program Attached SPI Flash

UG332_c4_xx_080906

SPI Flash
Memory

MOSI

MISO (DIN)

SCLK (CCLK)

SS (CSO_B)

Spartan-3
Generation
FPGA

TDI
TDO
TMS
TCK JTAG

http://www.xilinx.com

126 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in
Figure 1-8, page 45.

-g DriveDone:Yes

DONE_cycle: Daisy Chains with Spartan-3E Master
If a Spartan-3E FPGA is the Master FPGA in an SPI-based daisy chain, ensure that
DONE_cycle is set for cycle 5 or earlier. From ISE Project Navigator, the DONE_cycle
setting is the Done (Output Events) option, shown as Step 14 in Figure 1-8, page 45.

-g DONE_cycle:4

GTS_cycle: Global Three-State Release Timing for Daisy Chains
If creating a multi-FPGA daisy chain, set the GTS_cycle option to be later than the
DONE_cycle setting, which is the default setting for both. Alternatively, set
GTS_cycle:Done. From ISE Project Navigator, the GTS_cycle setting is the Enable Outputs
(Output Events) option, shown as Step 14 in Figure 1-8, page 45.

Preparing an SPI PROM File
This section provides guidelines to create PROM files for SPI Flash memories.

The Xilinx software tools, “iMPACT” or “PROMGen”, generate SPI-formatted PROM files
from the FPGA bitstream or bitstreams. SPI Flash memory devices serially output data
bytes with the most-significant bit (MSB) first while Xilinx PROMs output data least-
significant bit (lsb) first. Consequently, a PROM file formatted for an SPI Flash memory
device is bit-reversed within each byte, directly opposite from the bit ordering for a
standard Xilinx PROM file. When using PROMGen, the -spi option is required for proper
formatting.

iMPACT
The following steps graphically describe how to create an SPI-formatted PROM file using
iMPACT from within the ISE Project Navigator. To create a Spartan-3A/3A DSP MultiBoot
image for an SPI Flash memory, see “Generating an Extended Spartan-3A Family
MultiBoot PROM Image using iMPACT,” page 278.

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG
File from within the Process pane, as shown in Figure 4-9.

Figure 4-9: Double-click Generate PROM, ACE or JTAG File

1

UG332_c4_10_110206

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 127
UG332 (v1.5) March 16, 2009

Preparing an SPI PROM File
R

2. As shown in Figure 4-10, select Prepare a PROM File.

3. Click Next.

4. As shown in Figure 4-11, format the FPGA bitstream or bitstreams for a 3rd-Party SPI
PROM. This option automatically invokes the -spi option for generating the PROM
file.

Figure 4-10: Prepare a PROM File

3

2

UG332_c4_11_19

http://www.xilinx.com

128 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

5. Select a PROM File Format.

6. Enter a PROM File Name.

7. Click Next.

8. As shown in Figure 4-12, select the SPI PROM Density of the targeted device,
measured in bits.

9. Click Next.

10. As shown in Figure 4-13, review that the settings are correct to format the SPI PROM.
Click Finish to confirm the settings or Back to change the settings.

Figure 4-11: Set Options for a 3rd-Party SPI PROM

Figure 4-12: Select SPI PROM Density

7

4

5

6

UG332_c4_12_110206

9

8

UG332_c4_13_110206

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 129
UG332 (v1.5) March 16, 2009

Preparing an SPI PROM File
R

11. As shown in Figure 4-14, click OK to start adding FPGA configuration bitstreams to
the PROM image.

12. Locate and select the desired FPGA bitstream.

13. Click Open.

14. As shown in Figure 4-15, the iMPACT software graphically displays the SPI PROM
and associated FPGA bitstream(s).

Figure 4-13: Review PROM Formatting Settings

Figure 4-14: Add FPGA Configuration Bitstream File(s)

10

UG332_c4_14_111906

11

12

13

UG332_c4_15_110206

http://www.xilinx.com

130 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

15. Click Generate File.

16. The iMPACT software indicates when the PROM file is successfully created.

PROMGen
PROMGen is a command-line utility that provides an alternate means to create an SPI
PROM programming file. PROMGen can be invoked from within a command window or
from within a script file.

Table 4-14 shows the relevant options for SPI Flash PROM formatting.

The example PROMGen command, provided below, generates an SPI-formatted PROM
file with the following characteristics.

• Formatted for an SPI Flash PROM by specifying the -spi option.

Figure 4-15: Generate PROM File

14

15

16

UG332_c4_06_110206

Table 4-14: PROM Generator Command Options

PROMGen Option Description

-spi
REQUIRED FOR SPI FLASH PROMs! Specifies the correct bit
ordering required to configure from an SPI Flash memory device.

-p <format>
PROM output file format. Specifies the file format required by the SPI
programming software. Refer to the third party programmer
documentation for details.

-s <size>
Specifies the PROM size in kilobytes. The PROM size must be a power
of 2, and the default setting is 64 kilobytes.

-u <address>
Loads the .bit file from the specified starting address in an upward
direction. This option must be specified immediately before the input
bitstream file.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 131
UG332 (v1.5) March 16, 2009

Direct SPI Programming using iMPACT
R

• Formatted using the Intel MCS format by specifying the -p mcs option. The output
filename is specified by the -o <promdata>.mcs option, where <promdata> is a
user-specified file name.

• Formatted for a 16Mbit SPI PROM by specifying the -s 2048 option. PROMGen
specifies sizes in Kbytes.

• The specified FPGA bitstream is loaded in the upward direction, starting at address 0
by specifying the -u 0 option.

• The FPGA bitstream to be formatted for the PROM is specified as the last option,
<inputfile>.bit, where <inputfile> is the user-specified file name used when
generating the FPGA bitstream.

promgen -spi -p mcs -o <promdata>.mcs -s 2048 -u 0 <inputfile>.bit

Direct SPI Programming using iMPACT
Starting with version 8.2i, the iMPACT programming software supports direct, in-system
programming for SPI serial Flash PROMs. The SPI Flash memory devices that are tested
and supported is indicated under the “Xilinx iMPACT Support” column in Table 4-3,
page 105.

Prepare Board for Programming
Before attempting to program the SPI PROM, complete the following steps.

1. Ensure that the board is powered.

2. Ensure that the FPGA pins that connect to the SPI Flash are high-impedance (Hi-Z).
See “Forcing FPGA SPI Bus Pins to High-impedance During Programming,” page 123.

3. Ensure that the programming cable is properly connected both the board and to the
computer or workstation. See “Programmable Cable Connections,” page 122.

Programming via iMPACT
The following steps describe how to program the SPI PROM using the iMPACT software
and a Xilinx programming cable.

1. Click Direct SPI Configuration from within iMPACT, as shown in Figure 4-16.

Figure 4-16: iMPACT Supports Direct Programming for SPI Serial Flash Memories.

1 2

3

UG332_c4_03_101006

http://www.xilinx.com

132 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

2. Right-click in the area indicated.

3. Select Add SPI Device.

4. Select a previously-formatted PROM file, as shown in Figure 4-17.

5. Click Open.

6. Select the Part Name for a supported SPI serial Flash, as shown in Figure 4-18.

7. Click OK.

8. The iMPACT software displays the selected SPI Flash PROM, as shown in Figure 4-19.

Figure 4-17: Select a Previously-formatted PROM File

Figure 4-18: Select a Supported SPI Flash Memory Device.

UG332_c4_04_101006

4

5

UG332_c4_05_101006

6

7

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 133
UG332 (v1.5) March 16, 2009

Direct SPI Programming using iMPACT
R

9. Click Program.

Note: Step 14 occurs later.

10. Click the Programming Properties option under Category, as shown in Figure 4-20.

11. Check Verify. Unchecking Verify reduces programming time but the iMPACT software
can only guarantee correct programming for a verified PROM.

Figure 4-19: Directly Program Supported SPI Flash PROM.

UG332_c4_06_101006

8

9

14

Figure 4-20: SPI PROM Programming Options

UG332_c4_07_101006

11
10

13

12

http://www.xilinx.com

134 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

12. Check Erase Before Programming. Unchecking the Erase option reduces
programming time. However, Xilinx recommends erasing the PROM when
downloading a new FPGA bitstream.

13. Click OK.

14. The iMPACT software indicates successful programming, as shown in Figure 4-19.

Indirect SPI Programming using iMPACT
Indirect programming support is available starting with Xilinx ISE 9.1i, Service Pack 2 and
later releases for the Spartan-3A and Spartan-3A DSP FPGAs. The Spartan-3E FPGAs are
supported starting with the ISE 10.1 release. iMPACT supports programming of the
internal Flash in Spartan-3AN FPGAs. In Indirect mode, the iMPACT software programs
the memory attached to the FPGA through the FPGA’s JTAG port. For details, see the
following application note:

• XAPP974: Indirect Programming of SPI Flash Serial PROMs with Spartan-3A
FPGAs
http://www.xilinx.com/support/documentation/application_notes/xapp974.pdf

During the programming process, the FPGA is configured with a special programming
application. Consequently, the FPGA’s DONE pin will go High during the programming
process.

Programming Setup
To program the attached and selected SPI PROM using the Indirect method, configure the
board as described below.

1. Disconnect power to the board.

2. Set the FPGA mode select pins for Master SPI mode.

3. Connect the JTAG programming cable to the FPGA’s JTAG port.

4. Re-apply power to the board.

Using iMPACT
To program the attached and selected SPI PROM using the iMPACT software and the
Indirect programming method, follow the steps outlined below. This specific example uses
the Spartan-3A FPGA Starter Kit board, which has an XC3S700A FPGA connected to an
XCF04S Platform Flash PROM on the JTAG chain.

1. Invoke iMPACT and select Configure devices using Boundary Scan (JTAG), as
shown in Figure 4-21.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp974.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 135
UG332 (v1.5) March 16, 2009

Indirect SPI Programming using iMPACT
R

2. Select Finish.

3. (iMPACT 9.1i only) Select the FPGA bitstream file (*.bit) to be programmed into the
FPGA, as shown in Figure 4-22. This step is superfluous but required for iMPACT 9.1i.
This step is eliminated as of iMPACT 9.2i. This file is not the special FPGA-based SPI
programming application.

4. Select Enable Programming of SPI Flash Device Attached to this FPGA.

Figure 4-21: Indirect Programming Method Uses JTAG

Figure 4-22: Select the FPGA Bitstream File and Enable SPI Programming

2

1

UG332_c4_22_032807

UG332_c4_23_032807

5
3

4

http://www.xilinx.com

136 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

5. Click Open.

6. The iMPACT software warns that it changed the Startup clock source over to the JTAG
clock pin, TCK. The SPI Flash image is not affected. This warning is safely ignored.

7. As shown in Figure 4-24, select the programming file for the attached SPI Flash PROM.

8. Click Open.

9. Select the part number for the attached SPI Flash PROM, as shown in Figure 4-25.

10. Click OK.

11. Select Bypass when prompted for the Platform Flash PROM programming file, as
shown in Figure 4-26.

Figure 4-23: iMPACT Uses the JTAG Clock Input TCK for Startup Clock when Programming via JTAG

UG332_c4_24_032807

6

Figure 4-24: Select the SPI PROM Programming FIle

Figure 4-25: Select SPI Flash PROM Type

UG332_c4_26_032907

8

7

UG332_c4_27_032907

9

10

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 137
UG332 (v1.5) March 16, 2009

Indirect SPI Programming using iMPACT
R

12. As shown in Figure 4-27, the iMPACT software then displays the JTAG chain for the
XC3S700A Spartan-3A FPGA followed by the XCF04S Platform Flash PROM. Click to
highlight the FLASH memory attached to the XC3S700A FPGA. This action enables
the command options shown in Step 13.

13. Double-click Program.

Figure 4-26: Bypass the Platform Flash PROM

Figure 4-27: iMPACT Presents JTAG Chain, Shows Attached Flash PROM

UG332_c4_28_032907

11

18

12

13

UG332_c4_25_032907

http://www.xilinx.com

138 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

Note: Step 18 occurs later.

14. Click the Programming Properties option under Category, as shown in Figure 4-28.

15. Check Verify. Unchecking Verify reduces programming time but the iMPACT software
can only guarantee correct programming for a verified PROM.

16. Check Erase Before Programming. Unchecking the Erase option reduces
programming time. However, Xilinx recommends erasing the PROM when
downloading a new FPGA bitstream.

17. Click OK.

18. The iMPACT software indicates successful programming, as shown in Figure 4-28. The
FPGA is configured with the new programming file.

Serial Peripheral Interface (SPI) Configuration Timing
Figure 4-29 provides example waveforms for Master SPI configuration. The following
items correspond to the numbered markers in Figure 4-29. The symbols for the FPGA
timing parameters are listed in Table 4-15. The required SPI Flash PROM timing and the
dependencies on FPGA timing is provided in Table 4-16, page 141.

Figure 4-28: SPI PROM Programming Options

UG332_c4_29_032907

15
14

17

16

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 139
UG332 (v1.5) March 16, 2009

Serial Peripheral Interface (SPI) Configuration Timing
R

1. The FPGA powers on, releasing the internal Power-On Reset (POR) circuit or the
PROG_B input returns High.

2. The FPGA begins clearing its internal configuration memory. The FPGA actively
drives the INIT_B output Low.

3. Ensure that HSWAP or PUDC_B is at a stable logic level throughout the configuration
process. The value on this input pin defines whether pull-up resistors are enabled
during configuration. Some applications may depend on the pull-up resistors to define
the VS[2:0] variant-select pins and to hold CSO_B High before the FPGA actively
drives it Low.

4. The VS[2:0] variant-select pins must be defined and stable before the INIT_B pin
returns High. The value on VS[2:0] defines the specific read command that the FPGA
issues to the SPI serial PROM. See Table 4-2, page 105.

5. The M[2:0] mode-select pins must be defined for Master SPI mode (<0:0:1>) and stable
before the INIT_B pin returns High.

Figure 4-29: Waveforms for Serial Peripheral Interface (SPI) Configuration

TDHTDSU

Command
(msb)

TV

TCSS

<1:1:1>

INIT_B

M[2:0]

TMINIT TINITM

DIN

CCLK

(Input)

TCCLKn
TCCLK1

VS[2:0]
(Input)

New ConfigRate active

Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B
goes High. After this point, input values do not matter until DONE goes High, at which
point these pins become user-I/O pins.

<0:0:1>

Pin initially pulled High by internal pull-up resistor if HSWAP or PUDC_B input is Low.

Pin initially high-impedance (Hi-Z) if HSWAP input is High. External pull-up resistor required on CSO_B.

TCCLK1

TMCCLn
TMCCHn

(Input)
Data Data Data Data

CSO_B

MOSI

TCCO

TMCCL1 TMCCH1

TDCC

TCCD

(Input)
PROG_B

HSWAP
(Input)

HSWAP or PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.

UG332_c4_17_110206

(Open-Drain)

Shaded values indicate specifications on attached SPI Flash PROM.

Command
(msb-1)

PUDC_B

1

2

5

4

3

6

7

8

9

10

11

http://www.xilinx.com

140 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

6. After the FPGA completes clearing the internal configuration memory, the FPGA
release the INIT_B pin, allowing it to float High via the dedicated internal pull-up
resistor to VCCO_2.

7. After the INIT_B pin returns High, the FPGA begins toggling the CCLK output, which
controls all the configuration timing. The CCLK output initially starts at its lowest,
default frequency, approximately 1 MHz.

8. The SPI Flash requires a High-to-Low transition on the CSO_B output. The FPGA
actively drives the CSO_B output High for one CCLK cycle before asserting the CSO_B
pin Low. This begins the SPI bus transaction.

9. Based on the VS[2:0] pin values sampled when INIT_B pin returned High, the FPGA
begins issuing a SPI Flash read command. The FPGA sends the command, most-
significant bit first. The FPGA subsequently sends a 24-bit address, all zeros, and the
appropriate number of dummy bits, also zero, for the select Flash memory. The FPGA
clocks out the command, address, and dummy bits on the MOSI output, clocked on the
falling edge of CCLK.

10. Within the first 384 bits of the configuration bitstream, the FPGA loads the ConfigRate
setting for the remainder of the configuration process. The ConfigRate setting defines
the CCLK frequency. All interface timing must be evaluated for the specific setting. See
“CCLK Frequency,” page 114 and “ConfigRate: CCLK Frequency,” page 125.

11. The SPI Flash PROM provides data on the falling edge of CCLK. This PROM data must
be valid and setup on the FPGA’s DIN serial data input before next rising edge of
CCLK.

Table 4-15 lists the various FPGA timing parameters associated with the SPI configuration
interface.

Table 4-16 shows the relationship between the SPI Flash PROM timing specifications and
the FPGA’s configuration timing specifications. For example, the SPI Flash clock-to-output
time, TV, must be less than or equal the FPGA minimum CCLK Low time and the specified
ConfigRate setting, TCCLKLn, minus the FPGA’s setup time on the DIN input, TDCC. See
the TV parameter highlighted in Figure 4-29, page 139.

Table 4-15: FPGA Timing Symbols for Serial Peripheral Interface (SPI)
Configuration Mode

Symbol Description

TCCLK1 Initial CCLK clock period

TCCLKn CCLK clock period after FPGA loads ConfigRate setting

TMINIT Setup time on the VS[2:0] variant-select pins and the M[2:0] mode-select pins
before the rising edge of INIT_B

TCCLKL1 Minimum CCLK Low time at the initial, default ConfigRate setting

TCCLKLn Minimum CCLK Low time at the ConfigRate setting specified in the FPGA
bitstream.

TINITM Hold time on the VS[2:0] variant-select pins and the M[2:0] mode-select pins
before the rising edge of INIT_B

TCCO MOSI output valid delay after CCLK falling clock edge

TDCC Setup time on the DIN data input before CCLK rising clock edge

TCCD Hold time on the DIN data input after CCLK rising clock edge

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 141
UG332 (v1.5) March 16, 2009

Multi-Package Layout
R

All communication from the FPGA to the SPI Flash PROM, i.e., sending the read
command, address, and dummy bits, all occurs at the default CCLK ConfigRate setting,
which is the slowest setting in the Spartan-3E FPGAs, TCCLK1, which equates to
approximately 1 MHz. The Extended Spartan-3A family families default to 6 MHz.

Multi-Package Layout
Most of the SPI PROM vendors have a multi-package migration scheme that allows a
design to migrate to larger or smaller memory densities.

The multi-package layout provides ...

• Density migration between smaller- and larger-density SPI Flash PROMs. Not all
SPI Flash memory densities are available in all packages. The SPI Flash migration
strategy follows nicely with the pinout migration provided by Xilinx FPGAs. Should
the application need more nonvolatile storage, there is always a convenient, upward
density migration path in the SPI Flash PROM, up to 128Mbits.

• Consistent configuration PROM layout when migrating between FPGA densities.
Within the Extended Spartan-3A family FPGAs and within the Spartan-3E FPGA
family, a particular FPGA package option spans different density levels while
maintaining footprint compatibility. The SPI Flash multi-package layout allows
comparable flexibility in the associated configuration PROM. Ship the optimally-sized
SPI Flash memory for the specific FPGA mounted on the board.

• Supply security. If a certain SPI Flash density is not available in the desired package,
switch to a different package style or to a different density to secure availability.
Likewise, multiple vendors support the STMicroelectronics (Numonyx) footprint.

An example package layout for the M25Pxx SPI serial Flash family, from the Spartan-3E
FPGA Starter Kit Board, is provided in Figure 4-30. The multi-package layout supports the
8-lead 8x6 mm MLP package, the 8-pin SOIC package and the 16-pin SOIC package. Pin 1
for the 8-pin SOIC and MLP packages is located in the top-left corner. However, pin 1 for
the 16-pin SOIC package is located in the top-right corner, because the package is rotated

Table 4-16: Configuration Timing Requirements for Attached SPI Serial Flash

Symbol Description Requirement Units

TCCS SPI serial Flash PROM chip-select time ns

TDSU SPI serial Flash PROM data input setup time ns

TDH SPI serial Flash PROM data input hold time ns

TV SPI serial Flash PROM data clock-to-output time ns

fC or fR Maximum SPI serial Flash PROM clock frequency (also
depends on specific read command used)

MHz

Notes:
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post-

configuration requirements may be different, depending on the application loaded into the FPGA and the resulting clock source.
2. Subtract additional printed circuit board routing delay as required by the application.

TCCS TMCCL1 TCCO–≤

TDSU TMCCL1 TCCO–≤

TDH TMCCH1≤

TV TMCCLn TDCC–≤

fC
1

TCCLKn min()
------------------------------≥

http://www.xilinx.com
http://www.xilinx.com/s3estarter
http://www.xilinx.com/s3estarter

142 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 4: Master SPI Mode
R

90°. The 16-pin SOIC package also has four pins at the center each side that do not connect
on the board. These pins must be left unconnected, i.e. floating.

Saving Power
Most SPI Flash memories support multiple power-saving options. The simplest and most
useful is the Standby Mode, which reduces power simply by de-selecting the SPI Flash
memory. Within the FPGA application, drive the CSO_B pin High.

Deassert CSO_B to Enter Standby Mode
The SPI Flash memory automatically enters Standby power mode when the memory’s
active-Low Slave Select line is deasserted High. After configuration or when not accessing
the SPI Flash, the application must drive the CSO_B pin High.

Figure 4-30: Multi-Package Layout for the M25Pxx Family on Spartan-3E Starter Kit

S
Q
W

GND

VCC
HOLD
C
D

V
C

C

CD
H

O
L

DSQ

G
N

D
W

(Do not connect)

(Do not connect)

UG230_c15_18_030606

Pin 1:
8-pin SOIC
8-lead MLP

Pin 1:
16-pin SOIC

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 143
UG332 (v1.5) March 16, 2009

R

Chapter 5

Master BPI Mode

Overview
The master Byte-wide Peripheral Interface (BPI) configuration mode is available for either
the Spartan®-3A/3AN/3A DSP and Spartan-3E FPGA families. It is not supported on the
Spartan-3 FPGA family although there is a similar mode that leverages Xilinx® Parallel
Platform Flash PROMs (see Chapter 6, “Master Parallel Mode”).

In BPI mode, a Spartan-3E or Extended Spartan-3A family FPGA configures itself from a
standard parallel NOR Flash PROM, as illustrated in Figure 5-1, page 144 for Spartan-3E
FPGAs and Figure 5-2, page 145 for Extended Spartan-3A family FPGAs. The figures show
optional components in gray and designated “NO LOAD”.

The BPI configuration interface is primarily designed to support standard parallel NOR
Flash PROMs and the interface supports both byte-wide (x8) and byte-wide/word-wide
(x8/x16) PROMs. In a pinch, the interface also functions with word-only (x16) PROMs, but
the upper byte in a portion of the PROM remains unused. For FPGA configuration, the BPI
interface does not require any specific Flash PROM features, such as a boot block or a
specific sector size.

The BPI interface also works equally well with other asynchronous memories that use a
similar SRAM-style interface such as the following, many of which have faster access
times.

• Xilinx Parallel Platform Flash PROMs (XCFxxP)

• SRAM

• NVRAM (non-volatile RAM)

• EEPROM

• EPROM

• Masked ROM

NAND Flash memory is a different technology and is commonly used in memory cards for
digital cameras. Extended Spartan-3A family and Spartan-3E FPGAs do not configure
directly from NAND Flash memories.

The FPGA’s internal oscillator controls the interface timing and the FPGA supplies the
clock on the CCLK output pin. However, the CCLK signal typically is not connected in
single FPGA applications. The FPGA drives three pins Low during configuration
(LDC[2:0]) and one pin High during configuration (HDC) to the PROM’s control inputs.

http://www.xilinx.com
http://www.xilinx.com/products/silicon_solutions/proms/pfp/

144 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

Figure 5-1: Spartan-3E FPGA Configured from Parallel NOR Flash

TMS

TDO

TCK

TDI

VCCINT

VCCAUX

HDC

CCLK
CSO_B

VCCO_1

INIT_B
CSI_B

D[7:0]

LDC1
LDC0

‘0’

A[16:0]

PROG_B DONE

VCCO_2

+1.2V

DQ[7:0]

CE#

WE#

VCCO

OE#

BYTE#

DQ[15:7]

M2

M1

‘0’
‘1’

M0

HSWAP VCCO_0P

LDC2

VCCO_0

D

BPI Mode

x8 or
x8/x16
NOR

Flash

RDWR_B‘0’

Spartan-3E FPGA
BUSY

Not
available in

VQ100
package

+3.3V

+3.3V

+3.3V

GND

GND

(User I/O)

+2.5

14

1

X
ili

n
x

 C
ab

le
 H

ea
d

er
(J

T
A

G
 In

te
rf

ac
e)

PROGRAM

A

Address Control

‘0’ = BPI-Up
‘1’ = BPI-Down

A[n:0]

A[23:17]

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

J
2.5V
3.3V >68Ω

0Ω

JTAG
Voltage Resistors

N
O

 L
O

A
D

+3.3V

N
O

 L
O

A
D

UG332_c5_01_062708= Dedicated internal pull-up resistor

If VCCAUX = 2.5V

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 145
UG332 (v1.5) March 16, 2009

Master BPI Mode Differences between Spartan-3 Generation FPGA Families
R

Master BPI Mode Differences between Spartan-3 Generation FPGA
Families

Table 5-1 summarizes the BPI configuration mode differences between various Spartan-3
generation FPGA families. BPI mode is only available on the Spartan-3E and Extended
Spartan-3A family FPGA families. The Extended Spartan-3A family BPI mode supports up
to 26 address lines, capable of addressing up to 512 Mbits (64 KBytes).

Figure 5-2: Extended Spartan-3A Family FPGA Configured from Parallel NOR Flash

UG332_c5_02_040107

TMS

TDO

TCK

TDI

VCCINT

VCCAUX

HDC

CCLK
CSO_B

VCCO_1

INIT_B
CSI_B

D[7:0]

LDC1
LDC0

‘X’

A[25:0]

PROG_B DONE

VCCO_2

+1.2V

DQ[7:0]

CE#

WE#

VCCO

OE#

BYTE#

DQ[15:7]

M2
M1

‘0’
‘1’

M0

PUDC_B VCCO_0P

LDC2

VCCO_0

DBPI Mode

x8 or
x8/x16
NOR
Flash

RDWR_B‘X’

Spartan-3A/3AN

DOUT

Not
available on
XC3S50A

+3.3V

+3.3V

+3.3V

‘0’
GND

GND

(User I/O)
(User I/O)

BPI-Up
Only

VCC
AUX

PROGRAM

1

14

X
ili

n
x

 C
ab

le
 H

ea
d

er
(J

T
A

G
 In

te
rf

ac
e)

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

J
2.5V
3.3V >68�

0�

JTAG
Voltage Resistors

N
O

 L
O

A
D

+3.3V

N
O

 L
O

A
D

A[n:0]

= Dedicated internal pull-up resistor

Spartan-3A DSP
If VCCAUX = 2.5V

http://www.xilinx.com

146 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

PROM Address Generation
Extended Spartan-3A family FPGAs always start configuration from address 0 with
incrementing addresses, a mode called BPI Up. Extended Spartan-3A family FPGAs
always set M[2:0] = <0:1:0> for BPI mode.

 As shown in Figure 5-1, page 144, the Spartan-3E FPGA family supports two versions
of BPI configuration, defined by the M0 mode select pin. As shown in Table 5-2, page 147,
when the M0 mode-select pin is Low, a Spartan-3E FPGA configures using BPI Up mode,
starting at address 0 and incrementing the addresses presented on the A[23:0] address
pins. When the M0 mode-select pin is High, a Spartan-3E FPGA configures using the BPI
Down mode, starting from the highest memory location (A[23:0] = 0xFFFFFF) and
automatically decrementing the memory addresses. Extended Spartan-3A family FPGAs
do not support BPI Down mode.

Table 5-1: BPI Configuration Mode Differences between Spartan-3 Generation
FPGA Families

Spartan-3
FPGA

Spartan-3E
FPGA

Spartan-3A/3AN
Spartan-3A DSP

FPGA

BPI Up mode supported
(start at 0, increment addresses)

BPI Mode not
available on

Spartan-3
FPGA family

Yes Yes

BPI Down mode supported (start at
highest location, decrement addresses)

Yes No

Maximum number of address lines
supplied by FPGA

24 26

FPGA I/O Banks used for address lines Banks 1 and 2 Bank 1 only

Address lines independent of Right-
edge Clock inputs (RHCLKs) No Yes

Parallel daisy chains supported Yes Yes

Serial daisy chains supported No Yes

Supports MultiBoot configuration Yes Yes

Watchdog Timer retry No Yes

Number of interface timing options,
controlled by ConfigRate setting (see
Table 5-6)

3 12

CCLK directionality during Master BPI
mode I/O

Output only for
improved signal

integrity

RDWR_B and CSI_B required during
configuration

Yes No
(don’t care)

M[2:0] pins have dedicated internal
pull-up resistors during configuration

No

Optional,
controlled by

HSWAP

Yes

A

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 147
UG332 (v1.5) March 16, 2009

PROM Address Generation
R

Addresses are generally incremented (or decremented for BPI Down mode) on every
falling CCLK edge. The exception is when using Spartan-3A FPGAs as part of a serial daisy
chain (see “Serial Daisy Chaining (Extended Spartan-3A Family FPGAs Only),” page 157).

The Spartan-3E addressing flexibility allows the FPGA to share the parallel Flash PROM
with an external or embedded processor. Depending on the specific processor architecture,
the processor boots either from the top or bottom of memory. The FPGA is flexible and
boots from the opposite end of memory from the processor. Only the processor or the
FPGA can boot at any given time. The FPGA can configure first, holding the processor in
reset or the processor can boot first, asserting the FPGA’s PROG_B pin.

Spartan-3E FPGAs generally provide up to 24 address lines to access an attached parallel
memory. There are a few exceptions as described below.

• Spartan-3E FPGAs available in the TQ144 package only provide 20 address lines,
which is more than sufficient for the smaller FPGA array sizes offered in the TQ144
package.

• Similarly, the XC3S100E FPGA in the CP132 package only has 20 address lines while
the XC3S250E and XC3S500E FPGAs in the same package have 24 address lines.

• The BPI address pins are not provided on Spartan-3E FPGAs offered in the VQ100.
Consequently, Spartan-3E FPGAs in the VQ100 package cannot configure from a
parallel NOR Flash, but can configure using parallel Xilinx Platform Flash (XCFxxP).

Extended Spartan-3A family FPGAs generally provide up to 26 address lines to access an
attached parallel memory. There are a few exceptions as described below.

• The XC3S50A FPGA does not support BPI mode.

As shown in Figure 5-14, page 169, the mode select pins, M[2:0], are sampled when the
FPGA’s INIT_B output goes High and must be at defined logic levels during this time.
After configuration, when the FPGA’s DONE output goes High, the mode pins are
available as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP pin must be Low to enable pull-up resistors on all user-
I/O pins or High to disable the pull-up resistor. The HSWAP or PUDC_B control must
remain at a constant logic level throughout FPGA configuration. After configuration,
when the FPGA’s DONE output goes High, the HSWAP or PUDC_B pin is available as full-
featured user-I/O pin and is powered by the VCCO_0 supply.

On Spartan-3E FPGAs, the RDWR_B and CSI_B pins must be Low throughout the
configuration process, although the start of configuration is delayed until CSI_B is
asserted. After configuration, these pins also become user I/O. The RDWR_B and CSI_B
are not used and are ignored on Extended Spartan-3A family FPGAs.

In a single-FPGA application, the FPGA’s CSO_B and CCLK pins are not used but are
actively driving during the configuration process. The Spartan-3E BUSY pin, not available
on Extended Spartan-3A family FPGAs, is not used but actively drives during
configuration and is available as a user I/O after configuration.

Table 5-2: BPI Addressing Control

M2 M1 M0 Mode Supported Families Start Address Addressing

0 1

0
BPI Up Spartan-3A/3AN,

Spartan-3A DSP,
Spartan-3E FPGAs

0 Incrementing

1
BPI Down Spartan-3E FPGAs

only
0xFF_FFFF Decrementing

P

http://www.xilinx.com

148 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

After configuration, all of the interface pins except DONE and PROG_B are available as
user I/Os.

Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections

Pin Name
FPGA

Direction
Description During Configuration After Configuration

HSWAP
PUDC_B

Input User I/O Pull-Up Control. When
Low during configuration,
enables pull-up resistors in all I/O
pins to respective I/O bank VCCO
input.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level
throughout configuration.

User I/O

M[2:0] Input Mode Select. Selects the FPGA
configuration mode. Extended
Spartan-3A family FPGAs have
dedicated internal pull-up
resistors on these pins. See
“Design Considerations for the
HSWAP, M[2:0], and VS[2:0]
Pins,” page 75.

M2 = 0, M1 = 1. Set M0 = 0 to start
at address 0, increment addresses.
On Spartan-3E FPGAs, optionally
set M0 = 1 to start at address
0xFFFFFF and decrement
addresses. Sampled when INIT_B
goes High.

User I/O

Spartan-3E
FPGAs only:
CSI_B

Input Chip Select Input. Active Low Must be Low throughout
configuration. This input is ignored
on Extended Spartan-3A family
FPGAs.

User I/O

Spartan-3E
FPGAs only:
RDWR_B

Input Read/Write Control. Active Low
write enable. Read functionality
typically only used after
configuration, if bitstream option
Persist:Yes.

Must be Low throughout
configuration. This input is ignored
on Extended Spartan-3A family
FPGAs.

User I/O

LDC0 Output PROM Chip Enable Connect to PROM chip-select input
(CS#). FPGA drives this signal Low
throughout configuration.

User I/O. If the FPGA
does not access the
PROM after
configuration, drive
this pin High to
deselect the PROM.
A[23:0], D[7:0], LDC2
LDC1, and HDC then
become available as
user I/O.

LDC1 Output PROM Output Enable Connect to the PROM output-
enable input (OE#). The FPGA
drives this signal Low throughout
configuration.

User I/O

HDC Output PROM Write Enable Connect to PROM write-enable
input (WE#). FPGA drives this
signal High throughout
configuration.

User I/O

P

A

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 149
UG332 (v1.5) March 16, 2009

PROM Address Generation
R

LDC2 Output PROM Byte Mode This signal is not used for x8
PROMs. For PROMs with a x8/x16
data width control, connect to
PROM byte-mode input (BYTE#).
See “Precautions Using x8/x16
Flash PROMs”. FPGA drives this
signal Low throughout
configuration.

User I/O. Drive this
pin High after
configuration to use a
x8/x16 PROM in x16
mode.

Spartan-3E
FPGAs:
A[23:0]

Spartan-3A
Spartan-3AN
Spartan-3A DSP
FPGAs:

A[25:0]

Output Address Connect to PROM address inputs.
High-order address lines may not
be available in all packages and not
all may be required. Number of
address lines required depends on
the size of the attached Flash
PROM. Spartan-3E FPGA address
generation controlled by M0 mode
pin. Addresses presented on falling
CCLK edge.

User I/O

D[7:0] Input Data Input FPGA receives byte-wide data on
these pins in response the address
presented on A[23:0] or A[25:0].
Data captured by FPGA on rising
edge of CCLK. D0 is the MSB (see
“BPI Data Ordering”)

User I/O.

CSO_B Output Chip Select Output. Active Low. Not used in single-FPGA
applications. In a daisy-chain
configuration, this pin connects to
the CSI_B pin of the next FPGA in
the chain. If HSWAP or
PUDC_B = 1 in a multi-FPGA
daisy-chain application, connect
this signal to a 4.7 kΩ pull-up
resistor to VCCO_2. Actively drives
Low when selecting a downstream
device in the chain.

User I/O

Spartan-3E:
FPGAs
BUSY

Output Busy Indicator. Not used in single-FPGA designs;
BUSY is pulled up, not actively
driving.

User I/O.

Spartan-3A
Spartan-3AN
Spartan-3A DSP
FPGAs:

DOUT

Output Serial Data Output. Used in
Extended Spartan-3A family
serial daisy chains.

Not used in single-FPGA designs;
DOUT is pulled up, not actively
driving. In an Extended Spartan-3A
family serial daisy-chain
configuration, this pin connects to
DIN input of the next FPGA in the
chain.

User I/O.

Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections (Cont’d)

Pin Name
FPGA

Direction
Description During Configuration After Configuration

D

http://www.xilinx.com

150 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

Voltage Compatibility
 The FPGA’s parallel Flash interface signals are within I/O Banks 1 and 2. The majority

of parallel Flash PROMs use a single 3.3V supply voltage. Consequently, in most cases, the
FPGA’s VCCO_1 and VCCO_2 supply voltages must also be 3.3V to match the parallel
Flash PROM. There are some 1.8V parallel Flash PROMs available and Spartan-3E FPGAs
interface with these devices if the VCCO_1 and VCCO_2 supplies are also 1.8V. Extended
Spartan-3A family FPGAs do not support 1.8V PROMs because of the Spartan-3A FPGA’s
Power-On Reset (POR) voltage threshold, VCCO2T, shown in the appropriate Extended
Spartan-3A family data sheet and summarized in Table 12-1, page 241.

Also, see “Power-On Precautions if 3.3V Supply is Last in Sequence,” page 167.

See also “JTAG Cable Voltage Compatibility,” page 198.

Compatible Parallel NOR Flash Families
The Spartan-3E and Extended Spartan-3A family BPI configuration interface operates with
a wide variety of x8 or x8/x16 parallel NOR Flash devices. Table 5-4 provides a few
example Flash memory families that operate with the BPI interface. Xilinx has hardware

CCLK Output Configuration Clock. Generated
by FPGA internal oscillator.
Frequency controlled by
ConfigRate bitstream generator
option. If CCLK PCB trace is long
or has multiple connections,
terminate this output to maintain
signal integrity. See “CCLK
Design Considerations,” page 58.

Not used in single FPGA
applications but actively drives. In
a daisy-chain configuration, drives
the CCLK inputs of all other FPGAs
in the daisy chain.

User I/O. Drive High
or Low if not used.

INIT_B Open-
drain

bidirec-
tional I/O

Initialization Indicator. Active
Low. Goes Low at start of
configuration during the
Initialization memory clearing
process. Released at the end of
memory clearing, when the mode
select pins are sampled.

Active during configuration. If
CRC error detected during
configuration, FPGA drives INIT_B
Low.

User I/O. If unused in
the application, drive
INIT_B High to avoid
a floating value. See
INIT_B “After
Configuration”.

DONE Open-
drain

bidirec-
tional I/O

FPGA Configuration Done. Low
during configuration. Goes High
when FPGA successfully
completes configuration.

Low indicates that the FPGA is not
yet configured.

Pulled High via
external pull-up.
When High, indicates
that the FPGA is
successfully
configured.

PROG_B Input Program FPGA. Active Low.
When asserted Low for 500 ns or
longer, forces the FPGA to restart
its configuration process by
clearing configuration memory
and resetting the DONE and
INIT_B pins once PROG_B
returns High.

Must be High to allow
configuration to start.

Drive PROG_B Low
and release to
reprogram FPGA.
Hold PROG_B to force
FPGA I/O pins into
Hi-Z, allowing direct
programming access
to Flash PROM pins.

Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections (Cont’d)

Pin Name
FPGA

Direction
Description During Configuration After Configuration

V

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 151
UG332 (v1.5) March 16, 2009

Required Parallel Flash PROM Densities
R

tested various family members from some vendors. Other devices appear to be compatible
based on a data sheet analysis. Consult the manufacturer’s data sheet for the desired
parallel NOR Flash device to determine the suitability of a specific device.

While most parallel NOR Flash have comparable memory read functions, different
vendors may use different programming algorithms, which has no impact on FPGA
configuration.

Required Parallel Flash PROM Densities
Table 5-5 indicates the smallest usable parallel Flash PROM to program a single Extended
Spartan-3A family or Spartan-3E FPGA. Parallel Flash memory devices are typically
specified by bit density but the memory is addressed as bytes or half-words. Extended
Spartan-3A family FPGAs present up to 26 address lines during configuration, although
not all are address lines are required, depending on number of bytes required to hold the
FPGA bitstream(s). Table 5-5 shows the minimum required number of address lines
between the FPGA and parallel Flash PROM. The actual number of address line required
depends on the density of the attached parallel Flash PROM.

Table 5-4: Example Compatible Parallel NOR Flash Families

Flash Vendor Flash Memory Family Status

STMicroelectronics (Numonyx) M29W Hardware tested

Atmel AT29 / AT49 Hardware tested

Spansion S29 Data sheet compatible

Intel (Numonyx) Embedded Flash (J3 v. D) Hardware tested

Macronix MX29 Data sheet compatible

Table 5-5: Number of Bits to Program an Extended Spartan-3A Family or Spartan-3E FPGA and Smallest
Usable Parallel PROM

Family FPGA
Uncompressed
File Sizes (bits)

Smallest Usable
Parallel Flash PROM

Minimum Required
Address Lines

Spartan-3A/3AN

XC3S50A/AN 437,312 BPI Mode not available on XC3S50A FPGAs

XC3S200A/AN 1,196,128 2 Mbit A[17:0]

XC3S400A/AN 1,886,560 2 Mbit A[17:0]

XC3S700A/AN 2,732,640 4 Mbit A[18:0]

XC3S1400A/AN 4,755,296 8 Mbit A[19:0]

Spartan-3A DSP
XC3SD1800A 8,197,280 8 Mbit A[19:0]

XC3SD3400A 11,718,304 16 Mbit A[20:0]

Spartan-3E

XC3S100E 581,344 1 Mbit A[16:0]

XC3S250E 1,353,728 2 Mbit A[17:0]

XC3S500E 2,270,208 4 Mbit A[18:0]

XC3S1200E 3,841,184 4 Mbit A[18:0]

XC3S1600E 5,969,696 8 Mbit A[19:0]

http://www.numonyx.com
http://www.atmel.com
http://www.atmel.com/dyn/products/devices.asp?family_id=624
http://www.spansion.com
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.macronix.com
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/75d338438656550a48256f5500408bf7/?OpenDocument
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxIndustryStandardFlashM29.aspx
http://www.spansion.com/flash_memory_products/floating_gate.html
http://www.xilinx.com

152 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

A multiple-FPGA daisy-chained application requires a parallel Flash PROM large enough to
contain the sum of the FPGA file sizes. An application can also use a larger-density parallel
Flash PROM to hold additional data beyond just FPGA configuration data. For example, the
parallel Flash PROM might also contain the application code for a MicroBlaze™ RISC
processor core implemented within the Extended Spartan-3A family or Spartan-3E FPGA.
After configuration, the MicroBlaze processor either executes directly from the external
Flash memory or it copies the code to other, faster system memory before executing the
code.

CCLK Frequency
In BPI mode, the FPGA’s internal oscillator generates the configuration clock frequency
that controls all the interface timing. The FPGA starts configuration at its lowest frequency
and increases its frequency for the remainder of the configuration process if so specified in
the configuration bitstream. The maximum frequency is specified using the ConfigRate
bitstream generator option.

Table 5-6 shows the maximum ConfigRate settings for various PROM read access times
over the Commercial temperature operating range. See “Byte Peripheral Interface (BPI)
Timing,” page 169 for more detailed timing information. Extended Spartan-3A family
FPGAs have more ConfigRate options and therefore offer finer matching to specific
memory interface speeds. See Table 5-8, page 160 for ConfigRate settings when using
parallel Platform Flash PROMs.

Despite using slower ConfigRate settings, BPI mode is equally fast as the other
configuration modes. In BPI mode, data is accessed at the ConfigRate frequency and
internally serialized with an 8X clock frequency.

Table 5-6: Maximum ConfigRate Settings for Parallel Flash PROMs (Commercial
Temperature Range)

 ConfigRate
Bitstream Setting

Parallel NOR Flash Read Access Time (TACC (tAVQV))

Units
Spartan-3E FPGAs

Spartan-3A/3AN,
Spartan-3A DSP FPGAs

1 < 263 ns < 609 ns

ns

3 < 120 ns < 189 ns

6 < 49 ns < 85 ns

7 N/A < 71 ns

8 N/A < 60 ns

10 N/A < 43 ns

12 < 14 ns < 33 ns

13 N/A < 28 ns

17 N/A < 18 ns

Notes:
1. PCB signal propagation time assumed to be 1 ns.

http://www.xilinx.com/microblaze
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 153
UG332 (v1.5) March 16, 2009

Using the BPI Interface after Configuration
R

Using the BPI Interface after Configuration
After the FPGA successfully completes configuration, all pins connected to the parallel
Flash PROM are available as user I/Os.

If not using the parallel Flash PROM after configuration, drive LDC0 High to disable the
PROM’s chip-select input. The remainder of the BPI pins then become available to the
FPGA application, including all A[25:0] or A[23:0] address lines, the eight D[7:0] data lines,
and the LDC2, LDC1, and HDC control pins.

Because all the interface pins are user I/Os after configuration, the FPGA application can
continue to use the interface pins to communicate with the parallel Flash PROM. Parallel
Flash PROMs are available in densities ranging from 1 Mbit up to 128 Mbits and beyond.
However, a single Spartan-3E/3A/-3AN FPGA requires typically less than 6 Mbits for
configuration. If desired, use a larger parallel Flash PROM to contain additional
nonvolatile application data, such as MicroBlaze processor code, or other user data, such as
serial numbers and Ethernet MAC IDs. In such an example, the FPGA configures from
parallel Flash PROM. Then using FPGA logic after configuration, a MicroBlaze processor
embedded within the FPGA can either execute code directly from parallel Flash PROM or
copy the code to external DDR SDRAM and execute from DDR SDRAM. Similarly, the
FPGA application can store nonvolatile application data within the parallel Flash PROM.

For Spartan-3E FPGAs, the configuration data is stored starting at either at location 0 (BPI
Up) or starting at the highest address location (BPI Down) or at both locations for when
performing MultiBoot configuration (see “Spartan-3E MultiBoot,” page 263). For
Extended Spartan-3A family FPGAs, there is always a configuration image starting at
location 0 (BPI Up) and possibly at other higher address locations when performing
Extended Spartan-3A family MultiBoot configuration (see “Extended Spartan-3A Family
MultiBoot,” page 271). Store any additional data beginning in other available parallel
Flash PROM sectors.

Caution! Do not mix FPGA configuration data and user data in the same sector. Mixing both
configuration and user data in the same sector should only be done with extreme caution.

Similarly, the parallel Flash PROM interface can be expanded to additional parallel
peripherals. The address, data, LDC1 (OE#) and HDC (WE#) control signals are common
to all parallel peripherals. Connect the chip-select input on each additional peripheral to
one of the FPGA user I/O pins. If HSWAP or PUDC_B = 0 during configuration, the FPGA
holds the chip-select line High via an internal pull-up resistor. If HSWAP or PUDC_B = 1,
connect the select line to +3.3V via an external 4.7 kΩ pull-up resistor to avoid spurious
read or write operations. After configuration, drive the select line Low to select the desired
peripheral. Refer to the individual peripheral data sheet for specific interface and
communication protocol requirements.

The FPGA optionally supports a 16-bit peripheral interface by driving the LDC2 (BYTE#)
control pin High after configuration. See “Precautions Using x8/x16 Flash PROMs” for
additional information.

A Spartan-3E FPGA provides up to 24 address lines during configuration, addressing up
to 128 Mbits (16 Mbytes). An Extended Spartan-3A family provides up to 26 address lines,
addressing up to 512 Mbits (64 Mbytes). If using a larger parallel PROM, connect the upper
PROM address lines to FPGA user I/O. During configuration, the upper address lines will
be pulled High if HSWAP or PUDC_B = 0. Otherwise, use external pull-up or pull-down
resistors on these address lines to define their values during configuration.

http://www.xilinx.com

154 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

Precautions Using x8/x16 Flash PROMs
 Most low- to mid-density PROMs, typically 8 Mbits and below, are only available as

byte-wide (x8) memories. Many higher-density Flash PROMs, usually 16 Mbits and above,
support both byte-wide (x8) and word-wide (x16) data paths and include a mode input pin
called BYTE# that switches between the x8 or x16 modes. During configuration, Spartan-
3E and Extended Spartan-3A family FPGAs only support byte-wide data, as shown in
Figure 5-3a. However, after configuration as shown in Figure 5-3b, the FPGA supports
either x8 or x16 modes because the FPGA’s LDC2 pin, which controls the PROM’s BYTE#
mode input, is controlled by the FPGA application. In x16 mode, up to eight additional
user I/O pins are required for the upper data bits, D[15:8].

Caution! Different Flash memory vendors use different nomenclature when naming address
pins. Make sure that the FPGA connects correctly to the selected memory.

Connecting a Spartan-3E or Extended Spartan-3A family FPGA to a Flash PROM that
supports both x8/x16 modes is simple, but does require a precaution. Various Flash PROM
vendors use slightly different interfaces to support both x8 and x16 modes. Some vendors
(Intel/Numonyx, Micron, some STMicroelectronics/Numonyx devices) use a
straightforward interface with pin naming that matches the FPGA connections. However,
the PROM’s A0 pin is wasted in x16 applications and a separate FPGA user-I/O pin is
required for the D15 data line. Fortunately, the FPGA A0 pin is still available as a user I/O
after configuration, even though it connects to the Flash PROM.

Other vendors (AMD, Atmel, Silicon Storage Technology, Spansion, and some
STMicroelectronics/Numonyx devices) use a pin-efficient interface but change the
function of one pin, called IO15/A-1, depending if the PROM is in x8 or x16 mode.
Figure 5-3 illustrates this interface. In x8 mode, BYTE# = 0 controlled by the FPGA’s LDC2
pin, the Flash’s IO15/A-1 pin becomes the least-significant address line into the Flash
memory. The IO15/A-1 line selects a byte location. The A0 address line, which one might
assume to be the least-significant address line, is actually the select line for word (x16)
locations.

After the FPGA configures successfully, the FPGA application can optionally access the
Flash memory using a 16-bit data interface. The FPGA application drives BYTE# = 1,

D

Figure 5-3: FPGA Supports x8 Interface before Configuration and Optional x16 Interface after
Configuration

HDC
LDC1
LDC0 CE#

WE#
OE#

LDC2

D[7:0] DQ[7:0]

A[21:1] A[20:0]

32Mbit Flash
(4Mx8 Mode)

BYTE#

A0 DQ15/A-1
(User I/O) DQ[14:8]

User_WE#
User_OE#
User_CE# CE#

WE#
OE#

‘1’

D[7:0] DQ[7:0]

A[21:1] A[20:0]

32Mbit Flash
(2Mx16 Mode)

BYTE#

User_D15 DQ15/A-1
User_D[14:8] DQ[14:8]

(a) Byte-wide interface during configuration (b) 16-bit interface after configuration
UG332_c5_07_040107

FPGA FPGA

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 155
UG332 (v1.5) March 16, 2009

Daisy Chaining
R

which switches the definition of the IO15/A-1 pin. This pin then becomes the most-
significant data bit, D15 because byte addressing is not required in x16 mode. Check to see
if the Flash PROM has a pin named IO15/A-1 or DQ15/A-1. If so, be careful to connect
x8/x16 Flash PROMs correctly, as shown in Figure 5-3 and Table 5-7. Also, remember that
the D[14:8] data connections require FPGA user I/O pins but that the D15 data is already
connected for the FPGA’s A0 pin.

Some x8/x16 Flash PROMs have a long setup time requirement on the BYTE# signal. For
the FPGA to configure correctly, the PROM must be in x8 mode with BYTE# = 0 at power-
on or when the FPGA’s PROG_B pin is pulsed Low. If required, extend the BYTE# setup
time for a 3.3V PROM using an external 680 Ω pull-down resistor on the FPGA’s LDC2 pin
or by delaying assertion of the CSI_B select input to the FPGA.

Daisy Chaining
If the application requires multiple FPGAs with different configurations, then configure
the FPGAs using a daisy chain, as shown in Figure 5-4, page 156 or Figure 5-5, page 158.

• Parallel daisy chains from a BPI mode master FPGA are supported by both Spartan-
3E and Extended Spartan-3A family FPGAs.

• Serial daisy chains from a BPI mode master FPGA are only supported by Extended
Spartan-3A family FPGAs.

To successfully configure a daisy chain, the GTS_cycle bitstream option must be set to a
Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the software
default setting. Optionally, set GTS_cycle:Done.

Table 5-7: FPGA Connections to Flash PROM with IO15/A-1 Pin

FPGA Pin
Connection to Flash PROM with

IO15/A-1 Pin
x8 Flash PROM Interface After

FPGA Configuration
x16 Flash PROM Interface After

FPGA Configuration

LDC2 BYTE# Drive LDC2 Low or leave
unconnected and tie PROM
BYTE# input to GND

Drive LDC2 High

LDC1 OE# Active-Low Flash PROM
output-enable control

Active-Low Flash PROM
output-enable control

LDC0 CS# Active-Low Flash PROM chip-
select control

Active-Low Flash PROM chip-
select control

HDC WE# Flash PROM write-enable
control

Flash PROM write-enable
control

A[23:1] A[n:0] A[n:0] A[n:0]

A0 IO15/A-1 IO15/A-1 is the least-
significant address input

IO15/A-1 is the most-significant
data line, IO15

D[7:0] IO[7:0] IO[7:0] IO[7:0]

User I/O Upper data lines IO[14:8] not
required unless used as x16 Flash
interface after configuration

Upper data lines IO[14:8] not
required

IO[14:8]

http://www.xilinx.com

156 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

Parallel Daisy Chaining
Both Spartan-3E and Extended Spartan-3A family FPGA families support parallel
configuration daisy chains when the first device in the chain uses BPI mode.

As shown in Figure 5-4, all downstream FPGAs in the daisy chain use Slave Parallel mode
(M[2:0] = <1:1:0>). However, if there are more than two FPGAs in the daisy chain, the last
FPGA in the chain can be from any recent Xilinx FPGA family that supports the SelectMAP
interface, such as the Virtex®-II, Virtex-II Pro, and Spartan-3 FPGAs. However, all
intermediate FPGAs located in the middle of the chain between the first and last FPGAs
must from either the Spartan-3E, Extended Spartan-3A family, or Virtex-5 FPGA families.
These three FPGA families are the only ones that provide a CSO_B output while in Slave
Parallel (SelectMAP) mode.

After the master FPGA—the FPGA on the top left in Figure 5-4—finishes loading its
configuration data from the parallel Flash PROM, the master device continues generating
addresses to the Flash PROM and asserts its CSO_B output Low, enabling the next FPGA

Figure 5-4: Parallel Daisy Chain using BPI Mode
UG332_c5_05_040107

N
O

 L
O

A
D

+3.3V

N
O

 L
O

A
D

HDC

CCLK

INIT_B
CSI_B

D[7:0]

LDC1
LDC0

‘0’

A[25:0]

PROG_B DONE

DQ[7:0]

CE#

WE#
OE#

BYTE#LDC2

BPI Mode

RDWR_B‘0’

Spartan-3A/3AN/3A DSP
Spartan-3E FPGAs

DOUT

A[n:0]

Parallel NOR
Flash

M2
M1

‘0’
‘1’

M0‘0’

CSO_B

‘1’
‘1’
‘0’

‘0’

Slave
Parallel
Mode

‘1’
‘1’
‘0’

‘0’

Spartan-3A/3AN/3A DSP,
Spartan-3E,

Virtex-5 FPGAs

Any Xilinx FPGA

CCLK

INIT_B

DONE

D[7:0]

Intermediate
FPGAs

Last FPGA in
Daisy Chain

Master
FPGA

PUDC_B
HSWAPP

CSI_B
CCLK
RDWR_B

M2
M1
M0

CSO_B

D[7:0]

PROG_B

INIT_B

DONE

CSI_B
CCLK
RDWR_B

M2
M1
M0

CSO_B

D[7:0]

PROG_B

INIT_B

DONE

P P

+3.3V

4.
7k
�

+3.3V

4.
7k
�

0� 0�

0�

JUMPER

0� 0�

BUSY

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 157
UG332 (v1.5) March 16, 2009

Daisy Chaining
R

in the daisy chain. The next FPGA then receives parallel configuration data from the Flash
PROM. The master FPGA’s CCLK output synchronizes data capture.

If the FPGA’s HSWAP or PUDC_B pin is High, then pull-up resistors are disabled during
configuration and an external 4.7kΩ pull-up resistor must be added on the CSO_B pin,
which guarantees a logic High to the CSI_B input of the next device in the chain. If FPGA’s
HSWAP or PUDC_B pin is Low, no external pull-up is necessary.

Serial Daisy Chaining (Extended Spartan-3A Family FPGAs Only)
The Extended Spartan-3A family FPGA family supports serial daisy chains, where the first
device in the chain uses BPI mode. The first or master device effectively provides a
parallel-to-serial conversion of the bitstream data for the downstream slave devices. Serial
daisy chains from BPI mode are not supported for Spartan-3E FPGAs.

As shown in Figure 5-5, page 158, all downstream FPGAs in the serial daisy chain use
Slave Serial mode (M[2:0] = <1:1:1>) and can be from any Xilinx FPGA family.

The CCLK output from the master device operates at 8 times the frequency of the Flash
read interface and CCLK synchronizes all FPGAs in the daisy chain. The master FPGA
accesses the byte-wide Flash once every 8 CCLK cycles but provides serial data on its
DOUT output to downstream FPGAs every CCLK cycle. iMPACT programming software
automatically adjusts the CCLK frequency when serial daisy chains are selected in Step 14,
Figure 5-10, page 164. In standalone BPI mode, the ConfigRate option determines the byte-
wide interface frequency. When a BPI daisy chain is selected, the ConfigRate option
determines the serial interface frequency, and the parallel Flash interface will run at 1/8 of
that rate.

After the master FPGA—the FPGA on the top left in Figure 5-5—finishes loading its
configuration data from the parallel Flash PROM, the master device continues generating
addresses to the Flash PROM. The master FPGA reads byte-wide data from the PROM,
internally serializes the data, and provides the data to downstream devices via its DOUT
output pin. The next FPGA in the daisy chain then receives serial configuration data from
the preceding FPGA in the chain. The master FPGA’s CCLK output synchronizes data
capture.

http://www.xilinx.com

158 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

Using Xilinx Platform Flash PROMs with Master BPI Mode
The Master BPI mode also supports the Xilinx Parallel Platform Flash PROM (XCFxxP)
family, as shown in Figure 5-6.

Figure 5-5: Serial Daisy Chains are Only Available for Extended Spartan-3A Family BPI Mode
UG332_c5_06_052107

N
O

 L
O

A
D

+3.3V

N
O

 L
O

A
D

HDC

CCLK

INIT_B
CSI_B

D[7:0]

LDC1
LDC0

‘0’

A[25:0]

PROG_B DONE

DQ[7:0]

CE#

WE#
OE#

BYTE#LDC2

BPI Mode

RDWR_B‘0’

Spartan-3A/3AN/3A DSP

DOUT

A[n:0]

Parallel NOR
Flash

M2
M1

‘0’
‘1’

M0‘0’

CSO_B

‘1’
‘1’
‘1’

Slave
Serial
Mode

‘1’
‘1’
‘1’

Any Xilinx FPGA

CCLK

INIT_B

DONE

Intermediate
FPGAs

Last FPGA in
Daisy Chain

Master
FPGA

PUDC_BP

CCLK

M2
M1
M0

DIN

PROG_B

INIT_B

DONE

CCLK

M2
M1
M0

DIN

PROG_B

INIT_B

DONE

0Ω 0Ω

0Ω

JUMPER

0Ω 0Ω

Any Xilinx FPGA

DOUT DOUT

0 1 2 3 4 5 6 7

CCLK

DOUT

A[25:0] Next PROM Address

Serialized PROM Data

 FPGA

http://www.xilinx.com
http://www.xilinx.com/products/silicon_solutions/proms/pfp/

Spartan-3 Generation Configuration User Guide www.xilinx.com 159
UG332 (v1.5) March 16, 2009

Using Xilinx Platform Flash PROMs with Master BPI Mode
R

• The diagram in Figure 5-6 shows an Extended Spartan-3A family FPGA, but the same
approach also works with Spartan-3E FPGAs.

• The Xilinx Parallel Platform Flash PROM family is in-system programmable using
JTAG, similar to the FPGA.

• See XAPP483, Multiple-Boot with Platform Flash PROMs

• The FPGA’s LDC2, LDC1, LDC0, and HDC outputs actively drive during
configuration. Use the LDC0 output to enable the Platform Flash PROM during

Figure 5-6: Master BPI Mode Using Xilinx Parallel Platform Flash PROMs (XCFxxP)

TMS

TDO

TCK

TDI

VCCINT

VCCAUX

HDC

CCLK
CSO_B

VCCO_1

INIT_B
CSI_B

D[7:0]

LDC1
LDC0

‘X’

A[25:0]

PROG_B DONE

VCCO_2

+1.2V

D[7:0]

CE

VCCINT

M2
M1

‘0’
‘1’

M0

PUDC_B VCCO_0P

LDC2

VCCO_0

BPI Mode

RDWR_B‘X’

Spartan-3A/3AN/3A DSP

DOUT

Not
available on
XC3S50A

+1.8V

‘0’

GNDGND

BPI-Up
Only

+3.3V

EN_EXT_SEL

OE/RESET

CLK

CF

CEO

BUSY

CLKOUT

TDI

TCK
TMS

TDO

VCCO

VCCJ

V

V

+3.3V

V

PROGRAM

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

1

14

+3.3V

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

Platform Flash
XCFxxP

= Dedicated internal pull-up resistor UG332_c9_16_030309

Don’t care

FPGA

REV_SEL0
REV_SEL1

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp483.pdf

160 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

configuration. After configuration, the FPGA application drives LDC0, now an I/O
pin to enable or disable the PROM.

• After configuration, the FPGA application can control the I/O pins that connect to the
PROM, the application can read additional non-configuration data from the PROM.

A similar approach using Slave Parallel mode is possible, minus the MultiBoot capability.
The solution requires either an external configuration clock source or the Platform Flash
PROM’s internal clock option. The advantage of the alternate solution is that the FPGA’s
address pins are not active during configuration. Furthermore, if using an external clock
source, the clock frequency has little variation and likely operates at a higher average
frequency, which shortens configuration time.

ConfigRate Settings Using Platform Flash
As shown in Table 5-8, parallel Platform Flash PROMs support a high ConfigRate setting.
The performance is even more dramatic considering that the PROM loads eight bits per
clock. The resulting bandwidth on an Extended Spartan-3A family FPGAs is between 110
to 190 Mbits per second!

Generating the Bitstream for a Master BPI Configuration
The create the FPGA bitstream for a Master BPI configuration, follow the steps outlined in
“Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an FPGA
configured in Master BPI mode, set the following bitstream generator options.

ConfigRate: CCLK Frequency
Set the ConfigRate option as described in “CCLK Frequency,” page 152. Using the ISE®
software Project Navigator, the Configuration Rate frequency is set in Step 7 in Figure 1-7,
page 44.

-g ConfigRate:12

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA
to actively drive the DONE pin after successfully completing the configuration process.

Table 5-8: Maximum ConfigRate Settings Using Parallel Platform Flash

Platform Flash Part
Number

I/O Voltage
(VCCO_2, VCCO)

 Spartan-3E
ConfigRate Setting

 Spartan-3A/3AN
Spartan-3A DSP

ConfigRate Setting

XCF08P
XCF16P
XCF32P

3.3V or 2.5V
25

33

1.8V N/A

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 161
UG332 (v1.5) March 16, 2009

Preparing a Parallel NOR Flash PROM File
R

Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in
Figure 1-8, page 45.

-g DriveDone:Yes

GTS_cycle: Global Three-State Release Timing for Daisy Chains
If creating a multi-FPGA daisy chain, set the GTS_cycle option to be later than the
DONE_cycle setting, which is the default setting for both. Alternatively, set
GTS_cycle:Done. From ISE Project Navigator, the GTS_cycle setting is the Enable Outputs
(Output Events) option, shown as Step 14 in Figure 1-8, page 45.

Preparing a Parallel NOR Flash PROM File
This section provides guidelines to create PROM files for parallel NOR Flash memories.

The Xilinx software tools, “iMPACT” or PROMGen, generate formatted PROM files from
the FPGA bitstream or bitstreams.

iMPACT
The following steps graphically describe how to create a PROM file for parallel NOR Flash
using iMPACT from within the ISE Project Navigator. iMPACT supports indirect
programming for the Spartan-3A and Spartan-3A DSP families. iMPACT supports
programming the internal Flash of the Spartan-3AN family. If creating a Spartan-3A/3A
DSP MultiBoot image for a parallel Flash memory, see “Generating an Extended Spartan-
3A Family MultiBoot PROM Image using iMPACT,” page 278.

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG
File from within the Process pane, as shown in Figure 5-7.

Figure 5-7: Double-click Generate PROM, ACE or JTAG File

1

UG332_c4_10_110206

http://www.xilinx.com

162 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

2. As shown in Figure 5-8, select Prepare a PROM File.

3. Click Next.

Figure 5-8: Prepare a PROM File

3

2

UG332_c4_11_190206

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 163
UG332 (v1.5) March 16, 2009

Preparing a Parallel NOR Flash PROM File
R

4. As shown in Figure 5-9, target a Generic Parallel PROM.

5. Select a PROM File Format.

6. Name the output PROM File Name.

7. Click Next.

Figure 5-9: Set Options for a Generic Parallel PROM

4

7

5

6

UG332_c5_10_111806

http://www.xilinx.com

164 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

8. As shown in Figure 5-10, select the Parallel PROM Density, measured in bytes. This
example uses a 32 Mbit Flash PROM, equivalent to 4 Mbytes.

9. Click Add.

10. The selected PROM size appears in the 0 position. The Master BPI mode uses a single
PROM.

11. Check Create BPI-mode PROM.

12. Choose whether the BPI Master Device is either a Spartan-3E or Spartan-3A FPGA.

13. If the Spartan-3E option is selected, then choose whether the PROM file is loaded at
address 0 using incrementing addresses (BPI Up) or at the highest address location
using decrementing addresses (BPI Down). This option is not available if the
Spartan-3A option is the selected BPI Master Device.

14. If the Spartan-3A option is selected, then choose whether to create a Parallel or Serial
configuration daisy chain. This option is not available if the Spartan-3E option is the
selected BPI Master Device, although Spartan-3E FPGAs support parallel daisy chains.

15. Click Next.

Figure 5-10: Select Parallel PROM Size and Configuration Style

15

10

13

98

11

12
14

UG332_c5_12_111806

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 165
UG332 (v1.5) March 16, 2009

Preparing a Parallel NOR Flash PROM File
R

16. As shown in Figure 5-11, start selecting the FPGA bitstreams to store in the PROM.

17. This example create a PROM file for a Spartan-3A serial daisy chain. Select the first
FPGA bitstream.

18. Click Open.

19. When asked to add another design file, click Yes.

20. Select the second FPGA bitstream.

21. Click Open. Continue with Steps 19-21 until all FPGA bitstream files are selected.
After entering the last bitstream, click No from Step 19 when asked to add another
design file.

22. Click OK.

Figure 5-11: Select FPGA Bitstream Files

16

21

19

20

17

18

22

UG332_c5_12_111806

http://www.xilinx.com

166 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

23. As shown in Figure 5-12, the iMPACT software graphically displays the selected
configuration topography. In this example, a single parallel PROM provides the
bitstreams to two XC3S700A FPGAs using a serial daisy-chain configuration.

24. Click Generate File.

25. The iMPACT software indicates when the PROM File Generation Succeeded.

Indirect Parallel Flash Programming Using iMPACT
Indirect parallel Flash PROM programming support is available starting with Xilinx ISE
9.2.02i and later releases. In Indirect mode, the iMPACT software programs the memory
attached to the FPGA through the FPGA’s JTAG port. During the programming process,
the FPGA is configured with a special programming application. Consequently, the
FPGA’s DONE pin will go High during the programming process.

The iMPACT software supports indirect programming of the Intel (Numonyx) 28F P30 and
J3 v D StrataFlash embedded flash family through the Spartan-3A (XC3S400A, XC3S700A,
and XC3S1400A) and Spartan-3A DSP FPGAs.

In-System Programming Support
In production applications, the parallel Flash PROM is typically preprogrammed before it
is mounted on the printed circuit board. In-system programming support is available from
third-party boundary-scan tool vendors and from some third-party PROM programmers
using a socket adapter with attached wires. To gain direct access to the parallel Flash
signals, hold the FPGA’s PROG_B input Low throughout the programming process. This
action places all FPGA I/O pins, including those attached to the parallel Flash, in high-
impedance (Hi-Z). If the HSWAP or PUDC_B input is Low, the I/Os have pull-up resistors
to the VCCO input on their respective I/O bank. The external programming hardware then
has direct access to the parallel Flash pins.

Figure 5-12: Generate Parallel PROM File

24

23

25

UG332_c5_13_111806

http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxStrataFlashEmbeddedMemoryP30P33.aspx
http://www.xilinx.com
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx

Spartan-3 Generation Configuration User Guide www.xilinx.com 167
UG332 (v1.5) March 16, 2009

Power-On Precautions if 3.3V Supply is Last in Sequence
R

The FPGA itself can also be used as a parallel Flash PROM programmer during
development and test phases. Because parallel NOR Flash is most commonly used with
the MicroBlaze processor core, the Xilinx Platform Studio (XPS) includes Flash
programming support. Essentially, XPS downloads a Flash programmer into the FPGA via
the FPGA’s JTAG port. The FPGA then performs necessary the Flash PROM programming
algorithms and receives programming data from the host via the FPGA’s JTAG interface.

• Chapter 9, “Flash Memory Programming” in Embedded System Tools Reference
Manual (EDK 10.1)
http://www.xilinx.com/support/documentation/sw_manuals/edk10_est_rm.pdf

Similarly, the FPGA application can leverage an existing communication channel in the
system to program or update the Flash memory. The Spartan-3E FPGA Starter Kit board
provides a design example that programs the on-board Intel (Numonyx) StrataFlash
PROM using the board’s RS-232 serial port. Similarly, the Spartan-3A FPGA Starter Kit
board provides a similar example, but for the STMicro (Numonyx) M29DW323DT parallel
Flash PROM.

• PicoBlaze™ Processor RS-232 StrataFlash™ Programmer
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_nor_flash_programmer

• Programmer for the M29DW323DT Parallel NOR Flash
www.xilinx.com/products/boards/s3astarter/reference_designs.htm#parallel_flash_programmer

Power-On Precautions if 3.3V Supply is Last in Sequence
Extended Spartan-3A family and Spartan-3E FPGAs have a built-in power-on reset (POR)
circuit, as shown in Figure 12-3, page 240. The FPGA waits for its three power supplies —
VCCINT, VCCAUX, and VCCO to I/O Bank 2 (VCCO_2) — to reach their respective power-on
thresholds before beginning the configuration process.

The parallel NOR Flash PROM is powered by the same voltage supply feeding the FPGA's
VCCO_2 voltage input, typically 3.3V. Parallel NOR Flash PROMs specify that they cannot
be accessed until their VCC supply reaches its minimum data sheet voltage, followed by an
additional delay, often called a VCC setup time. Table 5-9 shows some representative
values.

In many systems, the 3.3V supply feeding the FPGA's VCCO_2 input is valid before the
FPGA's other VCCINT and VCCAUX supplies, and consequently, there is no issue. However,
if the 3.3V supply feeding the FPGA's VCCO_2 supply is last in the sequence, a potential
race occurs between the FPGA and the NOR Flash PROM, as shown in Figure 5-13.

Table 5-9: Example Minimum Power-On to Setup Times for Various Parallel NOR
Flash PROMs

Vendor
Flash PROM
Part Number

Data Sheet Minimum Time from VCC min to Select = Low

Symbol Value Units

Intel Corp.
(Numonyx)

J3 v. D tVCCPH 60 μs

Spansion S29AL016M tVCS 50 μs

Macronix MX29LV004C tVCS 50 μs

http://www.xilinx.com/microblaze
http://www.xilinx.com/support/documentation/sw_manuals/edk10_est_rm.pdf
http://www.xilinx.com/s3estarter
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_nor_flash_programmer
http://www.xilinx.com
http://www.xilinx.com/s3astarter
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm#parallel_flash_programmer

168 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

If the FPGA's VCCINT and VCCAUX supplies are already valid, then the FPGA waits for
VCCO_2 to reach its minimum threshold voltage before starting configuration. This
threshold voltage is labeled as VCCO2T in Table 12-1, page 241 and ranges from
approximately 0.4V to 2.0V, substantially lower than the NOR Flash PROM's minimum
voltage. Once all three FPGA supplies reach their respective Power On Reset (POR)
thresholds, the FPGA starts the configuration process and begins initializing its internal
configuration memory. The initialization varies by family and arrays size, listed in
Table 12-2, page 242. After initialization, the FPGA deasserts INIT_B, selects the NOR
Flash PROM, and starts accessing data. The parallel NOR Flash PROM must be ready for
read operations at this time.

If the 3.3V supply is last in the sequence and does not ramp fast enough, or if the parallel
NOR Flash PROM cannot be ready when required by the FPGA, delay the FPGA
configuration process by holding either the FPGA's PROG_B input or INIT_B input Low,
described in “Delaying Configuration,” page 243. Release the FPGA when the parallel
NOR Flash PROM is ready. For example, a simple R-C delay circuit attached to the INIT_B
pin forces the FPGA to wait for a preselected amount of time. Alternately, a Power Good
signal from the 3.3V supply or a system reset signal accomplishes the same purpose. If
using a multi-FPGA daisy-chain configuration, use an open-drain or open-collector output
when driving PROG_B or INIT_B as multiple FPGAs are connected to the same node.
Similarly, if the Power Good signal is a 3.3V signal, remember that PROG_B is powered by
VCCAUX, which must be 2.5V on Spartan-3 and Spartan-3E FPGAs and may be 2.5V or 3.3V
on Spartan-3A/3A DSP FPGAs. Add a 68Ω or larger series resistor if there is a voltage
mismatch.

Extended Spartan-3A Family and Configuration Watchdog Timer
Extended Spartan-3A family FPGAs include a configuration watchdog timer (CWDT)
which makes parallel Flash configuration more robust, even when the 3.3V supply is
applied last.

In Master BPI mode, the CWDT ensures that the FPGA reads a valid synchronization word
from the parallel NOR Flash PROM within the first 216-1 cycles of CCLK. The
synchronization word is part of the FPGA configuration bitstream. If the FPGA does not
find the synchronization word, the CWDT forces the FPGA to automatically restart the BPI
the configuration process. The CWDT retries to successfully configure from parallel NOR

Figure 5-13: Parallel NOR Flash PROM/FPGA Power-On Timing if 3.3V Supply is
Last in Power-On Sequence

FPGA VCCO_2 minimum
Power On Reset Voltage

(VCCO2T)

Flash PROM
minimum voltage Flash PROM ready for

read operations
Flash

(tVCS)

Flash cannot be selected

FPGA initializes configuration
memory

3.3V Supply

FPGA accesses
Flash PROM

Time

NOR Flash PROM must
be ready for FPGA

access, otherwise delay
FPGA configuration

UG332_c5_03_111906

(TPOR)
(VCCINT, VCCAUX

already valid)

PROM
VCC setup

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 169
UG332 (v1.5) March 16, 2009

Byte Peripheral Interface (BPI) Timing
R

Flash three times before failing. If the FPGA fails to configure, it then drives the INIT_B pin
Low, indicating a failure.

Byte Peripheral Interface (BPI) Timing
Figure 5-14 provides a detailed timing diagram for the BPI configuration mode. The
specific diagram is for the Spartan-3E FPGA family, using the BPI Down mode. However,
the timing is also similar for the Extended Spartan-3A family FPGA families and for the
BPI Up mode.

The following numbered items correspond to the markers provided in Figure 5-14.

1. The M[2:0] mode pins must be set for BPI mode. Only the Spartan-3E FPGA supports
the BPI Down mode. Both Spartan-3E and Extended Spartan-3A family FPGAs
support BPI Up mode. See Table 5-2. The mode pin must be setup with sufficient time
before the rising edge of INIT_B.

Figure 5-14: BPI Configuration Timing Waveform (Spartan-3E BPI Down mode shown)

HSWAP
(Input)

HSWAP or PUDC_B must be stable before INIT_B goes High and remain constant throughout configuration.

Data DataData

AddressAddress

Data

Address

Byte 0

0xFF_FFFF

INIT_B

<0:1:1>
M[2:0]

TMINIT TINITM

LDC[2:0]

HDC

CSO_B

Byte 1

0xFF_FFFE

CCLK

A[23:0]

D[7:0]

TDCC
TCCD

TCCLK1

(Input)

(Input)

TINITADDR
TCCLKnTCCLK1

TCCO

CSI_B

RDWR_B
(Input)

New ConfigRate active

Pin initially pulled High by internal pull-up resistor if HSWAP or PUDC_B input is Low.

Pin initially high-impedance (Hi-Z) if HSWAP or PUDC_B input is High.

Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,
input values do not matter until DONE goes High, at which point the mode pins
become user-I/O pins.

(Input)

PROG_B
(Input)

UG332_c5_08_012709

(Open-Drain)

Shaded values indicate timing specifications for external parallel NOR Flash PROM.

PUDC_B

1

2

3

4
5

6

8

7

11
9

10

TAVQV12

(this input ignored on Extended Spartan-3A FPGAs)

(this input ignored on Extended Spartan-3A FPGAs)

http://www.xilinx.com

170 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

2. On Spartan-3E FPGAs, the CSI_B select input and the RDWR_B read/write control
input must be Low before the rising edge of INIT_B. It is possible to delay the start of
BPI mode configuration by controlling when CSI_B is asserted Low. The CSI_B and
RDWR_B pins are not used for Extended Spartan-3A family FPGAs.

3. The HSWAP or PUDC_B pull-up resistor control input must be setup and valid before
the rising edge of INIT_B. Similarly, the example in Figure 5-14 shows the pull-up
resistors enabled.

4. The HSWAP or PUDC_B control input defines the initial condition for the FPGA pins
that control the Flash, including LDC2, LDC1, LDC0, HDC, and CSO_B. If HSWAP or
PUDC_B = 1, then these pins are floating (Hi-Z). If HSWAP or PUDC_B = 0, then these
pins have an internal pull-up resistor.

5. After the FPGA completes its internal housecleaning and allows INIT_B to go High,
the FPGA actively drives the Flash control outputs.

6. The FPGA begins driving the CCLK clock output, which controls all the timing for BPI
interface.

7. The CCLK output begins operating at its lowest frequency option. The ultimate
frequency is controlled by a bitstream option called ConfigRate.

8. The FPGA-generated address outputs are clocked by the falling edge of CCLK.

9. The initial address is held for five CCLK cycles in BPI Up mode and two CCLK cycles
in BPI Down mode. BPI Down mode is only available on Spartan-3E FPGAs.

10. In response to the address inputs provided by the FPGA, the attached PROM
asynchronously presents output data.

11. During the first 320 bits in the bitstream, the FPGA loads the ConfigRate bitstream
setting that potentially increases the CCLK output frequency of in order to reduce
configuration time.

12. Two directly-related factors control the interface timing. One factor is the PROM data
access time, typically called TACC (tAVQV) or TAVQV in memory data sheets. The other
is the maximum CCLK frequency, controlled by the ConfigRate bitstream generator
setting. A faster PROM access time allows a higher ConfigRate setting, resulting in a
faster CCLK frequency and a correspondingly faster configuration time. See Table 5-6,
page 152.

Table 5-10 shows the timing requirements of the attached parallel Flash PROM, based on
FPGA data sheet timing values.

Table 5-10: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol Description Requirement Units

TCE
(tELQV)

Parallel NOR Flash PROM chip-
select time

ns

TOE
(tGLQV)

Parallel NOR Flash PROM output-
enable time

ns

TACC
(tAVQV)

Parallel NOR Flash PROM read
access time

ns

TCE TINITADDR≤

TOE TINITADDR≤

TACC 50%TCCLKn min() TCCO TDCC PCB–––≤

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 171
UG332 (v1.5) March 16, 2009

Limitations when Reprogramming via JTAG if FPGA Set for BPI Configuration
R

Limitations when Reprogramming via JTAG if FPGA Set for BPI
Configuration

The FPGA can always be reprogrammed via the JTAG port, regardless of the mode pin
(M[2:0]) settings. However, there is a minor limitation if using BPI mode and versions of
the ISE software prior to ISE 9.1i, Service Pack 1 (ISE 9.1.01i). The issue with prior software
releases exists for all Spartan-3A/3AN FPGA and all Spartan-3E FPGA FPGAs. The issue
is resolved using ISE 9.1i, Service Pack 1 or later. The issue does not exist for Spartan-3A
DSP FPGAs because support started in later software versions.

Using versions prior to ISE 9.1i, Service Pack 1, if the FPGA is set to configure in BPI mode
and the FPGA is attached to a parallel memory containing a valid FPGA configuration file,
then subsequent reconfigurations using the JTAG port will fail. Potential workarounds
include setting the mode pins for JTAG configuration (M[2:0] = <1:0:1>) or offsetting the
bitstream start address in Flash by 0x2000.

Spartan-3E BPI Mode Interaction with Right and Bottom Edge
Global Clock Inputs

Some of the Spartan-3E BPI mode configuration pins are shared with global clock inputs
along the right and bottom edges of the device (Bank 1 and Bank 2, respectively). These
pins are not easily reclaimable for clock inputs after configuration, especially if the FPGA
application access the parallel NOR Flash after configuration. Table 5-11 summarizes the
shared pins on Spartan-3E FPGAs. These pins are not shared connections on Extended
Spartan-3A family FPGAs.

TBYTE
(tFLQV,
tFHQV)

For x8/x16 PROMs only: BYTE# to
output valid time(3)

ns

Notes:
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK clock signal. The

post-configuration requirements might be different, depending on the application loaded into the FPGA and the resulting clock
source.

2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The

resistor value also depends on whether the FPGA’s HSWAP or PUDC_B pin is High or Low.

Table 5-10: Configuration Timing Requirements for Attached Parallel NOR Flash (Cont’d)

Symbol Description Requirement Units

TBYTE TINITADDR≤

http://www.xilinx.com

172 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

BPI Data Ordering
On Xilinx FPGAs, data bit D0 is the most-significant bit (MSB) and bit D7 is the least-
significant bit (LSB). Consequently, it is crucial to understand how the data ordering in the
configuration data file corresponds to the data ordering expected by the FPGA. The Xilinx
PROM file generation software provides the option to generate bit-swapped PROM files.
The .mcs, .exo, and .tek PROM file formats are byte-swapped unless the BitGen -spi option
is used. The .hex file format can be byte-swapped or not byte-swapped, depending on user
options. The bitstream files (.bit, .rbt, .bin) are never byte-swapped. Although this
convention differs from many other devices, it is consistent across all Xilinx FPGAs. The
BPI data ordering is the same as the SelectMAP data ordering. See “SelectMAP Data
Ordering” in Chapter 7 for more details.

Table 5-11: Spartan-3E: Shared BPI Configuration Pins and Global Buffer Input
Pins

Device
Edge

Global Buffer
Input Pin

BPI Mode
Configuration Pin

Bottom

GCLK0 RDWR_B

GCLK2 D2

GCLK3 D1

GCLK12 D7

GCLK13 D6

GCLK14 D4

GCLK15 D3

Right

RHCLK0 A10

RHCLK1 A9

RHCLK2 A8

RHCLK3 A7

RHCLK4 A6

RHCLK5 A5

RHCLK6 A4

RHCLK7 A3

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 173
UG332 (v1.5) March 16, 2009

R

Chapter 6

Master Parallel Mode

Master Parallel Mode is only available on the Spartan®-3 FPGA family. See the
DS099: Spartan-3 FPGA Family Data Sheet for details.

The Extended Spartan-3A family and Spartan-3E FPGA families do not support Master
Parallel Mode, but do support a variation described in Chapter 5, “Master BPI Mode.”

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

174 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 6: Master Parallel Mode
R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 175
UG332 (v1.5) March 16, 2009

R

Chapter 7

Slave Parallel (SelectMAP) Mode

When using Slave Parallel mode configuration (M[2:0] = <1:1:0>), an external host, such as
a microprocessor or microcontroller, writes byte-wide configuration data into the FPGA,
using a typical peripheral interface. The interface for Spartan®-3E and Extended Spartan-
3A family FPGAs appears in Figure 7-1, page 176. The interface for Spartan-3 FPGAs is
similar but there a few minor differences, as shown in Figure 7-2, page 177. The figures
show optional components in gray and designated “NO LOAD”. A list of Slave Parallel
(SelectMAP) interface pins appears in Table 7-2, page 179.

An overview of Slave Parallel functions is provided in Table 7-1, page 178. The external
download host starts the configuration process by pulsing the FPGA’s PROG_B pin Low
and monitoring that the INIT_B pin returns High, indicating that the FPGA is ready to
receive its first data. The host asserts the active-Low chip-select signal (CSI_B or CS_B in
the Spartan-3 family) and the active-Low Write signal (RDWR_B). The host then continues
supplying data and clock signals until either the FPGA’s DONE pin goes High, indicating
a successful configuration, or until the FPGA’s INIT_B pin goes Low, indicating a
configuration error.

The FPGA captures data on the rising CCLK edge. On Spartan-3 and Spartan-3E FPGAs, if
the CCLK frequency exceeds 50 MHz, then the host must also monitor the FPGA’s BUSY
output. Extended Spartan-3A family FPGAs do not have a BUSY pin. If the FPGA asserts
BUSY High, the host must hold the data for an additional clock cycle, until BUSY returns
Low. If the CCLK frequency is 50 MHz or below, the BUSY pin may be ignored but actively
drives during configuration.

The configuration process requires more clock cycles than indicated from the configuration
bitstream size alone. Additional clocks are required during the FPGA’s start-up sequence,
especially if the FPGA is programmed to wait for selected Digital Clock Managers (DCMs)
to lock to their respective clock inputs (LCK_cycle). See “Startup,” page 248 for additional
information.

If the Slave Parallel interface is only used to configure the FPGA, never to read data back
data from the FPGA, then the RDWR_B signal can also be removed from the interface, but
must remain Low during configuration.

After configuration, all of the interface pins except DONE and PROG_B are available as
user I/Os. Alternatively, the bidirectional SelectMAP configuration interface is available
after configuration. To continue using SelectMAP mode, set the Persist:Yes bitstream
generator option. The external host can then read and verify configuration data.

The Slave Parallel mode is also used with BPI mode to create multi-FPGA daisy chains.
The lead FPGA is set for BPI mode configuration; all the downstream daisy-chain FPGAs
are set for Slave Parallel configuration, as highlighted in Figure 5-4, page 156.

http://www.xilinx.com

176 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

Figure 7-1: Slave Parallel Mode (Spartan-3E and Extended Spartan-3A Family FPGAs)

VCCAUX

PROGRAM

D[7:0]

BUSY
SELECT

READ/WRITE
CLOCK

PROG_B

INIT_B
DONE

VCCINT

VCCAUX

CSO_B
INIT_B

CSI_B

PROG_B DONE

GND

VCCO_2

+1.2V

M2
M1

‘1’
‘1’

M0

HSWAP VCCO_0P

CCLK

D[7:0]

‘0’

VCCO _0

V

RDWR_B

Spartan-3E/3A/3AN/3A DSP

BUSY

Slave
Parallel
Mode

V

V

VCCAUX

33
0Ω

4.
7k
Ω

VCC

GND

Configuration
Memory
Source

Internal memory
Disk drive
Over network
Over RF link

Intelligent
Spartan-3A,

Spartan-3AN,
and Spartan-3A DSP
FPGAs have internal

pull-up resistors

Download Host

Microcontroller
Processor
Tester
Computer

TMS

TDO

TCK

TDI

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

14

1

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

PUDC_B

N
O

 L
O

A
D

4
.7

K
Ω

N
O

 L
O

A
D

= Dedicated internal pull-up resistor

UG332_c7_01_062708

2.5V
3.3V >68Ω

0Ω

JTAG
Voltage Resistors

NOTE:
Only Spartan-3A,
Spartan-3AN, and
Spartan-3A DSP
FPGAs support
VCCAUX = 3.3V

J

(DOUT on Spartan-3A/
3AN/3A DSP)

Assumes VCCAUX = 2.5V

FPGA

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 177
UG332 (v1.5) March 16, 2009

R

Figure 7-2: Slave Parallel Mode (Spartan-3 FPGAs)

UG332_c7_02_022607

+2.5V

PROGRAM

VCCAUX

PROG_B DONE

GND

VCCO_4 V

Slave
Parallel
Mode

V

4.
7k

Ω

VCCAUX

33
0Ω

4.
7k

Ω

TMS

TDO

TCK

TDI

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

VCCAUX1

14

J

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

N
O

 L
O

A
D

N
O

 L
O

A
D

VCCO_5

M2
M1

‘1’
‘1’

M0‘0’

CCLK

INIT_B

VCCINT

+1.2V

P HSWAP_EN

Spartan-3 FPGA

D[7:0]
BUSY

SELECT
READ/WRITE

CLOCK
PROG_B

INIT_B
DONE

CS_B

D[7:0]

RDWR_B

BUSY

V

VCC

GND

Configuration
Memory
Source

Internal memory
Disk drive
Over network
Over RF link

Intelligent
Download Host

Microcontroller
Processor
Tester
Computer

= Dedicated internal pull-up resistor

2.5V
3.3V >68Ω

0Ω

JTAG
Voltage Resistors

http://www.xilinx.com

178 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

Table 7-1: Slave Parallel (SelectMAP) Function Overview

Inputs to FPGA (D[7:0] is bidirectional) FPGA Outputs
Function

PROG_B CSI_B RDWR_B D[7:0] BUSY CCLK INIT_B DONE

0 X X X X X X Drive PROG_B Low to reset FPGA.

1 X X X X 0 0
FPGA initializing when INIT_B is
Low after a PROG_B pulse or
initially at power-on.

1 X X X X 1 0
FPGA ready for configuration
when INIT_B returns High.

1 1 X X X 1 0 No operation when CSI_B is High.

1 0 0
D[7:0]

to FPGA
0 ↑ 1 0

To write configuration data to
FPGA, drive RDWR_B Low before
or coincident with driving CSI_B
Low. Each D[7:0] byte captured on
each rising CCLK edge.

1 0 0
D[7:0]

to FPGA
1 ↑ 1 0

BUSY is High, indicating that the
FPGA not ready to receive data.
Hold current D[7:0] byte until the
next CCLK cycle when BUSY
returns Low. BUSY not used on
Extended Spartan-3A family
FPGAs.

1 0 0 to 1 X X X X ABORT condition if RDWR_B
changes state while CSI_B is Low.

1 0 1 to 0s X X X X

1 0 1
D[7:0]
from

FPGA
0 ↑ 1 1

After configuration, if the
Persist:Yes bitstream option is set,
the Slave Parallel (SelectMAP)
interface can be used to Readback
data from the FPGA, assuming the
security bits were not set in the
FPGA bitstream.

1 X X X 0 8x ↑ X 1
FPGA successfully configured
eight CCLK cycles after DONE
goes High.

1 X X X X 0 0
At the end of configuration, if
INIT_B is again Low, then a
configuration CRC error occurred.

Notes:
X = don’t care
↑ = rising edge
CSI_B is CS_B in the Spartan-3 family

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 179
UG332 (v1.5) March 16, 2009

R

Table 7-2: Slave Parallel Mode Connections

Pin Name
FPGA

Direction
Description During Configuration After Configuration

Spartan-3E:
HSWAP

Spartan-3A:
Spartan-3AN
Spartan-3A DSP:

PUDC_B

Spartan-3:

HSWAP_EN

Input User I/O Pull-Up Control. When
Low during configuration,
enables pull-up resistors in all
I/O pins to respective I/O bank
VCCO input.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level
throughout configuration.

Spartan-3:
Dedicated pin (don’t
care after configuration)
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

User I/O

M[2:0] Input Mode Select. Selects the FPGA
configuration mode. See “Design
Considerations for the HSWAP,
M[2:0], and VS[2:0] Pins,”
page 75.

M2 = 1, M1 = 1, M0 = 0
Sampled when INIT_B goes
High.

User I/O

D[7:0] Input Data Input. Byte-wide data provided by
host. FPGA captures data on
rising CCLK edge. D0 is the
MSB (see “SelectMAP Data
Ordering”)

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

Spartan-3:
Spartan-3E:
BUSY

Output Busy Indicator. Not required for
Extended Spartan-3A family
FPGAs but function exists on
DOUT pin. Do not connect
DOUT to active logic during
configuration.

If CCLK frequency is less than
50 MHz, this pin may safely be
ignored. When High, indicates
that the FPGA is not ready to
receive additional
configuration data. Host must
hold data an additional clock
cycle.

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

Spartan-3E:
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

CSI_B

Spartan-3:

CS_B

Input Chip Select Input. Active Low. Must be Low during valid data
cycles.

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

RDWR_B Input Read/Write Control. Active Low
write enable.

Must be Low throughout
configuration. Do not change
the state of RDWR_B while
CSI_B or CS_B is asserted;
otherwise an ABORT is issued.

User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

CCLK Input Configuration Clock. If CCLK
PCB trace is long or has multiple
connections, terminate this
output to maintain signal
integrity. See “CCLK Design
Considerations,” page 58.

External clock. User I/O. If bitstream
option Persist:Yes,
becomes part of
SelectMap parallel
peripheral interface.

http://www.xilinx.com

180 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

Voltage Compatibility
 Most Slave Parallel interface signals are within the FPGA’s I/O Bank 2, supplied by the

VCCO_2 supply input. The VCCO_2 voltage can be 1.8V, 2.5V, or 3.3V to match the
requirements of the external host, ideally 2.5V. Using 1.8V or 3.3V requires additional
design considerations as the DONE and PROG_B pins are powered by the FPGA’s 2.5V
VCCAUX supply. Extended Spartan-3A family FPGAs do not support 1.8V PROMs because
of the Spartan-3A FPGA’s Power-On Reset (POR) voltage threshold, VCCO2T, shown in the
appropriate Extended Spartan-3A family data sheet and summarized in Table 12-1,
page 241.

See XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional information.

Also see “JTAG Cable Voltage Compatibility,” page 198.

Spartan-3E:
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

CSO_B

Output Chip Select Output. Active Low.
Not provided on Spartan-3
FPGAs.

Not used in single-FPGA
designs; CSO_B is pulled up,
not actively driving. In a
Spartan-3E or Extended
Spartan-3A family parallel
daisy-chain configuration, this
pin connects to CSI_B or CS_B
input of the next FPGA in the
chain.

User I/O

INIT_B Open-drain
bidirectional

I/O

Initialization Indicator. Active
Low. Goes Low at the start of
configuration during the
Initialization memory clearing
process. Released at the end of
memory clearing, when mode
select pins are sampled.

Active during configuration. If
CRC error detected during
configuration, FPGA drives
INIT_B Low.

User I/O. If unused in
the application, drive
INIT_B High to avoid a
floating value. See
INIT_B “After
Configuration”.

DONE Open-drain
bidirectional

I/O

FPGA Configuration Done. Low
during configuration. Goes High
when FPGA successfully
completes configuration.

Low indicates that the FPGA is
not yet configured.

When High, indicates
that the FPGA
successfully configured.

PROG_B Input Program FPGA. Active Low.
When asserted Low for 500 ns or
longer, forces the FPGA to restart
its configuration process by
clearing configuration memory
and resetting the DONE and
INIT_B pins once PROG_B
returns High.

Must be High to allow
configuration to start.

Drive PROG_B Low and
release to reprogram
FPGA.

Table 7-2: Slave Parallel Mode Connections (Cont’d)

Pin Name
FPGA

Direction
Description During Configuration After Configuration

V

http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 181
UG332 (v1.5) March 16, 2009

Daisy Chaining
R

Daisy Chaining
If the application requires multiple FPGAs with different configurations, then configure
the FPGAs using a daisy chain. Use Slave Parallel mode (M[2:0] = <1:1:0>) for all FPGAs in
the daisy chain. There are two possible topologies available, one that supports only
Spartan-3E and Extended Spartan-3A family FPGAs and another that works with any
modern Xilinx® FPGA, Virtex® or Spartan-II FPGA and later.

Spartan-3E/Extended Spartan-3A Family Slave Parallel Daisy Chains
Figure 7-3, page 181 shows a daisy-chain topology that primarily supports Spartan-3E and
Extended Spartan-3A family FPGAs, although the last FPGA in the chain can be from any
modern Xilinx FPGA family. It essentially leverages the BPI mode daisy-chain technique.
The upstream FPGA in the chain drives its CSO_B Low, enabling the downstream FPGA’s
CSI_B or CS_B input. Only Spartan-3E, Spartan-3A, Spartan-3AN, Spartan-3A DSP, and
Virtex-5 FPGAs have a CSO_B output. Consequently, one of these FPGAs must be the first
and intermediate FPGAs in the daisy chain.

Pull-up resistors on the CSO_B to CSI_B connect are required if the FPGAs HSWAP,
PUDC_B, HSWAP_EN or input is High, meaning that the FPGA’s internal pull-up resistors
are disabled during configuration.

Figure 7-3: Slave Parallel Daisy Chain for Spartan-3E/Extended Spartan-3A Family FPGAs

N
O

 L
O

A
D

+3.3V

N
O

 L
O

A
D

‘1’
‘1’
‘0’

‘0’

Slave
Parallel
Mode

‘1’
‘1’
‘0’

‘0’

Spartan-3A/3AN/3A DSP,
Spartan-3E,

Virtex-5 FPGAs

Any Xilinx FPGA

CCLK

INIT_B

DONE

D[7:0]

First, Intermediate
FPGAs

Last FPGA in
Daisy Chain

CSI_B
CCLK
RDWR_B

M2
M1
M0

CSO_B

D[7:0]

PROG_B

INIT_B

DONE

CSI_B
CCLK
RDWR_B

M2
M1
M0

CSO_B

D[7:0]

PROG_B

INIT_B

DONE

P P

+3.3V

4.
7k
�

+3.3V

4.
7k
�

0� 0� 0� 0�

PROG_B

UG332_c7_03_040107

http://www.xilinx.com

182 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

Slave Parallel Daisy Chains Using Any Modern Xilinx FPGA Family
Figure 7-4, page 182 describes an alternate Slave Parallel daisy-chain scheme that supports
any modern Xilinx FPGA family, including all Spartan-3 generation FPGAs. The topology
is similar to that shown in Figure 7-3, page 181 except that each FPGA has a separate CSI_B
or CS_B chip-select input.

SelectMAP Data Loading
The SelectMAP interface provides for either continuous or non-continuous data loading.
Data loading is controlled by the FPGA’s CSI_B, RDWR_B, CCLK, and BUSY signals.
Extended Spartan-3A family FPGAs do not have a BUSY signal.

CSI_B
The active-Low chip-select input (CSI_B) enables the SelectMAP interface. When CSI_B is
High, the FPGA ignores the SelectMAP interface. The data port and BUSY output pin are
high-impedance (Hi-Z). CSI_B in the Spartan-3E and Extended Spartan-3A families is
equivalent to CS_B in the Spartan-3 family.

If only one device is being configured through the SelectMAP and readback is not
required, or if ganged SelectMAP configuration is used, connect the CSI_B signal to GND.

Figure 7-4: Slave Parallel Daisy Chain Using Any Modern Xilinx FPGA
N

O
 L

O
A

D

+3.3V

N
O

 L
O

A
D

‘1’
‘1’
‘0’

Slave
Parallel
Mode

‘1’
‘1’
‘0’

Any Xilinx FPGA

CCLK

INIT_B

DONE

D[7:0]

First, Intermediate
FPGAs

Last FPGA in
Daisy Chain

CSI_B
CCLK
RDWR_B

M2
M1
M0

D[7:0]

PROG_B

INIT_B

DONE

CSI_B
CCLK
RDWR_B

M2
M1
M0

D[7:0]

PROG_B

INIT_B

DONE

0Ω 0Ω 0Ω 0Ω

PROG_B

Any Xilinx FPGA

CSO_BCSO_B

RDWR_B

FPGA_SEL1

FPGA_SEL0

UG332_c7_c4_120106

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 183
UG332 (v1.5) March 16, 2009

Continuous SelectMAP Data Loading
R

RDWR_B
The RDWR_B input controls whether the SelectMAP data pins are inputs or outputs.

• When RDWR_B = 0, the D[7:0] data pins are inputs (writing to the FPGA).

• When RDWR_B = 1, the D[7:0] data pins are outputs (reading from the FPGA).

When writing configuration data to the FPGA, the RDWR_B pin must be Low. When
reading back configuration information from the FPGA, the RDWR_B pin must be High,
while CSI_B is deasserted.

Changing the value of RDWR_B while CSI_B is Low triggers an ABORT if the FPGA
receives a rising edge on CCLK (see “SelectMAP ABORT,” page 186). If Readback is not
used, RDWR_B can be tied to ground or used for debugging with SelectMAP ABORT.

The RDWR_B signal is ignored while CSI_B is High. Read/write control (three-state
control) of the D[7:0] data pins is asynchronous. The FPGA actively drives SelectMAP data.

CCLK
All activity on the SelectMAP data bus is synchronous to CCLK. When writing
configuration data to the FPGA, RDWR_B is Low and the FPGA samples the data on rising
CCLK edges. When RDWR_B is set for read control (RDWR_B = 1, Readback), the FPGA
updates the SelectMAP data pins on rising CCLK edges.

Configuration can be paused by pausing CCLK as outlined in “Non-Continuous
SelectMAP Data Loading,” page 185.

BUSY
If the system writes data to or reads data from the FPGA at less than 50 MHz, then the
BUSY pin can be left unconnected. Extended Spartan-3A family FPGAs do not require a
BUSY pin but have the same functionality on the DOUT pin.

BUSY is an output indicating when the device is ready to receive configuration data or
drive Readback data.

• When BUSY = 0, the FPGA is ready to receive or send data, depending on the
operation.

• When BUSY = 1, the FPGA is not ready to receive or send data. If writing to the FPGA,
hold the current data value until BUSY returns Low.

When CSI_B is deasserted (CSI_B = 1), the BUSY pin is in a high-impedance (Hi-Z) state.

BUSY remains in a Hi-Z state until CSI_B is asserted. If CSI_B is asserted before power-up
— for example, if the pin is tied to GND —BUSY initially is in a Hi-Z state, then drives Low
after the Power-On Reset is released.

Continuous SelectMAP Data Loading
Continuous data loading occurs when the external processor or controller provides an
uninterrupted stream of configuration data to the FPGA. After power-up, the controller
asserts RDWR_B = 0 to write data to the FPGA and asserts CSI_B = 0 to select the FPGA.
This action causes the FPGA to drive BUSY Low, which is an asynchronous transition.
Drive the FPGA’s RDWR_B pin Low before or coincident with asserting CSI_B Low,
otherwise an ABORT occurs, described in “SelectMAP ABORT,” page 186.

http://www.xilinx.com

184 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

On the next rising CCLK edge, the FPGA begins sampling the D[7:0] data pins. Actual
FPGA configuration begins after the FPGA recognizes the synchronization word, as
described in “Synchronization,” page 244.

After the configuration bitstream is loaded, the device enters the Startup sequence. The
FPGA asserts its DONE signal High in the Startup phase specified by the DONE_cycle
bitstream option. See “Startup,” page 248. The processor or controller must continue
sending CCLK pulses until after the Startup sequence successfully completes, which
requires several CCLK pulses after DONE goes High.

After configuration, the CSI_B and RDWR_B signals can be deasserted, or they can remain
asserted. Because the SelectMAP port is inactive, toggling RDWR_B at this time does not
cause an ABORT event. Figure 7-5 summarizes the timing of SelectMAP configuration
with continuous data loading.

The following numbered items correspond to the markers provided in Figure 7-5.

1. CSI_B signal can be tied Low if there is only one device on the SelectMAP bus. If CSI_B
is not tied Low, it can be asserted at any time.

2. RDWR_B can be tied Low if readback is not needed. RDWR_B should not be toggled
after CSI_B has been asserted because this triggers an ABORT. See “SelectMAP
ABORT,” page 186.

3. If CSI_B is tied Low, BUSY drives Low before INIT_B returns High.

4. The FPGA samples the M[2:0] mode-select pins when INIT_B goes High.

5. Assert RDWR_B before CSI_B to avoid causing an abort.

6. CSI_B is asserted, enabling the SelectMAP interface.

7. BUSY (Spartan-3/3E only) remains in High-Z state until CSI_B is asserted.

8. The first D[7:0] byte is loaded on the first rising CCLK edge after CSI_B is asserted.

9. The configuration bitstream is loaded one byte per rising CCLK edge.

10. After the last byte is loaded, the FPGA enters the Startup sequence.

11. The startup sequence lasts a minimum of eight CCLK cycles.

Figure 7-5: SelectMAP Continuous Data Loading

PROG_B

INIT_B

CCLK

CSI_B

RDWR_B

DATA[7:0]

UG332_c7_05_081006

Byte 0 Byte 1 Byte n

BUSY

DONE

1

2

3

4

5

7

6

12

13

14

High-Z

9 10 118

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 185
UG332 (v1.5) March 16, 2009

Non-Continuous SelectMAP Data Loading
R

12. The DONE pin goes High during the startup sequence. Additional CCLK cycles can be
required to complete the startup sequence. See “Startup,” page 248.

13. After configuration has finished, the CSI_B signal can be deasserted.

14. After the CSI_B signal is deasserted, RDWR_B can be deasserted.

Non-Continuous SelectMAP Data Loading
Non-continuous data loading is used in applications where the processor or controller
cannot provide an uninterrupted stream of configuration data. This may occur, for
example, if the controller pauses configuration while it fetches additional data, switches to
another task, or services an interrupt.

There are two methods to throttle or pause the configuration data throughput in the
Spartan-3 and Spartan-3E FPGAs. Only the second method is supported in the Spartan-3A,
Spartan-3AN, and Spartan-3A DSP FPGAs.

1. Deassert the CSI_B signal with a free-running CCLK, shown in Figure 7-6 and
described in “Deasserting CSI_B,” page 185.

2. Pause CCLK, shown in Figure 7-7 and described in “Pausing CCLK,” page 186.

Deasserting CSI_B
Note: This method is only supported in the Spartan-3 and Spartan-3E FPGAs. It is not supported in
the Extended Spartan-3A FPGAs, which should instead use the “Pausing CCLK” method. CSI_B is
labeled CS_B in the Spartan-3 family.

The following numbered items correspond to the markers provided in Figure 7-6.

1. The external processor drives RDWR_B Low, setting the FPGA’s D[7:0] pins as inputs
for configuration. The RDWR_B input can be tied Low if Readback is not used in the
application. RDWR_B should not be toggled after CSI_B has been asserted because this
triggers an ABORT, described in “SelectMAP ABORT,” page 186.

2. The FPGA is ready for configuration after INIT_B returns High.

Figure 7-6: SelectMAP Non-Continuous Data Loading with Controlled CSI_B

PROG_B

INIT_B

CCLK

CSI_B

RDWR_B

DATA[7:0]

UG332_c7_06_040207

BUSY

2

1

3

4

High-Z Z-hgiHZ-hgiH

5 6 7 8 9 10 11 12 13 14

http://www.xilinx.com

186 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

3. The processor asserts CSI_B Low, enabling the SelectMAP interface. The CSI_B input
can be tied Low if there is only one device on the SelectMAP bus. If CSI_B is not tied
Low, it can be asserted at any time.

4. BUSY goes Low shortly after CSI_B is asserted. If CSI_B is tied Low, BUSY is driven
Low before INIT_B returns High.

5. A D[7:0] data byte is loaded on the rising CCLK edge.

6. A D[7:0] data byte is loaded on the rising CCLK edge.

7. The processor deasserts CSI_B, and the data on D[7:0] is ignored.

8. The processor deasserts CSI_B, and the data on D[7:0] is ignored.

9. A D[7:0] data byte is loaded on the rising CCLK edge.

10. A D[7:0] data byte is loaded on the rising CCLK edge.

11. The processor deasserts CSI_B, and the data on D[7:0] is ignored

12. A D[7:0] data byte is loaded on the rising CCLK edge.

13. A D[7:0] data byte is loaded on the rising CCLK edge.

14. A D[7:0] data byte is loaded on the rising CCLK edge.

Pausing CCLK

The following numbered items correspond to the markers provided in Figure 7-7.

1. The D[7:0] data pins are high-impedance (Hi-Z) while CSI_B is deasserted.

2. RDWR_B has no effect on the device while CSI_B is deasserted.

3. CSI_B is asserted by the processor. The FPGA captures configuration data on rising
CCLK edges.

4. A D[7:0] data byte is loaded on the rising CCLK edge.

5. A D[7:0] data byte is loaded on the rising CCLK edge.

6. A D[7:0] data byte is loaded on the rising CCLK edge.

SelectMAP ABORT
An ABORT is an interruption in the SelectMAP configuration process or in the Readback
sequence that occurs if the RDWR_B pin changes state while CSI_B is asserted Low.
During a configuration ABORT, the FPGA drives internal status information onto the
D[7:4] pins over the next four CCLK cycles. The other data pins, D[3:0] remain High. After
the ABORT sequence finishes, the processor that is downloading the FPGA must

Figure 7-7: Non-Continuous SelectMAP Data Loading with Controlled CCLK

CCLK

CSI_B

RDWR_B

DATA[7:0]

UG332_c7_07_081106

Byte 0 Byte 1 Byte n

1

2

3

4 5 6

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 187
UG332 (v1.5) March 16, 2009

SelectMAP ABORT
R

resynchronize the configuration logic before resuming configuration. For applications that
must deassert RDWR_B between bytes use the method described in “Pausing CCLK,”
page 186.

Configuration Abort Sequence Description
An ABORT is signaled during configuration as shown in Figure 7-8.

1. The configuration sequence begins normally.

2. The processor changes the value on the RDWR_B pin while the FPGA is still selected;
CSI_B is Low.

3. BUSY goes High if CSI_B remains asserted Low. The FPGA drives the status word onto
the data pins if RDWR_B is High, reading data from the FPGA. The Status value is not
presented by the FPGA if RDWR_B is Low.

4. The ABORT lasts for four clock cycles, and Status is updated.

Readback Abort Sequence Description
An ABORT is signaled during readback as shown in Figure 7-9.

Figure 7-8: Configuration Abort Sequence

DATA[7:0]

BUSY

CCLK

STATUS

ABORT UG332_c7_08_081106

CSI_B

RDWR_B

http://www.xilinx.com

188 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

1. The readback sequence begins normally.

2. The processor changes the RDWR_B pin while the FPGA is still selected; CSI_B is Low.

3. BUSY (Spartan-3/3E only) goes High if CSI_B remains asserted Low. The FPGA drives
the status word onto the data pins if RDWR_B is High, reading data from the FPGA.
The Status value is not presented by the FPGA if RDWR_B is Low.

ABORT operations during Readback typically are not followed by a status word because
the RDWR_B signal will be Low, causing the ABORT. When RDWR_B is Low, the
processor is writing to the FPGA and the FPGA’s D[7:0] pins are inputs. The FPGA cannot
present the Status value.

ABORT Status Word
During the configuration ABORT sequence, the FPGA presents a status word onto the
D[7:4] pins. The other data pins, D[3:0], are all High. The key for that status word is given
in Table 7-3.

Figure 7-9: Readback Abort Sequence

DATA[7:0]

BUSY

CCLK

FPGA

ABORT UG332_c7_09_081106

CSI_B

RDWR_B

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 189
UG332 (v1.5) March 16, 2009

SelectMAP ABORT
R

The ABORT sequence lasts four CCLK cycles. During those cycles, the status word changes
to reflect data alignment and ABORT status. An example ABORT sequence appears in
Table 7-4.

After the last cycle, the synchronization word can be reloaded to establish data alignment.

Resuming Configuration or Readback After an Abort
There are two ways to resume configuration or readback after an ABORT:

1. The FPGA can be resynchronized after the ABORT completes by resending the
configuration synchronization word. See Table 12-3, page 244.

2. Reset the FPGA by pulsing PROG_B Low at any time.

To resynchronize the device, CSI_B must first be deasserted then reasserted. To resume
configuration or readback, resend the last configuration or readback packet that was in
progress when the ABORT occurred. Alternatively, restart configuration or readback from
the beginning.

Table 7-3: ABORT Status Word

Bit Number Status Bit Name Meaning

D7 CFGERR_B Configuration Error, active Low

0 = A configuration error has occurred.

1 = No configuration error.

D6 DALIGN Synchronization Word Received

0 = No synchronization word received.

1 = Synchronization word received.

D5 RIP Readback In Progress

0 = No readback in progress.

1 = A readback is in progress.

D4 IN_ABORT_B ABORT in progress, active Low

0 = Abort is in progress.

1 = No abort in progress.

D[3:0] N/A 1111 (all High)

Table 7-4: Example ABORT Sequence

D[7:0] from
FPGA

D7 D6 D5 D4 D[3:0]

CFGERR_B DALIGN RIP IN_ABORT_B N/A

11011111 1 1 0 1 1111

11001111 1 1 0 0 1111

10001111 1 0 0 0 1111

10011111 1 0 0 1 1111

http://www.xilinx.com

190 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

Persist
Generally, the FPGA’s dual-purpose configuration pins become user-I/O pins after
configuration. The SelectMAP configuration port can be maintained after configuration by
setting the bitstream generation option Persist:Yes or by selecting “Allow SelectMAP Pins to
Persist” in the Project Navigator. Allowing the configuration port to persist enables
readback or reconfiguration through the external configuration pins.

The pins that retain their configuration function when Persist:Yes is selected appear in
Table 7-5. These pins become disconnected from the user design when Persist is used and
therefore cannot be used by the design.

When Persist:Yes is selected, the post-configuration CRC checker in the Spartan-3A,
Spartan-3AN, and Spartan-3A DSP FPGAs is clocked by CCLK.

SelectMAP Reconfiguration
The term reconfiguration refers to reprogramming an FPGA after its DONE pin has gone
High, which is distinctly different than programming the FPGA immediately after power
is applied. To reconfigure the FPGA, pulse the PROG_B pin Low, which is identical to
configuration, or reconfigure by resynchronizing the FPGA and sending configuration
data.

Generally, the FPGA’s SelectMAP pins become user-I/O pins after configuration, because
the Persist:No bitstream option is set by default. To reconfigure a device in SelectMAP
mode without pulsing PROG_B, set the bitstream option Persist:Yes, which reserves the
Slave Parallel (SelectMAP) interface pins after configuration, preventing them from
becoming user-I/O pins.

Reconfigure the FPGA by clocking the appropriate synchronization word, shown in
Table 12-3, page 244, into the SelectMAP port. The remainder of the operation is identical

Table 7-5: Pins Affected by Persist

Pin Name FPGA Families Description

M[2:0]
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN,

Spartan-3A DSP
Mode Select

CCLK
Spartan-3E, Spartan-3A, Spartan-3AN,

Spartan-3A DSP
Configuration Clock

(Dedicated in Spartan-3)

INIT_B
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN,

Spartan-3A DSP
Initialization

CSI_B
Spartan-3E, Spartan-3A, Spartan-3AN,

Spartan-3A DSP Chip Select, Active-Low

CS_B Spartan-3

RDWR_B Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN,
Spartan-3A DSP

Read/Write

BUSY Spartan-3, Spartan-3E FPGA Busy Indicator

D[7:0]
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN,

Spartan-3A DSP
Data

A[23:20] Spartan-3E
Highest-order Address

Lines

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 191
UG332 (v1.5) March 16, 2009

SelectMAP Data Ordering
R

to configuration as described above. The devices support full reconfiguration through the
SelectMAP port.

SelectMAP Data Ordering
On Spartan-3 generation FPGAs, by Xilinx convention, data bit D0 is the most-significant
bit (MSB) and bit D7 is the least-significant bit (LSB). However, this convention varies
between vendors and can be especially confusing when the FPGA uses one convention
and the attached processor downloading configuration data to the FPGA uses the opposite
convention! Consequently, it is crucial to understand how the data ordering in the
configuration data file corresponds to the data ordering expected by the FPGA.

In SelectMAP, the byte-wide configuration data is loaded one byte per CCLK, with the
most-significant bit of each byte presented to the FPGA’s D0 data pin. The same data
ordering applies to the BPI mode.

Table 7-6 provides an example of how the FPGA would like to see the hexadecimal value
0xABCD presented on the SelectMAP data bus. Note how the bits within each byte need to
be reversed.

Notes:
1. D[0:7] represent the SelectMAP DATA pins.

Some applications can accommodate the non-conventional data ordering without much
difficulty. For other applications, it may be more convenient to store the source
configuration data file with the data bits already bit-swapped, meaning that the bits in
each byte of the data stream are reversed. The Xilinx PROM file generation software
provides the option to generate bit-swapped PROM files.

Byte Swapping
The .mcs, .exo, and .tek PROM file formats are byte-swapped unless the -spi option is
used. The .hex file format can be byte-swapped or not byte-swapped, depending on user
options. The bitstream files (.bit, .rbt, .bin) are never byte-swapped.

The .hex file format contains only configuration data. The other PROM file formats
include address and checksum information that should not be sent to the FPGA. The
address and checksum information is used by some third-party device programmers, but
is not programmed into the PROM.

Figure 7-10 shows how two bytes of data (0xABCD) are byte-swapped.

Table 7-6: Bit Ordering for SelectMAP 8-Bit Mode

CCLK
Cycle

Hex
Equivalent

D7 D6 D5 D4 D3 D2 D1 D0

1 0xAB 1 1 0 1 0 1 0 1

2 0xCD 1 0 1 1 0 0 1 1

http://www.xilinx.com

192 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 7: Slave Parallel (SelectMAP) Mode
R

The MSB of each byte goes to the D0 pin regardless of the orientation of the data:

• In the byte-swapped version of the data, the bit that goes to D0 is the rightmost bit

• In the non-byte-swapped data, the bit that goes to D0 is the leftmost bit.

Whether or not data must be byte-swapped is entirely application-dependent, and is only
applicable for SelectMAP configuration applications. Non-byte-swapped data should be
used for SPI and Slave serial downloads.

Figure 7-10: Byte Swapping Example

ug071_30_120903

Hex:

Binary:

Byte-
Swapped
Binary:

Byte-
Swapped
Hex:

SelectMAP
Data Pin:

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

A B C D

1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

D 5 B 3

SelectMAP
Data Pin:

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 193
UG332 (v1.5) March 16, 2009

R

Chapter 8

Slave Serial Mode

In Slave Serial mode (M[2:0] = <1:1:1>), an external host such as a microprocessor or
microcontroller writes serial configuration data into the FPGA, using the synchronous
serial interface shown in Figure 8-1. The figure shows optional components in gray. The
serial configuration data is presented on the FPGA’s DIN input pin with sufficient setup
time before each rising edge of the externally generated CCLK clock input.

The intelligent host starts the configuration process by pulsing PROG_B and monitoring
that the INIT_B pin goes High, indicating that the FPGA is ready to receive its first data.
The host then continues supplying data and clock signals until either the DONE pin goes
High, indicating a successful configuration, or until the INIT_B pin goes Low, indicating a
configuration error. The configuration process requires more clock cycles than indicated
from the configuration file size. Additional clocks are required during the FPGA’s start-up
sequence, especially if the FPGA is programmed to wait for selected Digital Clock
Managers (DCMs) to lock to their respective clock inputs (see “Startup,” page 248).

http://www.xilinx.com

194 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 8: Slave Serial Mode
R

The mode select pins, M[2:0], are sampled when the FPGA’s INIT_B output goes High and
must be at defined logic levels during this time. After configuration, when the FPGA’s
DONE output goes High, the mode pins are available as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP (PUDC_B) pin must be Low to enable pull-up resistors
on all user-I/O pins or High to disable the pull-up resistors. The HSWAP (PUDC_B)
control must remain at a constant logic level throughout FPGA configuration. After
configuration, when the FPGA’s DONE output goes High, the HSWAP (PUDC_B) pin is
available as full-featured user-I/O pin and is powered by the VCCO_0 supply.

Figure 8-1: Slave Serial Configuration

+2.5V

TDI TDO

TMS

TCK

VCCINT

VCCAUX +2.5V

VCCO_2

INIT_B

PROG_B DONE

GND

+1.2V

HSWAP VCCO_0P VCCO_0

4.
7k

Ω

Spartan-3E
FPGA

+2.5V
JTAG

PROG_B

Recommend
open-drain

driver

TDI

TMS

TCK

TDO

M2

M1

‘1’

‘1’

M0‘1’

DOUT

33
0Ω

DIN

CCLK

VSlave
Serial
Mode

4.
7k

Ω

V

CLOCK

SERIAL_OUT

PROG_B

INIT_B
DONE

V

VCC

GND

Configuration
Memory
Source

• Internal memory
• Disk drive
• Over network
• Over RF link

Intelligent
Download Host

• Microcontroller
• Processor
• Tester
• Computer

DS312-2_54_022305

P

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 195
UG332 (v1.5) March 16, 2009

Voltage Compatibility
R

Voltage Compatibility
 Most Slave Serial interface signals are within the FPGA’s I/O Bank 2, supplied by the

VCCO_2 supply input. The VCCO_2 voltage can be 3.3V, 2.5V, or 1.8V to match the
requirements of the external host, ideally 2.5V. Using 3.3V or 1.8V requires additional
design considerations as the DONE and PROG_B pins are powered by the FPGA’s 2.5V
VCCAUX supply. Extended Spartan-3A family FPGAs do not support 1.8V PROMs because
of the Spartan-3A FPGA’s Power-On Reset (POR) voltage threshold, VCCO2T, shown in the
appropriate Extended Spartan-3A family data sheet and summarized in Table 12-1,
page 241.

See XAPP453: The 3.3V Configuration of Spartan®-3 FPGAs for additional information.

Daisy Chaining
If the application requires multiple FPGAs with different configurations, then configure
the FPGAs using a serial daisy chain, as shown in Figure 1-3, page 33. Use Slave Serial
mode (M[2:0] = <1:1:1>) for all FPGAs in the daisy chain. After the lead FPGA is filled with
its configuration data, the lead FPGA passes configuration data via its DOUT output pin to
the next FPGA on the falling CCLK edge.

V

http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
http://www.xilinx.com

196 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 8: Slave Serial Mode
R

Table 8-1: Slave Serial Mode Connections

Pin Name
FPGA

Direction
Description During Configuration After Configuration

HSWAP_EN,
HSWAP, or
PUDC_B

Input User I/O Pull-Up Control. When
Low during configuration, enables
pull-up resistors in all I/O pins to
respective I/O bank VCCO input.

0: Pull-up during configuration
1: No pull-ups

Drive at valid logic level
throughout configuration.

Spartan-3:
Dedicated pin (don’t
care after
configuration)
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

User I/O

M[2:0] Input Mode Select. Selects the FPGA
configuration mode. See “Design
Considerations for the HSWAP,
M[2:0], and VS[2:0] Pins,” page 75.

M2 = 1, M1 = 1, M0 = 1
Sampled when INIT_B goes
High.

User I/O

DIN Input Data Input. Serial data provided by host.
FPGA captures data on rising
CCLK edge.

User I/O

CCLK Input Configuration Clock. If CCLK
PCB trace is long or has multiple
connections, terminate this output
to maintain signal integrity. See
“CCLK Design Considerations,”
page 58.

External clock. User I/O

INIT_B Open-drain
bidirectional

I/O

Initialization Indicator. Active
Low. Goes Low at start of
configuration during Initialization
memory clearing process.
Released at end of memory
clearing, when mode select pins
are sampled.

Active during configuration.
If CRC error detected during
configuration, FPGA drives
INIT_B Low.

User I/O. If unused in
the application, drive
INIT_B High to avoid a
floating value. See
INIT_B “After
Configuration”.

DONE Open-drain
bidirectional

I/O

FPGA Configuration Done. Low
during configuration. Goes High
when FPGA successfully
completes configuration

Low indicates that the FPGA
is not yet configured.

Pulled High via
external pull-up. When
High, indicates that the
FPGA successfully
configured.

PROG_B Input Program FPGA. Active Low.
When asserted Low for 500 ns or
longer (300 ns in the Spartan-3
FPGAs), forces the FPGA to restart
its configuration process by
clearing configuration memory
and resetting the DONE and
INIT_B pins once PROG_B returns
High.

Must be High to allow
configuration to start.

Drive PROG_B Low
and release to
reprogram FPGA.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 197
UG332 (v1.5) March 16, 2009

R

Chapter 9

JTAG Configuration Mode and
Boundary-Scan

Spartan®-3 generation FPGAs have a dedicated four-wire IEEE 1149.1/1532 JTAG port that
is always available any time the FPGA is powered and regardless of the mode pin settings.
However, when the FPGA mode pins are set for JTAG mode (M[2:0] = <1:0:1>), the FPGA
waits to be configured via the JTAG port after a power-on event or after PROG_B is pulsed
Low. Selecting the JTAG mode simply disables the other configuration modes. No other
pins are required as part of the configuration interface. See “Mode Pin Considerations
when Programming a Spartan-3AN FPGA via JTAG using iMPACT” for special mode pin
requirements.

Figure 9-1 illustrates a JTAG-only configuration interface. The figure shows optional
components in gray. The JTAG interface is easily cascaded to any number of FPGAs by
connecting the TDO output of one device to the TDI input of the next device in the chain.
The TDO output of the last device in the chain loops back to the port connector.

http://www.xilinx.com

198 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

JTAG Cable Voltage Compatibility
The FPGA’s JTAG interface is powered by the VCCAUX supply. All of the user I/Os are
separately powered by their respective VCCO_# supplies.

The voltage supplied to the JTAG programming cable, shown as VREF in Figure 9-1, may
be different than the VCCAUX supply. If the JTAG and VCCAUX voltages are the same,
simply connect the FPGA directly to the JTAG programming socket or use 0Ω resistors, as
shown in Table 9-1. For Spartan-3AN FPGAs, VCCAUX must be 3.3V. For Spartan-3A and
Spartan-3A DSP FPGAs, VCCAUX can optionally be set to 3.3V.

The interface becomes a bit more complex if the JTAG voltage is different than the FPGA’s
VCCAUX voltage because current-limiting resistors are required. If the JTAG cable interface
needs to be 3.3V to support devices in the JTAG chain, then place a series resistor between
the 3.3V interface and the TDI, TMS, and TCK pins on the FPGA, as indicated in Table 9-1.
The FPGA’s TDO pin is a CMOS output powered by the VCCAUX supply. Even when
VCCAUX = 2.5V, the TDO output can directly drive a 3.3V, input but with reduced noise
immunity. See XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional
information.

Figure 9-1: JTAG Configuration Interface

PROGRAM

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

1

14

J

X
il

in
x

 C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

VCCINT

VCCAUX

VCCO_2

+1.2V

HSWAP VCCO_0P VCCO_0

M2
M1

‘1’
‘0’

M0‘1’

JTAG
Mode

VCCO_2

VCCAUX
TMS

TDO

TCK

TDI
PROG_B DONE

GND

VCCINT

VCCAUX

VCCO_2

+1.2V

HSWAP VCCO_0P VCCO_0

M2
M1

‘1’
‘0’

M0‘1’

JTAG
Mode

VCCO_2

VCCAUX
TMS

TDO

TCK

TDI
PROG_B DONE

GND

Spartan-3E/3A FPGASpartan-3E/3A FPGA

PUDC_B PUDC_B

UG332_c9_01_120106

= Dedicated internal pull-up resistor

http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 199
UG332 (v1.5) March 16, 2009

JTAG Device ID
R

JTAG Device ID
Each Spartan-3 generation FPGA array type has a 32-bit device-specific JTAG device
identifier as shown in Table 12-4, page 246. The lower 28 bits represent the device vendor
(Xilinx) and device identifier. The upper four bits, ignored by most tools, represent the
revision level of the silicon mounted on the printed circuit board.

JTAG User ID
The Spartan-3 generation JTAG interface provides the option to store a 32-bit User ID,
loaded during configuration. The User ID value is specified via the UserID configuration
bitstream option, shown in Table 11-2, page 232 or in Step 11, Figure 1-7, page 44 from the
ISE® Project Navigator software.

The user ID provides a convenient means to store an identifier or revision code for the
FPGA bitstream loaded into the FPGA. This is different than the Device DNA identifier,
which is unique to a specific Extended Spartan-3A family FPGA, not the bitstream, and
permanently factory-programmed in the FPGA.

Using JTAG Interface to Communicate to a Configured FPGA
Design

After the FPGA is configured, using any of the available modes, the JTAG interface offers a
possible communications channel to internal FPGA logic. The “Boundary-Scan (BSCAN),”
page 253, design primitive provides two private JTAG instructions to create an internal
boundary scan chain.

Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE
Standard 1149.1

Spartan-3 generation FPGAs are compliant with the IEEE Standard 1149.1 Test Access Port
and Boundary-Scan Architecture. The architecture, outlined in Figure 9-2, includes all
mandatory elements defined in the IEEE 1149.1 Standard. These elements include the Test
Access Port (TAP), the TAP controller, the Instruction register, the instruction decoder, the
Boundary-Scan register, and the BYPASS register. Spartan-3 generation FPGAs also
support a 32-bit Identification register in compliance with the standard. Outlined in the
following sections are the details of the JTAG architecture for Spartan-3 generation FPGAs.

Table 9-1: JTAG Cable Interface and Current-Limiting Resistor Requirements

JTAG Connector
Supply Voltage

FPGA VCCAUX
Supply Voltage

Current-Limiting Resistors

2.5V 2.5V None required or 0-ohm. Both voltages are identical

3.3V 2.5V Use current-limiting resistors of 68Ω or larger.

3.3V 3.3V None required or 0-ohm. Both voltages are identical

http://www.xilinx.com

200 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

Test Access Port (TAP)
The Spartan-3 generation TAP contains four mandatory dedicated pins as specified by the
protocol given in Table 3-1 and illustrated in Figure 3-1, a typical JTAG architecture. Three
input pins and one output pin control the 1149.1 Boundary-Scan TAP controller. Optional
control pins, such as TRST (Test Reset) and enable pins might be found on devices from
other manufacturers. It is important to be aware of these optional signals when interfacing
Xilinx® devices with parts from different vendors because they might need to be driven.

The TAP controller is a state machine (16 states) shown in Figure 9-3 and described in
Table 9-2. The four mandatory TAP pins are outlined in Table 9-3.

A transition between the states only occurs on the rising edge of TCK, and each state has a
different name. The two vertical columns with seven states each represent the Instruction
Path and the Data Path. The data registers operate in the states whose names end with
"DR" and the instruction register operates in the states whose names end in "IR". The states
are otherwise identical.

Figure 9-2: Typical JTAG (IEEE 1149.1) Architecture

IEEE Standard 1149.1 Compliant Device

TMS

Instruction Register

Instruction Decoder

Bypass[1] Register

IDCODE[32] Register

Boundary-Scan[n] Register

Select Data
Register

Shift-IR/Shift-DR

Select Next State

TAP State Machine

TCK

TDI

TDO

I/O I/O I/O I/O

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1
1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1
1

1

1

1

00
1 1

UG332_c9_02_081506

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 201
UG332 (v1.5) March 16, 2009

Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE Standard 1149.1
R

Figure 9-3: Test Access Port (TAP) State Machine

1

UG332_C9_03_080906

TEST-LOGIC-RESET

0 RUN-TEST/IDLE
1

SELECT-DR-SCAN

0

1

0

CAPTURE-DR CAPTURE-IR

0

1

0

0SHIFT-DR SHIFT-IR

1

0

1

0

EXIT1-DR EXIT1-IR

0

1

0

PAUSE-DR PAUSE-IR

1

0

1

EXIT2-DR

1

EXIT2-IR

1

UPDATE-DR

1

UPDATE-IR

1 SELECT-IR-SCAN

0 1 0

0 0

1

1

0

Table 9-2: TAP Controller States

State Description

TEST-LOGIC-RESET All JTAG logic is disabled, enabling the normal operation of the FPGA. No matter what the
initial state of the controller is, the Test-Logic-Reset state can be entered by holding TMS High
and pulsing TCK five times. This is why the Test Reset (TRST) pin is optional.

RUN-TEST/IDLE The JTAG logic is active only if certain instructions are present. For example, if an instruction
activates the self test, then it is executed when the controller enters this state. The JTAG logic is
idle otherwise.

SELECT-DR-SCAN Controls whether to enter the Data Path or the SELECT-IR-SCAN state.

SELECT-IR-SCAN Controls whether or not to enter the Instruction Path. The Controller can return to the TEST-
LOGIC-RESET state otherwise.

CAPTURE-IR The shift register bank in the Instruction Register parallel loads a pattern of fixed values on the
rising edge of TCK. The last two significant bits must always be "01".

SHIFT-IR The Instruction Register gets connected between TDI and TDO, and the captured pattern gets
shifted on each rising edge of TCK. The instruction available on the TDI pin is also shifted in to
the Instruction Register.

EXIT1-IR Controls whether to enter the PAUSE-IR state or UPDATE-IR state.

PAUSE-IR Allows the shifting of the Instruction Register to be temporarily halted.

EXIT2-DR Controls whether to enter either the SHIFT-IR state or UPDATE-IR state.

UPDATE-IR The instruction in the Instruction Register is latched to the latch bank of the Instruction Register
on every falling edge of TCK. This instruction becomes the current instruction once it is latched.

http://www.xilinx.com

202 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

Notes:
1. As specified by the IEEE Standard, the TMS and TDI pins both have internal pull-up resistors. These

internal pull-up resistors of are active before configuration, regardless of the mode selected. See
Table 2-13, page 65 for resistor values. After configuration, these resistors are controlled by the TmsPin
and TdiPin bitstream generator option settings, shown in Table 11-2, page 232.

TAP Controller
Figure 9-3 diagrams a 16-state finite state machine. The four TAP pins control how data is
scanned into the various registers. The state of the TMS pin at the rising edge of TCK
determines the sequence of state transitions. There are two main sequences, one for
shifting data into the data register and the other for shifting an instruction into the
instruction register.

Spartan-3 generation FPGAs support the mandatory IEEE 1149.1 commands, as well as
several Xilinx vendor-specific commands. The EXTEST, INTEST, SAMPLE/PRELOAD,
BYPASS, IDCODE, USERCODE, and HIGHZ instructions are all included. The TAP also
supports internal user-defined registers (USER1 and USER2) and configuration/readback
of the device.

The Spartan-3 generation Boundary-Scan operations are independent of configuration
mode selections. The Boundary-Scan mode overrides other mode selections. For this

CAPTURE-DR The data is parallel-loaded into the data registers selected by the current instruction on the rising
edge of TCK.

SHIFT-DR These controller states are similar to the SHIFT-IR, EXIT1-IR, PAUSE-IR, EXIT2-IR and
UPDATE-IR states in the Instruction path.

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

Table 9-2: TAP Controller States

State Description

Table 9-3: Spartan-3 Generation TAP Controller Pins

Pin Description

TDI Test Data In. This pin is the serial input to all JTAG instruction and data
registers. The state of the TAP controller and the current instruction determine
the register that is fed by the TDI pin for a specific operation. TDI has an
internal resistive pull-up to provide a logic High to the system if the pin is not
driven. TDI is applied into the JTAG registers on the rising edge of TCK.

TDO Test Data Out. This pin is the serial output for all JTAG instruction and data
registers. The state of the TAP controller and the current instruction determine
the register (instruction or data) that feeds TDO for a specific operation. TDO
changes state on the falling edge of TCK and is only active during the shifting
of instructions or data through the device. TDO is an active driver output.

TMS Test Mode Select. This pin determines the sequence of states through the TAP
controller on the rising edge of TCK. TMS has an internal resistive pull-up to
provide a logic High if the pin is not driven.

TCK Test Clock. TCK sequences the TAP controller and the JTAG registers.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 203
UG332 (v1.5) March 16, 2009

Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE Standard 1149.1
R

reason, Boundary-Scan instructions using the Boundary-Scan register
(SAMPLE/PRELOAD, INTEST, and EXTEST) must not be performed during the FPGA
configuration process. All instructions, except the user-defined instructions, are available
before a Spartan-3 generation FPGA device is configured. After configuration, all
instructions are available.

JSTART and JSHUTDOWN are instructions specific to the Spartan-3 generation FPGA
architecture and configuration flow. See DS099: Spartan-3 FPGA Family Data Sheet for
details. In Spartan-3 generation FPGAs, the TAP controller is not reset by the PROG_B pin and
can only be reset by bringing the controller to the TLR state. The TAP controller is reset on power
up.

For details on the standard Boundary-Scan instructions EXTEST, INTEST, and BYPASS,
refer to the IEEE Standard.

Caution! For JTAG compliance during pre-configuration boundary scan, the internal pull-ups
should be made active by asserting HSWAP or PUDC_B Low.

Boundary-Scan Architecture
Spartan-3 generation FPGA registers include all registers required by the IEEE 1149.1
Standard. In addition to the standard registers, the family contains optional registers for
simplified testing and verification, as described in Table 9-4.

Boundary-Scan Register

Each user I/O block (IOB), whether connected to a package pin or unbonded, contains
additional logic that forms the boundary-scan data register, as shown in Figure 9-4.
Boundary-Scan operations are independent of how an individual I/O block is configured.
By default, each I/O block starts as bidirectional with 3-state control. Later, it can be
configured via JTAG operations to be an input, output, or 3-state pin.

Table 9-4: Spartan-3 Generation JTAG Registers

Register Name Register Length Description

Boundary-Scan Register 3 bits per I/O Controls and observes input, output,
and output enable

Instruction Register 6 bits Holds current instruction OPCODE
and captures internal device status

BYPASS Register 1 bit Bypasses the device

Identification Register 32 bits Captures the Device ID

JTAG Configuration Register 32 bits Allows access to the configuration
bus when using the CFG_IN or
CFG_OUT instructions

USERCODE Register 32 bits Captures the user-programmable
code

User-Defined Registers
(USER1 and USER2)

Design-specific Design-specific

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com

204 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

When conducting a data register (DR) operation, the DR captures data in a parallel fashion
during the CAPTURE-DR state. The data is then shifted out and replaced by new data
during the SHIFT-DR state. For each bit of the DR, an update latch is used to hold the input
data stable during the next SHIFT-DR state. The data is then latched during the UPDATE-
DR state when TCK is Low.

The update latch is opened each time the TAP controller enters the UPDATE-DR state. Care
is necessary when exercising an INTEST or EXTEST to ensure that the proper data has been
latched before exercising the command. This is typically accomplished by using the
SAMPLE/PRELOAD instruction.

Internal pull-up and pull-down resistors should be considered when test vectors are being
developed for testing opens and shorts. The Boundary-Scan mode determines whether an
I/O block has a pull-up resistor.

Bit Sequence Boundary-Scan Register

The order of each non-TAP IOB is described in this section. The input is first, then the
output, and finally the 3-state IOB control. The 3-state IOB control is closest to the TDO.
The input-only pins contribute only the input bit to the Boundary-Scan I/O data register.
The bit sequence of the device is obtainable from the Boundary-Scan Description Language
Files (BSDL files) for Spartan-3 generation FPGAs. The bit sequence always has the same
bit order and the same number of bits and is independent of the design.

The BSDL files are provided with the Xilinx ISE Development Software or can be
downloaded directly from the Xilinx web site. From the Xilinx web site, select BSDL
Models, select the FPGA family, then click Search.

• Xilinx Download Center
http://www.xilinx.com/support/download/index.htm

Figure 9-4: Boundary-Scan Logic per I/O Pin

D Q

1

0

1x
01
00

1x
01
00

1x
01
00

D Q

D Q

1

0

1

0

D Q

LE

LE

D Q

LE

D Q

TDI

IOB.I

INTEST

IOB.O

IOB.T

EXTEST

SHIFT CLOCK DATA
REGISTER

TDO INTEST or EXTEST

UG332_c9_04_081506

PAD

Update
Latch

UPDATE

Capture
Register

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 205
UG332 (v1.5) March 16, 2009

Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE Standard 1149.1
R

Instruction Register

The Instruction Register (IR) for the Spartan-3 generation FPGA is connected between TDI
and TDO during an instruction scan sequence. In preparation for an instruction scan
sequence, the instruction register is parallel-loaded with a fixed instruction capture
pattern. This pattern is shifted out onto TDO (LSB first), while an instruction is shifted into
the instruction register from TDI.

To invoke an operation, load the desired OPCODE from Table 9-5 into the Instruction
Register (IR). The length of the instruction register varies by device type. However, the IR
is six bits wide for all Spartan-3 generation FPGAs.

Note: In general, all JTAG OPCODEs are identical among Spartan-3 generation FPGA families.
However, the EXTEST instruction is different between Spartan-3 FPGAs and FPGAs from the
Spartan-3E or Extended Spartan-3A family families.

Table 9-5: Spartan-3 Generation Boundary-Scan Instructions

Boundary-Scan
Command

Instruction Description

EXTEST

(Spartan-3E,
Spartan-3A/3AN,
Spartan-3A DSP

FPGAs)

001111

Enables Boundary-Scan EXTEST operation.

EXTEST

(Spartan-3 FPGA)
000000

SAMPLE 000001 Enables Boundary-Scan SAMPLE operation.

USER1 000010 Access user-defined register 1.

USER2 000011 Access user-defined register 2.

CFG_OUT 000100 Access the configuration bus for readback.

CFG_IN 000101 Access the configuration bus for configuration.

INTEST 000111 Enables Boundary-Scan INTEST operation.

USERCODE 001000 Enables shifting out user code.

IDCODE 001001 Enables shifting out of ID code.

HIGHZ 001010 3-state output pins while enabling BYPASS Register.

JPROGRAM 001011 Equivalent to and has the same effect as PROGRAM.

JSTART
001100

Clocks the startup sequence when Startup clock source
is TCK (StartupClk:JtagClk).

JSHUTDOWN 001101 Clocks the shutdown sequence.

ISC_ENABLE
010000

Marks the beginning of ISC configuration. Full
shutdown is executed.

ISC_PROGRAM 010001 Enables in-system programming.

ISC_NOOP 010100 No operation.

ISC_READ 010101 Used to read back configuration data.

http://www.xilinx.com

206 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

Table 9-6 shows the instruction capture values loaded into the IR as part of an instruction
scan sequence.

BYPASS Register

The BYPASS register, which consists of a single flip-flop between TDI and TDO, is required
in all JTAG IEEE 1149.1-compliant devices. It passes data serially from the TDI pin to the
TDO pin during a bypass instruction. The BYPASS register initializes to zero when the TAP
controller is in the CAPTURE-DR state.

Identification (IDCODE) Register

Spartan-3 generation FPGAs have a 32-bit identification register called the IDCODE
register. The IDCODE is based on the IEEE 1149.1 standard, and is a fixed, vendor-assigned
value that is used to identify electrically the manufacturer and the type of device that is
being addressed. This register allows easy identification of the part being tested or
programmed by Boundary-Scan, and it can be shifted out for examination by using the
IDCODE instruction.

The last bit of the IDCODE is always 1 (based on JTAG IEEE 1149.1). The last three hex
digits appear as 0x093.

JTAG Configuration Register (Boundary-Scan)

The JTAG Configuration register is a 32-bit register. This register allows access to the
configuration bus and readback operations.

The JTAG Configuration register does not pass TDI data through the register to TDO.
When the CFG_IN JTAG instruction is active, the JTAG Configuration register is input-
only. When the CFG_OUT JTAG instruction is active, the JTAG Configuration register is
output-only.

Applications requiring standard FPGA configuration over JTAG should refer to XAPP058,
Xilinx In-System Programming Using an Embedded Microcontroller. Applications requiring
custom FPGA configuration over JTAG should refer to XAPP452, Spartan-3 FPGA Family
Advanced Configuration Architecture, for information about the configuration bus.

ISC_DISABLE
010110

Completes ISC configuration. Startup sequence is
executed.

ISC_DNA
110001

Extended Spartan-3A family FPGAs: Read Device
DNA. See “JTAG Access to Device Identifier,”
page 297.

BYPASS 111111 Enables BYPASS.

RESERVED All other
codes

Xilinx reserved instructions.

Table 9-6: Instruction Capture Values

TDI → IR[5] IR[4] IR[3] IR[2] IR[1:0] →TDO

DONE INIT(1) ISC_ENABLED ISC_DONE 0 1

Table 9-5: Spartan-3 Generation Boundary-Scan Instructions (Cont’d)

Boundary-Scan
Command

Instruction Description

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 207
UG332 (v1.5) March 16, 2009

Programming Cables and Headers
R

Configuration bus commands must arrive at the FPGA TDI pin on a 32-bit shift boundary
as explained in XAPP188, Configuration and Readback of Spartan-II and Spartan-IIE FPGAs
Using Boundary Scan.

USERCODE Register

The USERCODE instruction is supported in Spartan-3 generation FPGAs. This register
allows a user to specify a design-specific identification code. The USERCODE can be
programmed into the device and can be read back for verification later. The USERCODE is
embedded into the bitstream during bitstream generation (BitGen -g UserID option) and is
valid only after configuration. If the device is blank or the USERCODE was not
programmed, the USERCODE register contains 0xFFFFFFFF.

USER1 and USER2 Registers

The USER1 and USER2 registers are only available after configuration. These two registers,
if used in the application, must be implemented using FPGA logic. The “Boundary-Scan
(BSCAN)” library primitive is required when creating these registers. This primitive is
only required for driving internal scan chains (USER1 and USER2). These registers can be
accessed after they are defined via the JTAG interface.

A common input pin (TDI) and shared output pins represent the state of the TAP controller
(RESET, SHIFT, and UPDATE).

Using Boundary-Scan in Spartan-3 Generation FPGAs
Figure 9-5 shows an example timing waveform for boundary-scan operations. Timing
specifications are listed in the data sheet for each Spartan-3 generation FPGA family.

Programming Cables and Headers
Xilinx provide various programming cables that support the design and development
phase of a project.

• Platform Cable USB II
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

Figure 9-5: Spartan-3 Generation Boundary-Scan Timing Waveforms

UG332_c9_05_012709

Data to be captured

Data to be driven out

TDO

TCK

TDI

TMS

Data Valid

Data Valid

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp188.pdf
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

208 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

• Parallel Cable IV
http://www.xilinx.com/products/devkits/HW-PC4.htm

If possible, place a target interface connector on the FPGA board to facilitate easy
programming. Xilinx recommends using the high-performance ribbon cable option,
pictured in Figure 9-6, page 208, for maximum performance and best signal integrity.

Such connectors are available in both through-hole and surface mount configurations, as
shown in Table 9-7. Use shrouded or keyed connectors to ensure guarantee proper
orientation when inserting the cable. The specified connector requires only 0.162 square
inches of board space.

Pin 2 of the connector provides a reference voltage for the output buffers that drive the
TDI, TCK, and TMS pins. Because these pins are powered by VCCAUX on Spartan-3
generation FPGAs, connect the VCCAUX supply to pin 2 of the connector.

Programming an FPGA Using JTAG
The JTAG interface is also a convenient means for downloading an FPGA design during
development and debugging.

Figure 9-6: Target Interface Connector Dimensions and Pin Assignments

GND

GND

GND

GND

GND

GND

GND

0.299"

0.248"

0.472"
0.0787"

JTAGSlave Serial

TYP.

0.

0.0787" (2 mm)

0.020" (0.5 mm) SQ. TYP.

2 x 7 (14 position) 2 mm connector
surface-mount for ribbon cable
Molex part no. 87832-1420
Also available in through-hole mounting

UG332_c9_06 _1

13

11
9

7

5

3

1

N.C.

TDIDIN

TDODONE 8
TCKCCLK 6
TMSPROG_B 4
VREFVREF 2

INIT_B

12

14N.C.
N.C.

10

SPI

MOSI

MISO

SCK

SS_B

VREF

N.C.
N.C.

Table 9-7: Mating Connectors for 2 mm pitch, 14 Conductor Ribbon Cable

Manufacturer(1)

Connector Style and Vendor Part Number

Vendor Web SiteSurface Mount,
Vertical

Through-Hole,
Vertical

Through-Hole, Right
Angle

Molex 87832-1420 87831-1420 87833-1420 www.molex.com

FCI 98424-G52-14 98414-G06-14 98464-G61-14 www.fciconnect.com

Comm Con
Connectors

2475-14G2 2422-14G2 2401R-G2-14 www.commcon.com

Notes:
1. Some manufacturer pin assignments may not conform to Xilinx pin assignments. Please refer to the manufacturer’s data sheet for

more information.
2. Additional ribbon cables can be purchased separately from the Xilinx Online Store (www.xilinx.com/store).

http://www.xilinx.com
http://www.commcon.com
http://www.fciconnect.com
http://www.fciconnect.com
http://www.xilinx.com/store
http://www.xilinx.com/products/devkits/HW-PC4.htm

Spartan-3 Generation Configuration User Guide www.xilinx.com 209
UG332 (v1.5) March 16, 2009

Programming an FPGA Using JTAG
R

First, generate an FPGA bitstream as described in “Setting Bitstream Options, Generating
an FPGA Bitstream,” page 42

The following steps graphically describe how to create a PROM file using iMPACT from
within the ISE Project Navigator. This particular example shows how to configure the
XC3S500E FPGA on the Spartan-3E Starter Kit board. Besides the FPGA, the JTAG chain on
the board includes a Xilinx Platform Flash PROM and a Xilinx CPLD.

1. From within the ISE Project Navigator, double-click Configure Device (iMPACT)
from the Processes pane, as shown in Figure 9-7.

2. As shown in Figure 9-8, select Configure devices using Boundary-Scan (JTAG).

3. If the board is powered and the Xilinx programming cable properly connected, the
iMPACT software automatically initializes the JTAG chain and detects the various
devices on the chain.

4. Click Finish.

Figure 9-7: Double-click Configure Device (iMPACT)

Figure 9-8: Configure Devices Using JTAG

1

UG332_c9_14_112006

2

4

3

UG332_c9_07_112006

http://www.xilinx.com
http://www.xilinx.com/s3estarter

210 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

5. As shown in Figure 9-9, the iMPACT software automatically detected the devices on
the chain. In this example, a Xilinx XC3S500E Spartan-3E FPGA is first in the chain,
followed by a Xilinx XCF04S Platform Flash PROM, followed by a Xilinx XC2C64A
CPLD in the final position. The devices are yet unprogrammed.

6. As shown in Figure 9-10, the iMPACT software automatically prompts for the FPGA
bitstream. Select the desired bitstream to download specifically to the FPGA.

7. Click Open.

8. As shown in Figure 9-11, the iMPACT software automatically detects that the FPGA
bitstream was generated for a non-JTAG configuration method. The iMPACT software
automatically adjusts the Startup clock setting for successful JTAG configuration
(StartupClk:JtagClk). The original bitstream file is unaffected.

Figure 9-9: iMPACT Automatically Detects Devices on the JTAG Chain

Figure 9-10: iMPACT Prompts for FPGA Bitstream

5

UG332_c9_xx_112006

6 7

UG332_c9_09_112006

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 211
UG332 (v1.5) March 16, 2009

Programming an FPGA Using JTAG
R

9. For faster downloading and a shorter FPGA debugging cycle, there is no need to
program the Platform Flash PROM or CPLD unless actually desired. To skip
programming the Platform Flash PROM, click Bypass, as shown in Figure 9-12.

10. Similarly, click Bypass to skip programming of the CPLD, as shown in Figure 9-13.

Figure 9-11: iMPACT Automatically Adjusts FPGA Startup Clock for JTAG Configuration

8

UG332_c9_09_112006

Figure 9-12: Click Bypass to Skip Platform Flash Programming

9

UG332_c9_10_112006

http://www.xilinx.com

212 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

11. As shown in Figure 9-14, the iMPACT software updates the display, showing the files
assigned to each device in the JTAG chain. In this example, the XCF04S Platform Flash
and XC2C64A CPLD are “bypassed” and are not programmed. Click the FPGA to
highlight it on the display.

12. Once the FPGA is highlighted, the associated Available Operations are enabled on the
display. Double-click Program.

13. The Programming Properties dialog box appears, as shown in Figure 9-15.

Figure 9-13: Click Bypass to Skip CPLD Programming

Figure 9-14: Double-Click Program to Configure FPGA via JTAG

10

UG332_c9_11_112006

11

12
16

UG332_c9_12_112006

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 213
UG332 (v1.5) March 16, 2009

Configuration via JTAG using an Embedded Controller
R

14. The iMPACT software provides a Verify feature, even for FPGA programming.
Typically, the Verify function is not used when downloading the FPGA for debugging
purposes.

15. Click OK to start the programming process.

16. The iMPACT software indicates when programming is complete, as shown in
Figure 9-14. The iMPACT software also forces the FPGA to reconfigure on the board.
The FPGA is downloaded with the specified FPGA bitstream.

Mode Pin Considerations when Programming a Spartan-3AN FPGA via
JTAG using iMPACT

When iMPACT 9.1i configures the Spartan-3AN FPGAs, it first programs the internal SPI
Flash PROM. After this configuration is complete, a reboot is triggered and the FPGA
configures itself from the internal SPI PROM. When the reboot is triggered, the mode pins
M[2:0] are sampled. For the configuration to complete successfully, the FPGA mode select
pins must be set to M[2:0] = <0:1:1>, which is the Internal Master SPI mode.

If you are configuring from iMPACT and your mode pins are set to JTAG mode M[2:0] =
<1:0:1>, configuration of the FPGA will not complete. To finish configuration of the FPGA,
you can simply change the mode pins to Internal Master SPI mode and pulse the PROG pin
to trigger configuration, or reconfigure through iMPACT.

In iMPACT 9.2i and later, you have the option to either configure the FPGA directly
through JTAG mode or to program the Internal SPI PROM and then configure through
Internal Master SPI mode.

Configuration via JTAG using an Embedded Controller
By using an embedded controller to program Spartan-3 generation FPGAs from an on-
board RAM or EPROM, designers can easily upgrade, modify, and test designs, even in the
field. The design in XAPP058 is easily modified for remote downloading applications and
the included C code can be compiled for any microcontroller.

Figure 9-15: FPGA Programming Options
UG332_c9_13_112006

13

14

15

http://www.xilinx.com

214 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

• XAPP058 Xilinx In-System Programming Using an Embedded Microcontroller
http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 215
UG332 (v1.5) March 16, 2009

R

Chapter 10

Internal Master SPI Mode

The Internal Master SPI Flash mode is only available on the Spartan®-3AN FPGA family.
The Spartan-3AN FPGA family has integrated In-System Flash (ISF) memory, primarily for
FPGA configuration. The ISF memory is sufficiently large to store two FPGA configuration
bitstreams (MultiBoot) plus additional nonvolatile data storage for the FPGA application.

Spartan-3AN FPGAs also support all of the other Extended Spartan-3A family FPGA
configuration modes shown in Table 2-1, page 50.

Caution! This configuration mode is only supported by the Spartan-3AN FPGA family. The
VCCAUX supply MUST be 3.3V.

Figure 10-1 shows the logic levels and signals involved during configuration.

Figure 10-1: Spartan-3AN FPGA using Internal Master SPI Flash Mode

UG332_c10_01_112906

TDI TDO

TMS
TCK

VCCINT

VCCAUX

VCCO_2

INIT_B

PROG_B DONE

GND

+1.2V

PUDC_B VCCO_0 VCCO_0

Spartan-3AN

M2
M1

‘0’
‘1’

M0

Internal
SPI Mode

‘1’

VS2
VS1

‘?’

VS0

Variant
Select

‘?’
‘?’

+3.3V

P
VCCO_2

VREF

TMS

TCK

TDO

TDI

N.C.
N.C.

3.3V
(VCCAUX)

1

14

X
il

in
x

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

PROGRAM

http://www.xilinx.com

216 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

Internal Flash Memory
The amount of ISF memory varies by Spartan-3AN FPGA logic density as shown in
Table 10-1. The amount of Flash memory exceeds the amount required to configure the
FPGA. There is sufficient additional memory for at least two uncompressed bitstream
images to support MultiBoot or for additional nonvolatile storage for the FPGA
application.

Mode Select Pins, M[2:0]
The Spartan-3AN FPGA family is generally designed to be pin and function compatible
with the Spartan-3A/3A DSP FPGA families. The Spartan-3AN FPGA family supports all
the same configuration modes as the Spartan-3A/3A DSP FPGAs and adds the ability to
configure from the internal In-System Flash memory.

To configure from Internal Master SPI Flash mode, the FPGA mode select pins must be set
to M[2:0] = <0:1:1>. Furthermore, the VCCAUX supply must be 3.3V.

Variant Select Pins, VS[2:0]
For backward compatibility, the Spartan-3AN FPGA monitors the variant-select pins,
VS[2:0], to decide which read command to issue to the SPI Flash PROM. Spartan-3AN
FPGAs and the integrated SPI serial Flash support the variant-select codes listed in
Table 10-2. The choice of a variant select code potentially affects configuration
performance. For more details on the Spartan-3AN FPGA read commands, see UG333,
Spartan-3AN In-System Flash User Guide.

Furthermore, the VS[2:0] pins have dedicated pull-up resistors that are active, regardless of
the PUDC_B pin, whenever the M[2:0] mode-select pins are set for Internal Master SPI
mode.

Table 10-1: Number of Bits to Program a Spartan-3AN FPGA and Internal SPI Flash
Memory

FPGA
Number of Configuration Bits

(Uncompressed)
In-System Flash Memory

XC3S50AN 437,312 1 Mbit

XC3S200AN 1,196,128 4 Mbit

XC3S400AN 1,886,560 4 Mbit

XC3S700AN 2,732,640 8 Mbit

XC3S1400AN 4,755,296 16 Mbit

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 217
UG332 (v1.5) March 16, 2009

Accessing the Internal SPI Flash PROM After Configuration
R

Supply Voltage Requirements
The Spartan-3AN FPGA family imposes some minor restrictions on FPGA supply
voltages.

VCCAUX

The VCCAUX supply input must be 3.3V. The VCCAUX rail supplies power to the In-
System Flash memory.

VCCO_2

The VCCO_2 supply rail, which must be the same voltage as the configuration memory in
other configuration modes, has no such restriction on Spartan-3AN FPGAs. However,
VCCO_2 must reach 2.0V to meet the power-on requirements; after configuration, it can
drop down to a lower level.

Sequencing

When configuring from the In-System Flash, VCCAUX must be in the recommended
operating range; on power-up make sure VCCAUX reaches at least 3.0V before INIT_B goes
High to indicate the start of configuration. VCCINT, VCCAUX, and VCCO supplies to the
FPGA can be applied in any order if this requirement is met. However, an external
configuration source might have specific requirements. Check the data sheet for the
attached configuration source. Apply VCCINT last for lowest overall power consumption
(see the chapter called “Powering Spartan-3 Generation FPGAs” in UG331 for more
information). The FPGA typically delays configuration long enough for the configuration
source to be ready. If the configuration source is not ready when the FPGA begins
configuration, the Configuration Watchdog Timer will allow the FPGA to automatically re-
attempt configuration.

Accessing the Internal SPI Flash PROM After Configuration
The FPGA application has full access to the internal In-System Flash memory after
configuration using the SPI_ACCESS design primitive, as shown in Figure 10-2.

Table 10-2: Spartan-3AN FPGA Supported Variant Select (VS[2:0]) Options

Variant Select Pins
VS[2:0]

SPI Flash Read
Command

(Command Code)

Supported by
Spartan-3AN FPGA

Family?

Maximum CLK
Frequency

<1:1:1>
FAST_READ

(0x0B)
Yes 50 MHz

<1:0:1>
READ
(0x03)

Yes 33 MHz

All Others -- No --

http://www.xilinx.com

218 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

Details on accessing the In-System Flash memory after configuration, from inside the
FPGA application, are found in UG333: Spartan-3AN In-System Flash User Guide.

• UG333: Spartan-3AN In-System Flash User Guide
www.xilinx.com/support/documentation/user_guides/ug333.pdf

No Configuration Daisy Chains in Internal Master SPI Mode
Spartan-3AN FPGAs do not support multi-FPGA daisy chains when configuring from
Internal Master SPI mode. The FPGA does not supply the DOUT or CCLK outputs
required for serial daisy chains when configuring in this mode.

However, the Spartan-3AN FPGA supports daisy chaining when configured using any of
the other modes or when configured in a Slave configuration mode.

Generating the Bitstream for a Master SPI Configuration
To create the FPGA bitstream for a Internal Master SPI configuration, follow the steps
outlined in “Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an
FPGA configured in Internal Master SPI mode, set the following bitstream generator
options.

ConfigRate: CCLK Frequency
Set the ConfigRate option for 33 MHz. Using the ISE® software Project Navigator, the
Configuration Rate frequency is set in Step 7 in Figure 1-7, page 44.

-g ConfigRate:33

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA
to actively drive the DONE pin after successfully completing the configuration process.
Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in
Figure 1-8, page 45.

Figure 10-2: Spartan-3AN SPI_ACCESS Design Primitive

UG332_C13_06_081506

MOSI

SPI_ACCESS

CSB

CLK

MISO

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 219
UG332 (v1.5) March 16, 2009

Programming a Spartan-3AN FPGA Using JTAG
R

-g DriveDone:Yes

Programming a Spartan-3AN FPGA Using JTAG
A Spartan-3AN FPGA is programmed using JTAG and iMPACT software in the same way
described for other FPGA families in “Programming an FPGA Using JTAG” in Chapter 9.
The iMPACT software only requires associating a bitstream with the FPGA, and will
automatically generate the PROM file for the In-System Flash, program the Flash in the
Spartan-3AN FPGA, and then configure the Spartan-3AN FPGA from the In-System Flash.
See “Mode Pin Considerations when Programming a Spartan-3AN FPGA via JTAG using
iMPACT” in Chapter 9.

http://www.xilinx.com

220 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

Preparing an In-System Flash Programming File
This section provides guidelines to create a programming file for the Spartan-3AN In-
System Flash (ISF) memory. These steps are not needed when programming a single
bitstream into the ISF using iMPACT.

Caution! Requires ISE 9.1i, Service Pack 3 or later.

The Xilinx® software tools, iMPACT or PROMGen, generate files from the Spartan-3AN
FPGA bitstream or bitstreams. The Spartan-3AN ISF memory is a serial, SPI-based
memory and data bytes are stored most-significant bit (MSB) first. When using PROMGen,
the -spi option is required for proper formatting.

iMPACT
The following steps graphically describe how to create an SPI-formatted PROM file using
iMPACT from within the ISE Project Navigator. To create a Spartan-3AN MultiBoot image
for an SPI Flash memory, see “Generating an Extended Spartan-3A Family MultiBoot
PROM Image using iMPACT,” page 278.

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG
File from within the Process pane, as shown in Figure 10-3.

2. As shown in Figure 10-4, select Prepare a PROM File.

Figure 10-3: Double-click Generate PROM, ACE or JTAG File

1

UG332_c4_10_110206

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 221
UG332 (v1.5) March 16, 2009

Preparing an In-System Flash Programming File
R

3. Click Next.

4. As shown in Figure 10-5, format the FPGA bitstream or bitstreams for a PROM
Supporting Multiple Design Versions.

Figure 10-4: Prepare a PROM File

3

2

UG332_c4_11_19

http://www.xilinx.com

222 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

5. Select Spartan3AN from the drop list.

6. Select a PROM File Format.

7. Enter a PROM File Name.

8. Click Next.

9. Click the drop list to Select Device.

Figure 10-5: Set Options for Spartan-3AN In-System Flash PROM

8

4

6

7

5

UG332_c10_02_022307

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 223
UG332 (v1.5) March 16, 2009

Preparing an In-System Flash Programming File
R

10. Choose a specific Spartan-3AN FPGA device. The bit size of the In-System Flash
memory for the associated FPGA is also displayed.

11. Click Next.

12. The Default Spartan-3AN configuration bitstream (Bitstream 0) is always located at
address 0. Bitstream 0 is the bitstream that the FPGA automatically loads when power
is applied or whenever the PROG_B pin is pulsed Low.

Figure 10-6: Select a Spartan-3AN FPGA

UG332_c10_03_052207

11

10

9

http://www.xilinx.com

224 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

13. Click the option box to include a second MultiBoot bitstream (Bitstream 1). Bitstream 1
is always aligned to the next ISF memory sector boundary following Bitstream 0. The
iMPACT software displays the sector address in decimal, based on the current
addressing mode, as shown in Table 10-3. This is the address used for MultiBoot
operations to load the second bitstream.

14. By default, leave this option box unchecked! Check this box only if the intended
Spartan-3AN target was previously and specifically programmed to support the
optional Power-of-2 addressing mode. See UG333: Spartan-3AN In-System Flash User
Guide for more information.

15. Click Next.

16. As shown in Figure 10-8, review that the settings are correct to format the Spartan-
3AN In-System Flash. Click Finish to confirm the settings or Back to change the
settings.

Figure 10-7: Specify the FPGA Configuration Bitstream(s)

Table 10-3: Locations of Default Bitstream and Second MultiBoot Bitstream

Bitstream
Spartan-3AN

FPGA

ISF
Memory

Page

Bitstream Starting Address

Default Optional Power-of-2

Hex
Byte

Address
(Decimal)

Hex
Byte

Address
(Decimal)

Bitstream
0 All 0 0x00_0000 0 0x00_0000 0

Bitstream
1

XC3S50AN 256 0x02_0000 67584 0x01_0000 65536

XC3S200AN 768 0x06_0000 202752 0x03_0000 196608

XC3S400AN 1,024 0x08_0000 270336 0x04_0000 262144

XC3S700AN 1,536 0x0C_0000 405504 0x06_0000 393216

XC3S1400AN 1,280 0x14_0000 675840 0x0A_0000 655360

15

13
12

14

UG332_c10_04_022307

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 225
UG332 (v1.5) March 16, 2009

Preparing an In-System Flash Programming File
R

17. As shown in Figure 10-9, click OK to start adding FPGA configuration bitstreams to
the In-System Flash image.

18. Locate and select the desired Spartan-3AN FPGA bitstream.

19. Click Open.

20. If the Bitstream 1 option box was checked in Step 12, the iMPACT software will prompt
for a second bitstream. After selecting the last FPGA bitstream, click OK.

Figure 10-8: Review Spartan-3AN In-System Memory Formatting Settings

Figure 10-9: Add FPGA Configuration Bitstream File(s)

16

UG332_c10_05_022307

19
18

17

20

UG332_c10_06_022307

http://www.xilinx.com

226 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

21. As shown in Figure 10-10, the iMPACT software graphically displays the selected
Spartan-3AN FPGA and any associated FPGA bitstream(s).

22. The location of the first and second bitstreams is also highlighted.

23. As shown Figure 10-11, click Generate File.

24. The iMPACT software indicates when the PROM file is successfully created.

PROMGen
PROMGen is a command-line utility that provides an alternate means to create a Spartan-
3AN programming file. PROMGen can be invoked from within a command window or
from within a script file.

Table 10-4 shows the relevant options for formatting a Spartan-3AN programming file.

Figure 10-10: iMPACT View of the Spartan-3AN In-System Flash Memory

21

22

UG332_c10_07_022307

Figure 10-11: Generate the Spartan-3AN In-System Flash File

24

23

UG332_c10_08_022307

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 227
UG332 (v1.5) March 16, 2009

Preparing an In-System Flash Programming File
R

The example PROMGen command, provided below, generates a PROM file for an
XC3S700AN FPGA with the following characteristics.

• Formatted for the SPI-based In-System Memory by specifying the -spi option.

• Formatted using the Intel MCS format by specifying the -p mcs option. The output
filename is specified by the -o <promdata>.mcs option, where <promdata> is a
user-specified file name.

• The XC3S700AN In-System Flash memory is only slightly larger than 8M bits or 1,024
bytes. However, set the size option to twice the size, or -s 2048, because the default
addressing method uses an additional address line. If using the optional power-of-2
addressing mode, which requires an additional, separate special programming step,
set the size option to -s 1024.

• The first FPGA bitstream (bitstream0) is loaded in the upward direction, starting at
address 0 by specifying the -u 0 option. A second MultiBoot bitstream
(bitstream1) is loaded at the next sector boundary, shown in Table 10-3, page 224,
0x0C_0000 for the XC3S700AN.

• The FPGA bitstreams to be added to the In-System Flash memory are specified as the
last option, <bitstream0>.bit and <bitstream1>.bit, where <inputfile> is
the user-specified file name used when generating the FPGA bitstream.

Table 10-4: PROM Generator Command Options

PROMGen Option Description

-spi REQUIRED! Specifies the correct bit ordering required to configure
from the SPI-based In-System Flash memory.

-p <format>
PROM output file format. Specifies the file format required by the SPI
programming software. Refer to the third party programmer
documentation for details.

-s <size>

Specifies the PROM size in kilobytes. The PROM size must be a power
of 2, and the default setting is 64 kilobytes.

By default, the Spartan-3AN In-System Flash memory uses a non-
binary addressing method, which uses an additional address bit. Use
the size settings shown in Table 10-5.

-u <address>

Loads the .bit file from the specified starting address in an upward
direction. This option must be specified immediately before the input
bitstream file. See Table 10-3, page 224 for starting addresses by
Spartan-3AN FPGA part type.

Table 10-5: Spartan-3AN PROMGen Size Settings

Spartan-3AN FPGA
In-System Flash Size

(bits)

-s <size> Setting by Address Mode

Default Power-of-2

XC3S50AN 1M 256 128

XC3S200AN 4M 1,024 512

XC3S400AN 4M 1,024 512

XC3S700AN 8M 2,048 1,024

XC3S1400AN 16M 4,096 2,048

http://www.xilinx.com

228 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

promgen -spi -p mcs -o <promdata>.mcs -s 2048 -u 0 <bitstream0>.bit
-u c0000 <bitstream1>.bit

Programming Spartan-3AN FPGAs Using iMPACT
Beginning in ISE 9.1i, Service Pack 3, the iMPACT software provides programming
support for prototyping and initial hardware development. Production programming
support is described in “Third-Party Programmer Support,” page 228.

The iMPACT software programs the Spartan-3AN FPGA using the Xilinx programming
cables, described in “Programming Cables and Headers,” page 207, using the connections
shown in Figure 10-1, page 215.

Third-Party Programmer Support
The Xilinx iMPACT software, starting with ISE 9.1i, Service Pack 3, provides in-system
programming support for prototyping and initial development. However, the iMPACT
software is not efficient for high-volume production programming. The available Spartan-
3AN production programming solutions are listed below by vendor.

BPM Microsystems
BPM Microsystems is a global supplier of engineering and production device
programmers and is the leading supplier of automated programming systems to the
semiconductor and electronics industries.

• BPM Microsystems Web Site
www.bpmicrosystems.com

Production Hardware Programming Solutions

Table 10-6 lists the BPM Microsystems programming solutions for Spartan-3AN FPGAs.
Support is available both for new installations and for pre-existing programmers. Socket
adapters are required.

Table 10-6: BPM Microsystems Programmers Supporting Spartan-3AN FPGAs

Status Programmer Model Number Programmer Type

Recommended for new
installations, available for

purchase

3610

Automated Production
4610

4710

3710MK2

BP-2610
Multi-site Concurrent

BP-2710

BP-1410

Single-site EngineeringBP-1610

BP-1710

http://www.xilinx.com
http://www.bpmicrosystems.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 229
UG332 (v1.5) March 16, 2009

Third-Party Programmer Support
R

Programming Socket Modules and Software

Table 10-7 lists the socket adapters and software required to program Spartan-3AN FPGAs
on the programming solutions shown in Table 10-6. Check the BPM Microsystems web site
for the most up-to-date information.

Legacy model. May
already be installed in
many programming

centers

4700

Automated Production

3700MK2

BP-3500

BP-3510

BP-3600

BP-4500

BP-4510

BP-4600

BP-2500

Multi-site Concurrent
BP-2510

BP-2600

BP-2700

BP-1600
Single-site Engineering

BP-1700

Table 10-6: BPM Microsystems Programmers Supporting Spartan-3AN FPGAs

Status Programmer Model Number Programmer Type

Table 10-7: BPM Microsystems Socket Modules and Software for Spartan-3AN
FPGAs

Spartan-3AN FPGA
BPM Microsystems

Socket Module
Model Number

Programming Software

XC3S50AN

XC3S200AN
ASM256BGT
SM256BGT

BPWin V4.66.0 and later

XC3S400AN

XC3S700AN
ASM484BGD
SM484BGD

BPWin V4.66.0 and later

XC3S1400AN
ASM676BG
SM676BG

BPWin V4.66.0 and later

http://www.xilinx.com

230 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 10: Internal Master SPI Mode
R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 231
UG332 (v1.5) March 16, 2009

R

Chapter 11

Configuration Bitstream Generator
(BitGen) Settings

Various Spartan®-3 generation FPGA functions are controlled by individual settings in the
configuration bitstream image. These values are specified when creating the bitstream
image with the Bitstream Generator (BitGen) software.

Table 11-2, page 232 lists the more commonly-used bitstream generator options for
Spartan-3 generation FPGAs. Each of these options can be specified on the command line
with the following format:

bitgen -g <option>:<value> infile

The option name and value are separated by a colon with no spaces.

For more information and a complete listing of all options, see the “BitGen” chapter in the
following document:

• ISE® Software 10.2i Development System Reference Guide
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf

For a quick summary of available options for particular FPGA family, type the command
shown in Table 11-1 in a DOS box or command window.

Some of the bitstream options can be controlled from the ISE Project Navigator, as
described in “ISE Software Project Navigator,” page 42. Any option not specifically listed
in the graphic interface can be included as Step 5 shown in Figure 1-6, page 43.

Table 11-1: Command Line to Review Bitstream Generator Options per Family

FPGA Family Command Line

Spartan-3 bitgen -help spartan3

Spartan-3E bitgen -help spartan3e

Spartan-3A bitgen -help spartan3a

Spartan-3AN bitgen -help spartan3an

Spartan-3A DSP bitgen -help spartan3adsp

http://toolbox.xilinx.com/docsan/xilinx92/books/docs/dev/dev.pdf
http://www.xilinx.com

232 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 11: Configuration Bitstream Generator (BitGen) Settings
R

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options

Option Name
Pins/Function

Affected
Values

(default)
Description

ConfigRate CCLK,
Configuration,
Master Modes
only

Extended
Spartan-3A
FPGA:
1, 3, 6, 7, 8, 10,
12, 13, 17, 22,
25, 27, 33, 44,
50, 100

Sets the frequency, approximately in MHz, of the internal
oscillator used for Master configuration modes. Drives out on
the FPGA’s CCLK pin. The internal oscillator powers up at its
lowest frequency, and the new setting is loaded as part of the
configuration bitstream. See “Configuration Clock: CCLK,”
page 56 for more information.

Spartan-3E
FPGA:
1, 3, 6,
12, 25, 50

Spartan-3
FPGA:
3, 6,12, 25, 50

StartupClk Configuration,
Startup

Cclk Default. The CCLK signal (internally or externally generated)
controls the Startup sequencer as the FPGA transitions from
configuration mode to the application loaded into the FPGA.
See “Startup Clock Source,” page 250.

UserClk A clock signal from within the FPGA application controls the
Startup sequencer as the FPGA transitions from
configuration mode to the application loaded into the FPGA.
See “Startup Clock Source,” page 250. The FPGA application
supplies the user clock on the CLK pin on the STARTUP
primitive. See “Start-Up (STARTUP),” page 255.

JtagClk The JTAG TCK input controls the startup sequence when the
FPGA transitions from the configuration mode to the user
mode. See “Startup,” page 248.

ProgPin PROG_B pin Pullup Default. Internally connects a pull-up resistor or between
PROG_B pin and VCCAUX. See “Program or Reset FPGA:
PROG_B,” page 56.

Pullnone No internal pull-up resistor on PROG_B pin. An external 4.7
kΩ pull-up resistor to VCCAUX is required.

UnusedPin Unused I/O Pins Pulldown Default. All unused I/O pins and input-only pins have a
pull-down resistor to GND.

Pullup All unused I/O pins and input-only pins have a pull-up
resistor to the VCCO_# supply for its associated I/O bank.

Pullnone All unused I/O pins and input-only pins are left floating (Hi-
Z, high-impedance, three-state). Use external pull-up or pull-
down resistors or logic to apply a valid signal level.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 233
UG332 (v1.5) March 16, 2009

R

Persist SelectMAP
interface pins,
Slave mode,
Configuration

No Default. All Slave mode configuration pins are available as
user-I/O after configuration.

Yes This option is required for Readback using the SelectMAP
interface. The SelectMAP interface pins (see “SelectMAP
Data Loading,” page 182) are reserved after configuration
and are not available as user-I/O.

Security JTAG,
SelectMAP,
Readback

None Default. Readback is available via the JTAG port or via the
SelectMAP interface, if Persist:Yes.

Level1 See “Basic FPGA Hardware-Level Security Options,”
page 289.

Level2

Level3

Compress FPGA bitstream
size

No Default. Bitstream is not compressed and will be the size
shown in Table 1-4.

Yes Possibly compress the FPGA bitstream by finding redundant
configuration frame and using multi-frame write command
during configuration. There is no guarantee of the amount of
compression. Sparse designs or designs that do not use block
RAM see the most benefit. See “Bitstream Format,” page 39.

Spartan-3 FPGA Family Configuration Pin Controls

(see Table 2-9, page 63 and Table 2-11, page 64)

HswapenPin Spartan-3 FPGA
only:

HSWAP_EN pin

Pullup Default. Internally connects a pull-up resistor between the
Spartan-3 HSWAP_EN pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between the
Spartan-3 HSWAP_EN pin and GND.

Pullnone No internal pull-up resistor on the Spartan-3 HSWAP_EN
pin.

CclkPin Spartan-3 FPGA
only:

CCLK pin

Pullup Default. Internally connects a pull-up resistor or between
CCLK pin and VCCAUX.

Pullnone CCLK pin is high-impedance (floating). Define CCLK logic
level externally.

M2Pin Spartan-3 FPGA
only:

M2 pin

Pullup Default. Internally connects a pull-up resistor or between M2
mode-select pin and VCCAUX.

Pulldown Internally connects a pull-down resistor or between M2
mode-select pin and GND.

Pullnone M2 pin is high-impedance (floating). Define M2 logic level
externally.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function

Affected
Values

(default)
Description

http://www.xilinx.com

234 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 11: Configuration Bitstream Generator (BitGen) Settings
R

M1Pin Spartan-3 FPGA
only:

M1 pin

Pullup Default. Internally connects a pull-up resistor or between M1
mode-select pin and VCCAUX.

Pulldown Internally connects a pull-down resistor or between M1
mode-select pin and GND.

Pullnone M1 pin is high-impedance (floating). Define M1 logic level
externally.

M0Pin Spartan-3 FPGA
only:

M0 pin

Pullup Default. Internally connects a pull-up resistor or between M0
mode-select pin and VCCAUX.

Pulldown Internally connects a pull-down resistor or between M0
mode-select pin and GND.

Pullnone M0 pin is high-impedance (floating). Define M0 logic level
externally.

DONE Pin Options

See “DONE Pin,” page 52.

DonePin DONE pin Pullup Default. Internally connects a pull-up resistor between
DONE pin and VCCAUX. An external 330 Ω pull-up resistor to
VCCAUX is still recommended. See DONE pin “ConfigRate:
Bitstream Option for CCLK,” page 60.

Pullnone No internal pull-up resistor on DONE pin. An external 330 Ω
pull-up resistor to VCCAUX is required.

DriveDone DONE pin No Default. When configuration completes, the DONE pin stops
driving Low and relies on an external 330 Ω pull-up resistor
to VCCAUX for a valid logic High. See DONE pin “ConfigRate:
Bitstream Option for CCLK,” page 60.

Yes When configuration completes, the DONE pin actively drives
High. When using this option, an external pull-up resistor is
no longer required. Only one device in an FPGA daisy chain
should use this setting.

DonePipe DONE pin No Default. The input path from DONE pin input back to the
Startup sequencer is not pipelined. See DONE pin
“ConfigRate: Bitstream Option for CCLK,” page 60.

Yes This option adds a pipeline register stage between the DONE
pin input and the Startup sequencer. Used for high-speed
daisy-chain configurations when DONE cannot rise in a
single CCLK cycle. Releases GWE and GTS signals on the first
rising edge of StartupClk after the DONE pin input goes
High.

Startup Sequencer Options

See “Startup,” page 248.

DONE_cycle DONE pin,
Configuration
Startup

1, 2, 3, 4, 5, 6 Selects the Configuration Startup phase that activates the
FPGA’s DONE pin. See “Startup,” page 248.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function

Affected
Values

(default)
Description

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 235
UG332 (v1.5) March 16, 2009

R

GWE_cycle All flip-flops,
LUT RAMs, and
SRL16 shift
registers, Block
RAM,
Configuration
Startup

1, 2, 3, 4, 5, 6 Default. Selects the Configuration Startup phase that asserts
the internal write-enable signal to all flip-flops, LUT RAMs
and shift registers (SRL16). It also enables block RAM read
and write operations. See “Startup,” page 248.

Done Waits for the DONE pin input to go High before asserting the
internal write-enable signal to all flip-flops, LUT RAMs and
shift registers (SRL16). Block RAM read and write operations
are enabled at this time.

GTS_cycle All I/O pins,
Configuration

1, 2, 3, 4, 5, 6 Default. Selects the Configuration Startup phase that releases
the internal three-state control, holding all I/O buffers in
high-impedance (Hi-Z). Output buffers actively drive, if so
configured, after this point. See “Startup,” page 248.

Done Waits for the DONE pin input to go High before releasing the
internal three-state control, holding all I/O buffers in high-
impedance (Hi-Z). Output buffers actively drive, if so
configured, after this point.

Keep Retains the current GTS_cycle setting.

LCK_cycle DCMs,
Configuration
Startup

NoWait Default. The FPGA does not wait for selected DCMs to lock
before completing configuration.

0, 1, 2, 3, 4, 5, 6 If one or more DCMs in the design have the
STARTUP_WAIT=TRUE attribute, the FPGA waits for such
DCMs to acquire their respective input clock and assert their
LOCKED output. This setting selects the Configuration
Startup phase where the FPGA waits for the DCMs to lock.
See “Waiting for DCMs to Lock, DCI to Match,” page 250.

Match_cycle Spartan-3 FPGA
only:

DCI

Auto The BitGen software examines the FPGA design for any I/O
standards that use DCI. If found, BitGen automatically sets
Match_cycle:2, causing the Startup sequence to stall in state 2
while the DCI circuitry matches the target impedance.
Otherwise, Match_cycle:NoWait.

NoWait The FPGA does not wait for DCI circuitry to match
impedance.

0, 1, 2, 3, 4, 5, 6 Specify the Startup cycle where the FPGA waits for the DCI
circuitry to match the target impedance value, specified using
external resistors.

DCIUpdateMode Spartan-3 FPGA
only:

DCI

AsRequired Default. DCI impedance adjustments are made only when
needed to maintain tracking.

Continuous DCI impedance adjustments are made continuously.

Quiet After the initial DCI impedance match is achieved, no further
adjustments occur.

JTAG-Related Options

See Chapter 9, “JTAG Configuration Mode and Boundary-Scan.”

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function

Affected
Values

(default)
Description

http://www.xilinx.com

236 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 11: Configuration Bitstream Generator (BitGen) Settings
R

TckPin JTAG TCK pin Pullup Default. Internally connects a pull-up resistor between JTAG
TCK pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TCK
pin and GND.

Pullnone No internal pull-up resistor on JTAG TCK pin.

TdiPin JTAG TDI pin Pullup Default. Internally connects a pull-up resistor between JTAG
TDI pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TDI
pin and GND.

Pullnone No internal pull-up resistor on JTAG TDI pin.

TdoPin JTAG TDO pin Pullup Default. Internally connects a pull-up resistor between JTAG
TDO pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TDO
pin and GND.

Pullnone No internal pull-up resistor on JTAG TDO pin.

TmsPin JTAG TMS pin Pullup Default. Internally connects a pull-up resistor between JTAG
TMS pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TMS
pin and GND.

Pullnone No internal pull-up resistor on JTAG TMS pin.

UserID JTAG User ID
register

0xFFFFFFFF The 32-bit JTAG User ID register value is loaded during
configuration. The default value is all ones, 0xFFFFFFFF
hexadecimal. To specify another value, enter an 8-character
hexadecimal value.

Extended Spartan-3A Family Power-Saving Suspend Feature

See XAPP480 Using Suspend Mode in Spartan-3 Generation FPGAs.

en_suspend Extended
Spartan-3A
FPGA only:

Suspend mode

No Default. Suspend mode not used. Connect the SUSPEND pin
to GND.

Yes Enables the power-saving Suspend feature, controlled by the
SUSPEND pin.

drive_awake Extended
Spartan-3A
FPGA only:

Suspend mode,
AWAKE pin

No Default. If Suspend mode is enabled, indicates the present
status on AWAKE using an open-drain output. An external
pull-up resistor or High signal is required to exit SUSPEND
mode.

Yes If Suspend mode is enabled, indicates the present status by
actively driving the AWAKE output.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function

Affected
Values

(default)
Description

http://www.xilinx.com/support/documentation/application_notes/xapp480.pdf
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 237
UG332 (v1.5) March 16, 2009

R

suspend_filter Extended
Spartan-3A
FPGA only:

Suspend mode,
SUSPEND pin

Yes Default. Enables the glitch filter on the SUSPEND pin.

No Disables the glitch filter on the SUSPEND pin.

en_sw_gsr Extended
Spartan-3A
FPGA only:

Suspend mode,
wake-up timing

No Default. The state of all clocked elements in the FPGA is
preserved during Suspend mode.

Yes During wake-up from Suspend mode, the FPGA pulses the
Global Set/Reset (GSR) signal, setting or resetting all clocked
elements, as originally specified in the FPGA application. All
state information prior to entering Suspend mode is lost. The
GSR pulse occurs before the AWAKE pin goes High and
before the sw_gwe_cycle and sw_gts_cycle settings are active.

sw_clk Extended
Spartan-3A
FPGA only:

Suspend mode,
wake-up timing

StartupClk Default. Uses the clock defined by the StartupClk bitstream
setting to control the Suspend wake-up timing.

InternalClk Uses the internally generated “50 MHz” oscillator to control
the Suspend wake-up timing. The clock frequency is the same
as when ConfigRate:50, as described in the FPGA data sheet.

sw_gwe_cycle Extended
Spartan-3A
FPGA only:

Suspend mode,
wake-up timing

1,..,5,...,1024 After the AWAKE pin is High, indicates the number of clock
cycles as defined by the sw_clk setting, when the global
write-protect lock is released for writable clocked elements
(flip-flops, block RAM, etc.). The default value is five clock
cycles after the AWAKE pin goes High. Generally, this value
is equal to or greater than the sw_gts_cycle setting.

sw_gts_cycle Extended
Spartan-3A
FPGA only:

Suspend mode,
wake-up timing

1,..,4,...,1024 After the AWAKE pin is High, indicates the number of clock
cycles as defined by the sw_clk setting, when the I/O pins
switch from their SUSPEND Constraint settings back to their
normal functions. The default value is four clock cycles after
the AWAKE pin goes High. Generally, this value is equal to
or less than the sw_gwe_cycle setting.

Extended Spartan-3A Family MultiBoot Control Options

See “Extended Spartan-3A Family MultiBoot,” page 271.

ICAP_Enable Extended
Spartan-3A
FPGA only:

ICAP, MultiBoot

Auto Default. The BitGen software examines the FPGA design. If
the ICAP primitive is instantiated in the design, BitGen
automatically sets ICAP_Enable:Yes, enabling the ICAP port.
Otherwise, ICAP_Enable:No.

No The ICAP port is disabled.

Yes The ICAP port is enabled.

next_config_addr Extended
Spartan-3A
FPGA only:

MultiBoot

0x0000000 Specifies the next MultiBoot start address as a 7-character
hexadecimal value. The specified value is loaded into the
GENERAL1 and GENERAL2 registers during configuration.
See “Extended Spartan-3A Family MultiBoot,” page 271 for
details on use.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function

Affected
Values

(default)
Description

http://www.xilinx.com

238 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 11: Configuration Bitstream Generator (BitGen) Settings
R

Configuration CRC Checking Options

See Chapter 16, “Configuration CRC.”

CRC Configuration Enable Default. Enable CRC checking on the FPGA bitstream. If
error detected, FPGA asserts INIT_B Low and DONE pin
stays Low. In the Extended Spartan-3A family, Reset_on_err
can be enabled to re-attempt configuration instead.

Disable Turn off CRC checking. Not recommended.

Reset_on_err Extended
Spartan-3A
FPGA only:

MultiBoot, CRC,
watchdog timer

No Default. The FPGA halts upon encountering a configuration
CRC error.

Yes If a configuration CRC error occurs, the FPGA automatically
re-initializes and retries the configuration process. Three
retry attempts may occur before finally halting. Requires that
CRC be enabled (default).

post_crc_en Extended
Spartan-3A
FPGA only:

Post-
configuration
CRC checker

No Default. Disable the post-configuration CRC checker.

Yes Enable the post-configuration CRC checker.

post_crc_freq Extended
Spartan-3A
FPGA only:

Post-
configuration
CRC checker

1, 3, 6, 7, 8, 10,
12, 13, 17, 22,
25, 27, 33, 44,
50, 100

Sets the clock frequency used for the post-configuration CRC
checker. The available options are the same as for the
ConfigRate bitstream option.

post_crc_keep Extended
Spartan-3A
FPGA only:

Post-
configuration
CRC checker

No Default. Stop checking when error detected. Allows CRC
signature to be read back.

Yes Continue to check for CRC errors after an error was detected.

glutmask Extended
Spartan-3A
FPGA only:

Post-
configuration
CRC checker

Yes Default. Mask out the Look-Up Table (LUT) bits from the
SLICEM logic slices. SLICEMs support writable functions
such as distributed RAM and SRL16 shift registers, which
generate CRC errors when bit locations are modified.

No Include the LUT bits from SLICEM logic slices. Use this
option only if the application does not include any
distributed RAM or SRL16 shift registers.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function

Affected
Values

(default)
Description

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 239
UG332 (v1.5) March 16, 2009

R

Chapter 12

Sequence of Events

Overview
This chapter outlines the multi-stage configuration process for Spartan®-3 generation
FPGAs.

While each FPGA configuration mode uses a slightly different interface, the basic steps
involved are the same for all modes. Figure 12-1 shows the general Spartan-3 generation
FPGA configuration process. The details of the bitstream will also include the formatting
and command bits. The following subsections describe each step in detail, where the
current step is highlighted at the beginning of each subsection.

Setup for Configuration (Steps 1-3)
The Setup process is similar for all configuration modes. The Spartan-3 generation FPGA
first wakes from reset, initializes its internal configuration memory, and determines which
configuration mode to use by sampling the mode pins.

Wake from Reset

Spartan-3 generation FPGAs wake from reset in several possible ways.

Figure 12-1: Spartan-3 Generation FPGA Configuration Process

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_01_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

Figure 12-2: FPGA Wake from Reset

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_02_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

http://www.xilinx.com

240 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

1. The FPGA powers on and the FPGA’s internal Power-On Reset (POR) circuit holds the
FPGA in reset until the required voltage supplies reach appropriate levels.

2. The system pulses the PROG_B pin Low, which resets the FPGA.

3. The FPGA is reset via the dedicated JTAG interface using the JPROGRAM instruction.

4. The FPGA is reset via the Extended Spartan-3A family REBOOT command available
using the SelectMAP, JTAG, or ICAP interfaces.

5. On Extended Spartan-3A family FPGAs, the FPGA is reset if the Configuration
Watchdog Timer (CWDT) expires during configuration and less than three
configuration retries have occurred.

Power-On Reset (POR)

As shown in Figure 12-3, Spartan-3 generation FPGAs include a Power-On Reset (POR)
circuit that holds the FPGA in reset until all of the supply rails required for configuration
have reached their threshold levels. The three supplies required are the following.

1. VCCINT, which supplies the internal FPGA core logic.

2. VCCAUX, which supplies the dedicated configuration pins.

3. VCCO_2 on Extended Spartan-3A family and Spartan-3E FPGAs or VCCO_4 (or
VCCO_BOTTOM in some packages where VCCO_4 and VCCO_5 are connected) on
Spartan-3 FPGAs, which supplies the interface pins connected to the external
configuration data source (i.e., PROM or processor).

Figure 12-3: Extended Spartan-3A Family and Spartan-3E Reset Circuitry
(Spartan-3 is similar)

VCCO_2

VCCO2T

VCCINT

VCCINTT

VCCAUX

VCCAUXT

PROG_B

POWER_GOOD

Power On Reset (POR)

Glitch Filter

FPGA_RESET

P
ow

e
r

ra
ils

 in
vo

lv
ed

 in

C
o

nf
ig

u
ra

tio
n

JTAG

TDI

TMS

TCK

TCK

JPROGRAM
instruction

UG332_c12_11_113006

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 241
UG332 (v1.5) March 16, 2009

Setup for Configuration (Steps 1-3)
R

The FPGA monitors all three supplies. Once all three supplies exceed the specified
threshold voltage, summarized in Table 12-1, page 241 from the associated FPGA data
sheet, the POR circuit releases the internal reset and the FPGA can continue with the
configuration process unless the PROG_B pin is Low.

VCCINT should rise monotonically within the specified ramp rate. If this is not possible,
delay configuration by holding the INIT_B pin or the PROG_B pin Low (see “Delaying
Configuration,” page 243) while the system power supplies reach the required POR
threshold.

After successfully configuring, the POR circuit continues to monitor the VCCINT and
VCCAUX supply inputs. Should either supply drop below the its associated threshold
voltage, the POR circuit again resets the FPGA. VCCO_2 is not monitored after
configuration so that the user can reduce it as needed for low-voltage standards.

Note that the Extended Spartan-3A family has a requirement that VCCO_2 reach 2.0V for
successful power-on. This level is higher than in the Spartan-3 and Spartan-3E FPGAs, and
helps make sure that external configuration memories are ready before the FPGA starts
attempting access. If the design only requires 1.8V (or lower) I/Os in bank 2 then the
VCCO_2 supply would temporarily need to rise to 2.0V and then could drop down to the
1.8V level for operation. See "Lowering VCCO_2 After Configuration for Extended
Spartan-3A Family" in chapter 2.

PROG_B Pin

The PROG_B resets the FPGA, regardless of the current state of the FPGA. For additional
information, see “Program or Reset FPGA: PROG_B,” page 56.

Power-Up Timing

Figure 12-4 shows the general power-up timing, showing the relationship between the
input voltage supplies, the INIT_B pin, and the PROG_B pin.

Table 12-1: Power-On Reset Threshold Voltages

Voltage Supply
POR Threshold
Specification

Spartan-3A/3AN
Spartan-3A DSP

FPGA
Spartan-3E FPGA Spartan-3 FPGA

Units

Min Max Min Max Min Max

VCCINT VCCINTT 0.4 1.0 0.4 1.0 0.4 1.0 V

VCCAUX VCCAUXT 1.0 2.0 0.8 2.0 0.8 2.0 V

VCCO_2 VCCO2T 1.0 2.0 0.4 1.0 V

VCCO_4 (or
“VCCO_BOTTOM”) VCCO4T 0.4 1.0 V

http://www.xilinx.com

242 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

Table 12-2 lists and describes the power-up timing specifications shown in Figure 12-4.
Refer to the associated FPGA data sheet for any unlisted values.

Figure 12-4: FPGA Power-Up Timing Waveforms (Master Modes)

VCCINT
(Supply)

(Supply)

(Supply)

VCCAUX

VCCO Bank 2

PROG_B

(Output)

(Open-Drain)

(Input)

INIT_B

CCLK

UG332_c12_13_111506

1.2V

2.5V

TICCK

TPROG
TPL

TPOR

1.0V

(See Table)

2.0V

TMINIT TINITM

(Input)
VS[2:0]
M[2:0]

Pins Sampled

Table 12-2: FPGA Power-Up Timing Specifications

Symbol Description Family Value Units

TPOR Power-On Reset delay from when all three
supplies reach their required threshold voltage
until the FPGA completes clearing its
configuration memory and INIT_B goes High.

Spartan-3 5 to 7

msSpartan-3E 5 to 7

Spartan-3A 18

TPL Delay from when PROG_B is released High
until the FPGA completes clearing its
configuration memory and INIT_B goes High.

Spartan-3 2 to 3

msSpartan-3E 0.5 to 2

Spartan-3A 0.5 to 2

TPROG Minimum PROG_B pulse width required to
reset FPGA.

Spartan-3 300

nsSpartan-3E
Spartan-3A

500

TICCK For Master configuration modes, the time from
the rising edge of INIT_B until CCLK output
begins toggling.

All 0.5 to 4 μs

TMINIT Setup time on M[2:0] mode-select pins and, in
Master SPI mode, the setup time on VS[2:0]
variant-select pins before the rising edge of
INIT_B.

All 50 ns

Notes:
1. Spartan-3A represents the Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA families.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 243
UG332 (v1.5) March 16, 2009

Setup for Configuration (Steps 1-3)
R

Clear Configuration Memory (Initialization)

Configuration memory is cleared automatically after the FPGA wakes from a reset event.
During this time, I/Os are placed in a high-impedance (Hi-Z) state except for the dedicated
Configuration and JTAG pins. The INIT_B pin actively drives Low during initialization,
and then released after TPOR during a power-up event or after TPL for other cases. See
Figure 12-4. If the INIT_B pin is held Low externally, the FPGA waits at this point in the
initialization process until the pin is released.

The minimum Low pulse time for PROG_B is defined by the TPROG timing parameter. The
PROG_B pin can be held active (Low) for as long as necessary.

Sample Control Pins

When the INIT_B pin returns High after initialization, the FPGA samples the M[2:0] mode
select pins and the VS[2:0] variant select pins. Shortly after, the FPGA begins driving CCLK
if the M[2:0] mode select pins define one of the Master configuration modes. The VS[2:0]
values are only used in Master SPI configuration mode. At this point, the FPGA begins
sampling the configuration data input pins on the rising edge of the configuration clock.

Delaying Configuration
There are three methods to delay configuration for Spartan-3 generation FPGAs.

1. Hold the PROG_B pin Low, which holds the FPGA in reset, Step 1 shown in
Figure 12-2, page 239.

2. Hold the INIT_B pin Low during initialization, which stalls the configuration process
in Step 2 shown in Figure 12-5, page 243. However, after the FPGA releases INIT_B
High, the application cannot subsequently delay configuration by pulling INIT_B
Low.

3. Hold the DONE pin Low, which prevents the FPGA from completing the Startup
Sequence, shown as Step 8 in Figure 12-11, page 248.

Figure 12-5: Clear Configuration Memory (Initialization)

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_03_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

Figure 12-6: Sample Control Pins (Mode Select, Variant Select)

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_04_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

http://www.xilinx.com

244 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

Bitstream Loading (Steps 4-7)
The bitstream loading process is similar for all configuration modes; the primary
difference between modes is the interface between the FPGA and the source of
configuration data.

The important steps in the bitstream loading process are as follows.

• Synchronization

• Array ID check

• Loading configuration data

• CRC check

Each of these steps involves distinct parts of the configuration bitstream.

Synchronization

Embedded at the beginning of an FPGA configuration bitstream is a special
synchronization word. The synchronization word alerts the FPGA to upcoming
configuration data and aligns the configuration data with the internal configuration logic.
Any data on the configuration input pins prior to synchronization is ignored. Because the
synchronization word is automatically added by the Xilinx® bitstream generation
software, this step is transparent in most applications.

The length and contents of the synchronization word differ between the Extended Spartan-
3A family FPGA families and the Spartan-3 and Spartan-3E FPGA families, as outlined in
Table 12-3.

Figure 12-7: Synchronization

Table 12-3: Spartan-3 Generation FPGA Synchronization Word

FPGA Family Length (bits) Contents (hexadecimal)

Spartan-3A/3AN
Spartan-3A DSP 16 0xAA99

Spartan-3
Spartan-3E 32 0xAA995566

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_05_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 245
UG332 (v1.5) March 16, 2009

Bitstream Loading (Steps 4-7)
R

Check Array IDCODE

After the FPGA is synchronized, the FPGA checks that the array ID embedded in the
bitstream matches its internal array ID. This prevents the FPGA from mistakenly
attempting to load configuration data intended for a different FPGA array. For example,
the array ID check prevents an XC3S1000 from being configured with an XC3S200
bitstream.

The Spartan-3AN FPGA family can be configured with a Spartan-3A bitstream for the
equivalent size device, since they are compatible.

The array ID check is built into the bitstream, making this step transparent to most
designers. Table 12-4 shows the Spartan-3 generation array ID codes. Although the array
ID code is identical to the JTAG IDCODE register value, the array ID check is performed
using bitstream commands to the internal configuration logic, not through the JTAG
IDCODE register.

The array identifier is a 32-bit value. Within the 32-bit value, 28 bits are unique to a specific
FPGA array size while the additional four bits are a mask revision code, which varies
between 0x0 to 0xF.

There are three components to the 28-bit vendor/array identifier value.

• The least-significant 12 bits, 0x093, represent the Xilinx vendor code (0x49),
appended to the least-significant bit which is always ‘1’, resulting in the value 0x093.
These 12 bits are consistent for all Spartan-3 generation FPGAs.

• The most-significant 8 bits represent the FPGA family code.

♦ 0x22: Spartan-3A family

♦ 0x26: Spartan-3AN family

♦ 0x38: Spartan-3A DSP family

♦ 0x1C: Spartan-3E family

♦ 0x14: Spartan-3 family

• The middle 8 bits represent an array-specific code.

Figure 12-8: Check Array ID

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_06_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

http://www.xilinx.com

246 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

The FPGA indicates if the array value does not match by setting Bit 1 (ID_Err) in the STAT
(Status) register, as shown in Table 12-5. There are various methods to read the status
register, including via JTAG using the Xilinx iMPACT software, or by using the SelectMAP
interface.

Table 12-4: Spartan-3 Generation FPGA Array ID Codes

FPGA Family FPGA Array

32-bit Array Identifier

4-bit Revision
Code

28-bit Vendor/Array Identifier
(hexadecimal)

Spartan-3A
FPGAs

XC3S50A 0xX 0x22 10 093

XC3S200A 0xX 0x22 18 093

XC3S400A 0xX 0x22 20 093

XC3S700A 0xX 0x22 28 093

XC3S1400A 0xX 0x22 30 093

Spartan-3AN
FPGAs

XC3S50AN 0xX 0x26 10 093

XC3S200AN 0xX 0x26 18 093

XC3S400AN 0xX 0x26 20 093

XC3S700AN 0xX 0x26 28 093

XC3S1400AN 0xX 0x26 30 093

Spartan-3A DSP
FPGAs

XC3SD1800A 0xX 0x38 40 093

XC3SD3400A 0xX 0x38 4E 093

Spartan-3E
FPGAs

XC3S100E 0xX 0x1C 10 093

XC3S250E 0xX 0x1C 1A 093

XC3S500E 0xX 0x1C 22 093

XC3S1200E 0xX 0x1C 2E 093

XC3S1600E 0xX 0x1C 3A 093

Spartan-3
FPGAs

XC3S50 0xX 0x14 0C 093

XC3S200 0xX 0x14 14 093

XC3S400 0xX 0x14 1C 093

XC3S1000 0xX 0x14 28 093

XC3S1500 0xX 0x14 34 093

XC3S2000 0xX 0x14 40 093

XC3S4000 0xX 0x14 48 093

XC3S5000 0xX 0x14 50 093

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 247
UG332 (v1.5) March 16, 2009

Bitstream Loading (Steps 4-7)
R

Load Configuration Data Frames

After the synchronization word is loaded and the array ID is checked, the configuration
data frames are loaded.

Cyclic Redundancy Check

As the configuration data frames are loaded, the FPGA calculates a Cyclic Redundancy
Check (CRC) value from the configuration data packets. After the configuration data
frames are loaded, the configuration bitstream, by default (CRC:Enable), issues a Check
CRC instruction to the FPGA, followed by an expected CRC value. If the CRC value
calculated by the FPGA does not match the expected CRC value in the bitstream, then the
FPGA pulls INIT_B Low and aborts configuration.

Refer to “CRC Checking during Configuration,” page 309 for additional information.

Table 12-5: STAT Register

Name Bit Description

ID_Err 1
0: Array ID value matched expected value.

1: Array ID value embedded in bitstream does not match the value
read from the FPGA

Figure 12-9: Load Configuration Data Frames

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_07_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

Figure 12-10: Cyclic Redundancy Check

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_08_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

http://www.xilinx.com

248 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

Startup

After successfully loading the configuration frames, the bitstream instructs the FPGA to
enter the Startup sequence. The Startup sequence is controlled by an 8-phase (phases 0-7)
sequential state machine. The startup sequencer performs the tasks outlined in Table 12-6.

The specific order of startup events, except for the End of Startup (EOS) is user-
programmable through various bitstream generator options. Table 12-7 and Figure 12-12,
page 249 show the general sequence of events, although the specific phase for each of these
startup events is user-programmable. EOS is always the last phase. By default, startup
events occur as shown in Table 12-7.

The FPGA automatically pulses the Global Set/Reset (GSR) signal when entering the
Startup sequence, forcing all flip-flops and latches in a known state. The sequence and
timing of how the FPGA switches over is programmable as is the clock source controlling
the sequence.

Figure 12-11: Startup Sequence

Table 12-6: User-Selectable Cycle of Startup Events

Startup Event Phase
BitGen
Control

Wait for DCMs to Lock (optional) 1-6 LCK_cycle

Spartan-3 FPGA family only: Wait for DCI to Match (optional). 1-6 Match_cycle

Assert Global Write Enable (GWE), allowing RAMs and flip-flops
to change state

1-6 GWE_cycle

Release the Global 3-State (GTS), activating I/O 1-6 GTS_cycle

Release DONE pin 1-6 DONE_cycle

End Of Startup (EOS) 7 N/A

Table 12-7: Default BitGen Sequence of Startup Events

BitGen
Control

Default
Setting
(Phase)

Event

DONE_cycle 4
Release DONE pin, indicating that the FPGA successfully
completed configuration.

GTS_cycle 5 Release the global three-state control (GTS), activating I/O

GWE_cycle 6
Assert the global write-enable (GWE), allowing RAM and flip-
flops to change state

N/A 7 Assert EOS

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_09_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 249
UG332 (v1.5) March 16, 2009

Startup
R

The default start-up sequence appears in Figure 12-12, where the Global Three-State signal
(GTS) is released one clock cycle after DONE goes High. This sequence allows the DONE
signal to enable or disable any external logic used during configuration before the user
application in the FPGA starts driving output signals. One clock cycle later, the Global
Write Enable (GWE) signal is released. This allows signals to propagate within the FPGA
before any clocked storage elements such as flip-flops and block ROM are enabled.

The function of the dual-purpose I/O pins, such as M[2:0], VS[2:0], HSWAP, PUDC_B, and
A[25:0], also changes when the Global Three-State (GTS) signal is released. The dual-
purpose configuration pins become user I/Os. The exception on Spartan-3E and Extended
Spartan-3A family FPGAs is the CCLK pin, which becomes a user-I/O pin at the End of
Startup (EOS).

Figure 12-12: Default Start-Up Sequence

Start-Up Clock

Default Cycles

Sync-to-DONE

0 1 2 3 4 5 6 7

0 1

DONE High

2 3 4 5 6 7

Phase

Start-Up Clock

Phase

DONE

GTS

GWE

DONE

GTS

GWE

UG332_c12_10_110406

http://www.xilinx.com

250 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

Startup Clock Source
There are three possible clock sources for the Startup sequencer, controlled by the
StartupClk bitstream generator option.

1. By default, the start-up sequence is synchronized to CCLK. The Cclk option or the
UserClk option is required for Master Mode or Slave Mode configuration.

2. Alternatively, the start-up sequence can be synchronized to a user-specified clock from
within the FPGA application using the “Start-Up (STARTUP),” page 255 library
primitive and by setting the StartupClk:UserClk bitstream generator option.

3. When using JTAG configuration, the start-up sequence must be synchronized to the
TCK clock input (StartupClk:JtagClk).

Waiting for DCMs to Lock, DCI to Match
The startup sequence can be forced to wait for the DCMs to lock or for DCI to match with
the appropriate BitGen options. These options are typically set to prevent DONE, GTS, and
GWE from being asserted (preventing FPGA operation) before the DCMs have locked
and/or DCI has matched.

The DONE signal is released by the startup sequencer on the cycle indicated in the
bitstream, set by the DONE_cycle bitstream generator option. However, the Startup
sequencer does not proceed beyond the specified Startup cycle until the DONE pin
actually sees an external logic High. The DONE pin is an open-drain bidirectional signal by
default. By releasing the DONE pin, the FPGA simply stops driving a logic Low and the
pin goes into a high-impedance (Hi-Z) state. A pull-up resistor, either internal or external,
is required for the DONE pin to reach a logic High in this case. Table 12-8 shows signals
relating to the startup sequencer. Figure 1-12 shows the waveforms relating to the startup
sequencer.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 251
UG332 (v1.5) March 16, 2009

Startup
R

Figure 12-13 is a generalized block diagram of the configuration logic, showing the
interaction of different device inputs and Bitstream Generator (BitGen) options.

Table 12-8: Signals Relating to Startup Sequencer

Signal Name Type Access Description

DONE Bidirectional
DONE pin or

Status Register

Indicates configuration is complete.
Can be held Low externally to
synchronize startup with other
FPGAs.

Release_DONE

Status Status Register

Indicates whether the FPGA has
stopped driving the DONE pin Low. If
the pin is held Low externally,
Release_DONE can differ from the
actual value on the DONE pin.

GWE

Global Write Enable (GWE). When
deasserted, GWE disables the CLB and
the IOB flip-flops as well as other
synchronous elements on the FPGA.

GTS
Global 3-State (GTS). When asserted,
GTS disables all the I/O drivers except
for the configuration pins.

EOS
End of Startup (EOS). EOS indicates
the absolute end of the configuration
and startup process.

DCI_MATCH

Spartan-3 FPGA Family only.
DCI_MATCH indicates when all the
Digitally Controlled Impedance (DCI)
controllers have matched their
internal resistor to the external
reference resistor.

DCM_LOCK

DCM_LOCK indicates when all the
Digital Clock Managers (DCMs) have
locked. This signal is asserted by
default. It is active if the
STARTUP_WAIT option is used on a
DCM and the LCK_cycle option is set
in the bitstream.

http://www.xilinx.com

252 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 12: Sequence of Events
R

Figure 12-13: Extended Spartan-3A Family, Spartan-3E FPGA Configuration Logic Conceptual Block
Diagram

DS312-2_57_102605

V
C

C
O

_2

V
C

C
O

2T

V
C

C
IN

T

V
C

C
IN

T
T

V
C

C
A

U
X

V
C

C
A

U
X

T

P
R

O
G

_B

C
C

LK

T
C

K

In
te

rn
al

O
sc

ill
at

or
M

1

M
2

C
on

fig
R

at
e

R
E

S
E

T
R

E
S

E
T

E
N

A
B

LE

R
E

S
E

T

E
N

A
B

LE

D
O

N
E

G
T

S

G
S

R

G
W

E

D
O

N
E

_c
yc

le

G
W

E
_c

yc
le

G
T

S
_c

yc
le

D
C

M
s_

LO
C

K
E

D

S
ta

rt
up

C
lk

0

01

1

IN
IT

IA
L

IZ
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

S
TA

R
T

U
P

U
S

E
R

_C
LO

C
K

IN
T

E
R

N
A

L_
C

O
N

F
IG

U
R

AT
IO

N
_C

LO
C

K

JT
A

G
_C

LO
C

K

C
le

ar
 in

te
rn

al
 C

M
O

S
co

nf
ig

ur
at

io
n

la
tc

he
s

Lo
ad

 a
pp

lic
at

io
n

da
ta

 in
to

 C
M

O
S

co
nf

ig
ur

at
io

n
la

tc
he

s

E
na

bl
e

ap
pl

ic
at

io
n

lo
gi

c
an

d
I/O

 p
in

s

IN
IT

_B

E
N

A
B

LE

C
on

fig
ur

at
io

n
E

rr
or

D
et

ec
tio

n
(C

R
C

 C
he

ck
er

)

E
N

A
B

LE
C

R
C

E
R

R
O

R

P
O

W
E

R
_G

O
O

D

O
pt

io
n

=
 B

its
tr

ea
m

 G
en

er
at

or
 (

B
itG

en
)

O
pt

io
n

D
C

M
 in

 U
se

r
A

pp
lic

at
io

n

LO
C

K
E

D

S
TA

R
T

U
P

_W
A

IT
=

T
R

U
E

LC
K

_c
yc

le

D
riv

eD
on

e

D
on

eP
ip

e

O
pt

io
n

=
 D

es
ig

n
A

ttr
ib

ut
e

A
ll

D
C

M
s

W
A

ITD
O

N
E

D
O

N
E

C
LE

A
R

IN
G

_M
E

M
O

R
Y

G
lit

ch
 F

ilt
er

D
O

N
E

W
A

IT

F
or

ce
 a

ll
I/O

s
H

i-Z

H
ol

d
al

l s
to

ra
ge

el
em

en
ts

 r
es

et

D
is

ab
le

 w
rit

e
op

er
at

io
ns

 to
st

or
ag

e
el

em
en

ts

G
T

S
_I

N

G
S

R
_I

N

U
S

E
R

U
S

E
R

* *

*
*

T
he

se
 c

on
ne

ct
io

ns
 a

re
 a

va
ila

bl
e

vi
a

th
e

S
TA

R
T

U
P

_S
PA

R
TA

N
3E

 li
br

ar
y

pr
im

iti
ve

.E
N

E
N

P
o

w
er

 O
n

 R
es

et
 (

P
O

R
)

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 253
UG332 (v1.5) March 16, 2009

R

Chapter 13

Configuration-Related Design
Primitives

The following configuration primitives provide access to FPGA configuration resources
during or after FPGA configuration.

Boundary-Scan (BSCAN)
The BSCAN component, shown in Figure 13-1, provides access to and from the JTAG
Boundary Scan logic controller from internal FPGA logic, allowing communication
between the internal FPGA application and the dedicated JTAG pins of the FPGA. The
BSCAN primitive is not required for normal JTAG operations. It is only required when
implementing private JTAG scan chains within the FPGA logic. Although the BSCAN
primitive is functionally equivalent on all Spartan®-3 generation FPGAs, the primitive
name varies by family, as shown in Table 13-1, page 254.

T

Figure 13-1: BSCAN Primitive for Extended Spartan-3A Family FPGAs

UG332_C13_01_040107

TDO1 CAPTURE

BSCAN_SPARTAN3

DRCK1

DRCK2

RESET

SEL1

SEL2

SHIFT

TDI

UPDATETDO2

TDO1

CAPTURE

BSCAN_SPARTAN3A

DRCK1

DRCK2

RESET

SEL1

SEL2

SHIFT

TDI

UPDATETDO2

TMS

TCK (Use for Spartan-3 and Spartan-3E)

(Use for Spartan-3A/3AN/3A DSP)

http://www.xilinx.com

254 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 13: Configuration-Related Design Primitives
R

The BSCAN primitive on Spartan-3 generation FPGAs allows up to two internal, private
boundary scan chains called USER1 and USER2.

A signal on the TDO1 input is passed to the external TDO output when the USER1
instruction is executed; the SEL1 output goes High to indicate that the USER1 instruction is
active. The DRCK1 output provides USER1 access to the data register clock (generated by
the TAP controller). The TDO2 and SEL2 pins perform a similar function for the USER2
instruction and the DRCK2 output provides USER2 access to the data register clock
(generated by the TAP controller). The RESET, UPDATE, SHIFT, and CAPTURE pins
represent the decoding of the corresponding state of the boundary scan internal state
machine. The TDI pin provides access to the TDI signal of the JTAG port in order to shift
data into an internal scan chain.

Usage
The BSCAN component is generally used with IP, such as the ChipScope™ analyzer tool,
for communications via the JTAG pins of the FPGA to the internal device logic. When used
with this IP, this component is generally instantiated as a part of the IP and nothing more
is needed by the user to ensure it is properly used. However, the BSCAN component can
be instantiated in any FPGA design although only one BSCAN component can be used in
any single design.

Port Descriptions

Table 13-1: BSCAN Primitives by FPGA Family

FPGA Family Primitive

Spartan-3A/3AN FPGAs

Spartan-3A DSP FPGAs
BSCAN_SPARTAN3A

Spartan-3E FPGAs
BSCAN_SPARTAN3

Spartan-3 FPGAs

Table 13-2: BSCAN Primitive Connections

Port Name Direction Function

TDI Output The value of the TDI input pin to the FPGA.

TCK Output The value of the TCK input pin to the FPGA.

TMS Output The value of the TMS input pin to the FPGA.

DRCK1, DRK2 Output

The value of the TCK input pin to the FPGA when the
JTAG USER instruction is loaded and the JTAG TAP
controller is in the SHIFT-DR state. DRCK1 applies to the
USER1 logic while DRCK2 applies to USER2.

RESET Output
Active upon the loading of the USER instruction. It asserts
High when the JTAG TAP controller is in the TEST-
LOGICRESET state.

SEL1, SEL2 Output

Indicates when the USER1 or USER2 instruction is loaded
into the JTAG Instruction Register. SEL1 or SEL2 becomes
active in the UPDATE-IR state, and stays active until a
new instruction is loaded.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 255
UG332 (v1.5) March 16, 2009

Start-Up (STARTUP)
R

Start-Up (STARTUP)
The STARTUP primitive is used to either interface device pins and/or logic to the global
asynchronous set/reset (GSR) signal, or for global, 3-state (GTS) dedicated routing. This
primitive can also be used to specify a different clock for the device startup sequence at the
end of configuring the device.

As shown in Figure 13-2, the STARTUP primitive is similar between Spartan-3 generation
FPGA families, although the Spartan-3E STARTUP primitive has an additional input pin to
support MultiBoot functions. The specific STARTUP primitive name also varies by family,
as indicated in Table 13-3.

SHIFT Output
Active upon the loading of the USER instruction. It asserts
High when the JTAG TAP controller is in the SHIFT-DR
state.

CAPTURE Output
Active upon the loading of the USER instruction. Asserts
High when the JTAG TAP controller is in the CAPTURE-
DR state.

UPDATE Output
Active upon the loading of the USER instruction. It asserts
High when the JTAG TAP controller is in the UPDATE-DR
state.

TDO1, TDO2 Input
Active upon the loading of the USER1 or USER2
instruction. External JTAG TDO pin reflects data input to
the component's TDO1 (USER1) or TDO2 (USER2) pin.

Table 13-2: BSCAN Primitive Connections (Cont’d)

Port Name Direction Function

Figure 13-2: STARTUP Primitive for Extended Spartan-3A Family and Spartan-3E
FPGAs

Table 13-3: STARTUP Primitives by FPGA Family

FPGA Family Primitive

Spartan-3A/3AN FPGAs

Spartan-3A DSP FPGAs
STARTUP_SPARTAN3A

Spartan-3E FPGAs STARTUP_SPARTAN3E

Spartan-3 FPGAs STARTUP_SPARTAN3

UG332_C13_02_120106

GSR

STARTUP_SPARTAN3A

GTS

CLK

GSR

STARTUP_SPARTAN3E

GTS

MBT

CLK

STARTUP_SPARTAN3

http://www.xilinx.com

256 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 13: Configuration-Related Design Primitives
R

Usage
The STARTUP primitive must be instantiated into the design. To use the dedicated GSR
circuitry, connect the sourcing pin or logic to the GSR pin. However, avoid using the GSR
circuitry of this component unless certain precautions are taken first. Since the skew of the
GSR net cannot be guaranteed, either use general routing for the set/reset signal in which
routing delays and skew can be calculated as a part of the timing analysis of the design, or
ensure that possible skew during the release of GSR will not interfere with proper circuit
operation.

Similarly, if the dedicated global 3-state is used, connect the appropriate sourcing pin or
logic to the GTS input pin of the primitive. In order to specify a user clock for the startup
sequence of configuration, connect a clock from the design to the CLK pin of the STARTUP
component.

Port Descriptions

Readback Capture (CAPTURE)
The CAPTURE primitive, shown in Figure 13-3, provides FPGA application control over
when to capture register (flip-flop and latch) information for readback. Spartan-3
generation FPGAs provide the readback function through dedicated configuration port
instructions.

Caution! On Spartan-3E FPGAs, Readback is available on all devices except for the
XC3S1200E and XC3S1600E in the -4 speed grade, in the commercial temperature range.
Readback is supported on all Spartan-3E FPGAs available in the -5 speed grade or in the
industrial temperature range.

Table 13-4: STARTUP Primitive Connections

Port Name Direction Function

GSR Input Active-High global set / reset (GSR) signal.

GTS Input Active-High global 3-state (GTS) signal.

MBT Input
Spartan-3E family only. Active-Low, asynchronous
MultiBoot trigger input.

CLK Input
Optional clock input to the configuration Startup
sequencer, selected using StartupClk:UserClk bitstream
option.

Figure 13-3: CAPTURE Primitive for Extended Spartan-3A Family FPGAs (other
families are similar)

UG332_C13_03_081406

CAP

CAPTURE_SPARTAN3A

CLK

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 257
UG332 (v1.5) March 16, 2009

Readback Capture (CAPTURE)
R

Usage
The CAPTURE primitive is optional within a design. Without it, Readback is still
performed, but the asynchronous capture function it provides for register states is not
available.

Spartan-3 generation FPGAs only capture register (flip-flop and latch) states. Although
LUT RAM, SRL, and block RAM bit values are read back, their values cannot be captured.
To capture the register states, assert the CAP signal High. The state is captured on the next
rising edge of CLK.

By default, data is captured after every trigger (transition on CLK while CAP is asserted).
To limit the readback operation to a single data capture, add the ONESHOT attribute to
CAPTURE devices.

Although the CAPTURE primitive functions equivalently on all Spartan-3 generation
FPGA families, the required design primitive varies by family, as indicated in Table 13-5.

For more information on Readback and the CAPTURE primitive, see XAPP452: Spartan-3
Advanced Configuration Architecture.

Port Description

Attributes
Table 13-7 describes the ONESHOT attribute available on the CAPTURE primitive.

Table 13-5: CAPTURE Primitive by FPGA Family

FPGA Family Primitive

Spartan-3A/3AN FPGAs

Spartan-3A DSP FPGAs
CAPTURE_SPARTAN3A

Spartan-3E FPGAs
CAPTURE_SPARTAN3

Spartan-3 FPGAs

Table 13-6: CAPTURE Primitive Connections

Port Name Direction Description

CLK Input Clock for sampling the CAP input.

CAP Input
Active-High capture enable. The CAP input is sampled by
the rising edge of CLK.

Table 13-7: CAPTURE Attributes

Attribute Type
Allowed
Values

Default Description

ONESHOT Boolean
TRUE,
FALSE

FALSE
Specifies the procedure for performing
single readback operation per CAP trigger.

http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf
http://www.xilinx.com

258 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 13: Configuration-Related Design Primitives
R

Internal Configuration Access Port (ICAP)
The Internal Configuration Access Port (ICAP), shown in Figure 13-4, is only available on
the Extended Spartan-3A family FPGA families.

Usage
The ICAP_SPARTAN3A primitive works similar to the Slave Parallel (SelectMAP)
configuration interface except it is available to the FPGA application using internal routing
connections. Furthermore, the ICAP primitive has separate read and write data ports, as
opposed to the bidirectional bus on the Slave Parallel (SelectMAP) interface. ICAP allows
the FPGA application to access configuration registers, readback configuration data, or to
trigger a MultiBoot event after configuration successfully completes.

For additional information on the Slave Parallel (SelectMAP) interface, see Chapter 7,
“Slave Parallel (SelectMAP) Mode.”

For additional information on Extended Spartan-3A family MultiBoot, Chapter 14,
“Reconfiguration and MultiBoot.”

Port Description
Caution! Xilinx convention defines I0 and O0 as the most-significant bits; I7 and O7 are the
least-significant bits. This is different than conventions elsewhere. Watch out for bit reversals!

Figure 13-4: ICAP Primitive (only available on Extended Spartan-3A Family FPGAs)

UG332_C13_04_111906

I[0:7] O[0:7]

WRITE

CE

CLK

BUSY

ICAP_SPARTAN3A

Table 13-8: ICAP_SPARTAN3A Primitive Connections

Signal
Name

Equivalent
SelectMAP Pin

Name
Direction Description

CLK CCLK Input ICAP interface clock

CE CS_B or CSI_B Input Active-Low select

WRITE RDWR_B Input

Read/Write control input

0 = WRITE

1 = READ

I[0:7] D[0:7] Input Byte-wide ICAP write data bus

O[0:7] D[0:7] Output Byte-wide ICAP read data bus

BUSY DOUT Output
Active-High busy status. Only used in read
operations. BUSY remains Low during writes.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 259
UG332 (v1.5) March 16, 2009

Device DNA Access Port (DNA_PORT)
R

Device DNA Access Port (DNA_PORT)
The DNA_PORT primitive, shown in Figure 13-5 is only available on the Extended
Spartan-3A family FPGA.

The DNA_PORT provides access to a dedicated shift register which can be loaded with the
Device DNA data bits (unique ID) for a given Extended Spartan-3A family device. In
addition to shifting out the DNA data bits, this component allows for the inclusion of
supplemental data bits for additional user data or allow for the DNA data to rollover
(repeat DNA data after initial data has been shifted out). This component is primarily used
in conjunction with other circuitry to build anti-cloning protection for the FPGA bitstream
from possible theft. See Chapter 15, “Protecting FPGA Designs,” for additional
information.

Usage
The DNA_PORT component must be instantiated in order to be used in a design. To do so, use
the instantiation template found within the ISE® software Project Navigator HDL Templates
and place this instance declaration within the code. Connect all inputs and outputs to the
design in order to ensure proper operation.

In order to access the Device DNA data, the shift register must first be loaded by setting the
active high READ signal for one clock cycle. After the shift register is loaded, the data may be
synchronously shifted out by enabling the active high SHIFT input and capturing the data out
the DOUT output port. If desired, additional data may be appended to the end of the 57-bit shift
register by connecting the appropriate logic to the DIN port. If DNA data rollover is desired,
connect the DOUT port directly to the DIN port to allow for the same data to be shifted out after
completing the 57-bit shift operation. If no additional data is necessary, the DIN port may be
tied to a logic zero. The attribute SIM_DNA_VALUE may be optionally set to allow for
simulation of a possible DNA data sequence. By default, the Device DNA data bits are all zeros
in the simulation model.

See “Operation,” page 294 for additional information.

Figure 13-5: DNA_PORT Primitive (only available on Extended Spartan-3A Family
FPGAs)

UG332_C13_05_081406

DIN DOUT

DNA_PORT

READ

SHIFT

CLK

http://www.xilinx.com

260 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 13: Configuration-Related Design Primitives
R

Port Descriptions

Attributes

Table 13-9: DNA_PORT Primitive Connections

Port Name Direction Function

DOUT Output Serial shifted output data

DIN Input User data input to the shift register

READ Input
Synchronous load of the shift register with the Device
DNA data A READ operation overrides a SHIFT
operation.

SHIFT Input Active high shift enable input

CLK Input Clock Input

Table 13-10: DNA_PORT Attributes

Attribute Type
Allowed
Values

Default Description

SIM_DNA_VALUE
57-bit
vector

Any 57-bit
value

All zeros

Specifies a DNA value for
simulation purposes (the actual
value will be specific to the
particular device used)

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 261
UG332 (v1.5) March 16, 2009

R

Chapter 14

Reconfiguration and MultiBoot

Overview
Because Spartan®-3 generation FPGAs are reprogrammable, in the system, some
applications reload the FPGA with one or more bitstream images during normal operation.
In this way, a single, smaller FPGA, reprogrammed multiple times, replaces a much larger
and more expensive ASIC or FPGA programmed just once.

There are a variety of methods to reprogram the FPGA during normal operation. The
downloaded configuration modes (see Figure 1-2, page 30) inherently provide this
capability. Via an external “intelligent agent” such as a processor, microcontroller,
computer, or tester, an FPGA can be reprogrammed numerous times. The downloaded
modes are available on all Spartan-3 generation FPGA families.

The Spartan-3E and Extended Spartan-3A family FPGA families introduce a new
capability, called MultiBoot, that allows the FPGA to selectively reprogram and reload its
bitstream from an attached external memory.

The MultiBoot feature allows the FPGA application to load two or more FPGA bitstreams
under the control of the FPGA application. The FPGA application triggers a MultiBoot
operation, causing the FPGA to reconfigure from a different configuration bitstream. As
shown in Table 14-1, there are differences between MultiBoot on Spartan-3E and
Spartan-3A/3AN/3A DSP FPGAs.

Once a MultiBoot operation is triggered, the FPGA restarts its configuration process as
usual. The INIT_B pin pulses Low while the FPGA clears its configuration memory and the
DONE output remains Low until the MultiBoot operation successfully completes.

For Spartan-3E FPGA applications, see “Spartan-3E MultiBoot,” page 263. For Extended
Spartan-3A family FPGA applications, see “Extended Spartan-3A Family MultiBoot,”
page 271.

MultiBoot Options Compared between Spartan-3 Generation
FPGA Families

Table 14-1 highlights the primary MultiBoot differences between Spartan-3 generation
FPGA families. The MultiBoot feature is available only on the Spartan-3E and Spartan-3A
FPGA families.

http://www.xilinx.com

262 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

Table 14-1: MultiBoot Options on Spartan-3 Generation FPGA Families

Spartan-3 Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Application complexity

MultiBoot not
available on Spartan-

3 FPGA family.

Simple
More complex, but
also more capable

and flexible

MultiBoot in BPI mode using parallel NOR
Flash

Yes Yes

MultiBoot in SPI mode using SPI serial Flash No Yes

MultiBoot from In-System Flash memory No Spartan-3AN only(1)

MultiBoot between different configuration
modes

No Yes

MultiBoot supports multi-FPGA
configuration daisy chains

No, single FPGA only Yes

How is MultiBoot triggered by FPGA
application?

MBT input on
STARTUP primitive

Via command
sequence to ICAP
primitive, JTAG

interface, Slave Serial,
or Slave Parallel

(SelectMAP) interface

Maximum number of MultiBoot
configuration images 2 (top and bottom of

parallel Flash)

Limited only by the
amount of

configuration
memory

Bitstream start locations and addressing
direction

Ether at address 0
with incrementing
addresses or highest
PROM address with
decrementing
addresses

Any byte location,
always with
incrementing

addresses

Initial MultiBoot image location Controlled by M0
mode pin.

0 = Address 0

1 = Highest PROM
address

Always at address 0

Can FPGA application specify MultiBoot start
address?

No (always top and
bottom of parallel

Flash)
Yes

Configuration watchdog timer automatically
reconfigures FPGA starting at address 0 if
MultiBoot operation fails

No Yes

Notes:
1. See Spartan-3AN Errata regarding limitations using MultiBoot after configuration from the in-system Flash.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/spartan-3an.htm#19543

Spartan-3 Generation Configuration User Guide www.xilinx.com 263
UG332 (v1.5) March 16, 2009

Spartan-3E MultiBoot
R

Spartan-3E MultiBoot
After the FPGA configures itself using BPI mode from one end of the parallel Flash PROM,
then the FPGA can trigger a MultiBoot event and reconfigure itself from the opposite end
of the parallel Flash PROM. MultiBoot is only available when using BPI mode and only for
applications using a single Spartan-3E FPGA. MultiBoot does not support multi-FPGA
configuration daisy chains.

By default, the MultiBoot feature is disabled. To use MultiBoot in an application, the FPGA
design must first include a STARTUP_SPARTAN3E design primitive, described in
“Start-Up (STARTUP),” page 255. To trigger a MultiBoot event, assert a Low pulse lasting
at least 300 ns on the MultiBoot Trigger (MBT) input to the primitive. When the MBT signal
returns High after the Low pulse, the FPGA automatically reconfigures from the opposite
end of the parallel Flash memory.

Figure 14-1 illustrates a simple MultiBoot design example. At power up, the FPGA loads
itself from the attached parallel Flash PROM. In this specific example, the M0 mode pin is
Low so the FPGA configures starting at Flash address 0 and increments through the PROM
memory locations. After the FPGA completes configuration, this example FPGA
application performs a board-level or system test using FPGA logic. If the test is successful,
the FPGA then triggers a MultiBoot event, causing the FPGA to reconfigure from the
opposite end of the Flash PROM memory, in this case starting at address 0xFFFF. The
FPGA actually starts at address 0xF_FFFF but the upper four address bits, A[23:20], are
not connected to the PROM in this example. The FPGA addresses the second configuration
image, which in this example contains the FPGA application for normal operation.

Similarly, the second FPGA application could trigger another MultiBoot event at any time
to reload the diagnostics design from address 0, and so on.

In another potential application, the initial design loaded into the FPGA image contains a
“golden” or “fail-safe” configuration image, which then communicates with the outside
world and checks for a newer FPGA configuration image. If there is a new configuration
revision and the new image verifies as good, the “golden” configuration triggers a
MultiBoot event to load the new image.

Figure 14-1: Example Spartan-3E MultiBoot Application using 1Mbyte Parallel Flash PROM

GSR

GTS

MBT

CLK

STARTUP_SPARTAN3E

0

0xFFFFF

General
FPGA

Application

Diagnostics
FPGA

Application

1Mbyte Parallel PROM

> 300 ns

User Area

0

0xFFFFF

General
FPGA

Application

Diagnostics
FPGA

Application

User Area

First Configuration Second Configuration

Reconfigure

DS332_c14_01_082006

1Mbyte Parallel PROM

MultiBoot
Trigger

pulse from
application

http://www.xilinx.com

264 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

When a MultiBoot event is triggered, the FPGA then again drives its configuration pins as
described in Chapter 5, “Master BPI Mode.”. However, the FPGA does not assert the
PROG_B pin. The system design must ensure that no other device drives on these same
pins during the reconfiguration process. The FPGA’s DONE, LDC[2:0], or HDC pins can
can be used to temporarily disable any conflicting drivers during reconfiguration.

Asserting the PROG_B pin Low overrides the MultiBoot feature and forces the FPGA to
reconfigure starting from the end of memory defined by the mode pins, shown in
Table 5-2, page 147.

Generating a Spartan-3E MultiBoot PROM Image using iMPACT
The iMPACT programming software provides a graphical, step-by-step approach to create
a MultiBoot PROM file. Similar functionality is also available from the command line or
via scripts using the PROMGen utility, shown in Figure 14-10. Follow the steps outlined
below to create a MultiBoot PROM file using the iMPACT software. The steps assume an
example application like that shown in Figure 14-1.

1. Invoke the iMPACT programming software.

2. As shown in Figure 14-2, choose Prepare a PROM File.

3. Click Next.

4. As shown in Figure 14-3, target a PROM Supporting Multiple Design Revisions.

Figure 14-2: Prepare a MultiBoot PROM Image

2

3

UG332_c14_04_112906

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 265
UG332 (v1.5) March 16, 2009

Spartan-3E MultiBoot
R

5. Choose the Spartan3E MultiBoot method.

6. Select a PROM File Format. The MCS format is supported by a variety of
programmers, but other options are available.

7. Enter a PROM File Name.

8. Click Next.

9. As shown in Figure 14-4, select the Initial Boot Direction. This is the location from
where the first configuration image loads. The initial location depends on the BPI
mode pin settings.

Figure 14-3: Select a PROM Supporting MultiBoot for Spartan-3E FPGAs

UG332_c14_03_112906

4 5

7

8

6

http://www.xilinx.com

266 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

10. Click Next.

11. As shown in Figure 14-5, Select a Parallel PROM Density, measured in bytes.

12. Click Add to use the PROM density specified in Step 11. In Spartan-3E MultiBoot
mode, only a single PROM is allowed. The PROM density also determines the highest
PROM address location.

13. Click Next.

14. The iMPACT software summarizes the current settings, as shown in Figure 14-6. Click
Finish to continue.

Figure 14-4: Select the Configuration Direction of the First MultiBoot Image

Figure 14-5: Select a PROM Size and Add It to the Design

UG332_c14_05_112906

9

10

UG332_c14_06_112906

11
12

13

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 267
UG332 (v1.5) March 16, 2009

Spartan-3E MultiBoot
R

15. As shown in Figure 14-7, start selecting the FPGA configuration bitstream for the
design that initially loads at power-up or when the PROG_B input is pulsed Low.

16. Using the file selection mechanism for your operating system, choose the initial
bitstream. This bitstream is loaded at the initial PROM location specified in Step 9.

17. Click Open.

Figure 14-6: Confirm the PROM Settings

UG332_c14_07_112906

14

Figure 14-7: Select the First MultiBoot Configuration Image

UG332_c14_08_081906

15

16

17

http://www.xilinx.com

268 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

18. As shown in Figure 14-8, the iMPACT software then prompts for the second MultiBoot
configuration image.

19. Select the .bit file for the second image.

20. Click Open.

21. The iMPACT software then confirms that all the necessary files are entered.

22. As shown in Figure 14-9, the iMPACT software reports how much of the PROM is
consumed by the FPGA configuration bitstream files. Double-click Generate File.

Figure 14-8: Select the Second MultiBoot Configuration Image

UG332_c14_09_082006

18

19

20

21

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 269
UG332 (v1.5) March 16, 2009

Spartan-3E MultiBoot
R

23. The iMPACT software successfully generates a PROM file using the name specified in
Step 7 with the format and file extension specified in Step 6. The file is created in the
current directory. A “PROMGen Report File” is also created.

PROMGen Report File
The iMPACT software creates the PROM file using the PROMGen command-line
program. The PROMGen software also creates a report file with an *.prm file extension, as
shown in Figure 14-10.

Figure 14-9: Generate the PROM File Using the Specified Parameters

UG332_c14_10_082006

23
22

http://www.xilinx.com

270 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

The following items correspond to the markers in Figure 14-10.

1. PROMGen is the command-line program that generates PROM programming files
using the specified format.

2. Various formats are available. The Intel MCS format is one of the popular options.

3. The base output file name. The extension depends on the selected format.

4. In the example shown above, the first MultiBoot file is loaded for the BPI Up mode,
meaning that the file starts at address 0.

5. The second MultiBoot file is loaded at the opposite end of memory, in this case at the
maximum PROM address and loaded downward.

6. The PROM size is specified in kilobytes (K). In the example, the PROM is 1Mbyte or
1024K.

7. The first MultiBoot image is loaded starting at PROM address 0 and ends at
hexadecimal address 0x4547F.

8. The second MultiBoot image is loaded starting at the highest PROM address, which is
at hexadecimal 0xFFFFF for a 1Mbyte PROM. The image is loaded downward
(decrementing address) and ends at hexadecimal address 0xBAB80.

Spartan-3E MultiBoot using Xilinx Platform Flash PROMs
While the Spartan-3E MultiBoot feature was primarily designed to leverage commodity
parallel NOR Flash PROMs, it is also possible to use Xilinx® Parallel Platform Flash
PROMs, specifically the XCFxxP PROM family. The final ‘P’ in the product name indicates
the Parallel version. See XAPP483 for additional details.

• XAPP483: Multiple-Boot using Platform Flash PROMs
http://www.xilinx.com/support/documentation/application_notes/xapp483.pdf

Figure 14-10: PROMGen Report File (*.prm)

UG332_c14_11_082006

PROMGEN: Xilinx Prom Generator I .32
Copyright (c) 1995-2006 Xilinx, Inc. All rights reserved .

promgen -w -p mcs -c FF -o MyMultiBootPROM -u 0 first_multiboot_image.bit
-d fffff second _multiboot_image.bit
-s 1024

PROM MyMultiBootPROM .prm

Calculating PROM checksum with fill value ff

Format Mcs 86 (32-bit)
Size 1024K
PROM start 0000:0000
PROM end 000f:ffff
PROM checksum 07515767

 Addr1 Addr2 Date File(s)
0000:0000 0004:547f Aug 18 22:38:14 2006 first_multiboot_image.bit
000f:ffff 000b:ab80 Aug 18 22:37:07 2006 second_multiboot_image.bit

1 2 3 4

5
6

7

8

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp483.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 271
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

Extended Spartan-3A Family MultiBoot
Starting with the Spartan-3A FPGA family, MultiBoot is expanded and enhanced to
provide additional flexibility and capabilities.

• Extended Spartan-3A family MultiBoot supports multiple FPGA bitstream images
beyond just the two images supported on Spartan-3E FPGAs.

• The maximum number of FPGA images supported is limited either by the size of the
configuration PROM or the total number of address bits.

♦ BPI mode supports up to 26 address bits, which addresses up to 64M bytes or
512M bits.

♦ SPI mode supports up to 24 address bits, which addressees up to 16M bytes or
128M bits.

♦ An Extended Spartan-3A family bitstream, depending on device logic density,
ranges between approximately 0.5M to 11.5M bits per FPGA.

• Extended Spartan-3A family FPGAs can MultiBoot between different configuration
modes. For example, the FPGA can initially configure from parallel Flash using BPI
mode, then MultiBoot to a configuration image stored in SPI serial Flash using Master
SPI mode. For the Spartan-3AN Engineering Samples, see the Spartan-3AN Errata for
limitations on MultiBoot after configuring from internal SPI Flash.

• The initial configuration image is always located at address 0, regardless of
configuration mode.

• Subsequent MultiBoot images can be located anywhere in memory, aligned to a byte
location, with some restrictions.

♦ If the FPGA is set to wait for the Digital Clock Managers (DCMs) to lock before
finishing configuration, then there must be sufficient padding between images to
allow for this time. The padded region can contain data, but it cannot contain a
valid configuration synchronization word.

♦ Individual bitstream images may be aligned to a sector or page boundary within
the attached Flash memory device.

• A built-in configuration watchdog timer prevents a MultiBoot operation from
“hanging” on an invalid FPGA configuration image.

♦ If no synchronization word is detected within the watchdog time-out period, the
FPGA automatically returns to and reloads the default, initial configuration
image.

Specifying the Next MultiBoot Configuration Address
The initial FPGA configuration bitstream is always loaded at address 0 from the attached
configuration PROM, regardless of mode. For MultiBoot operations, there are two
methods for the FPGA application to load the address of the next MultiBoot configuration
image.

1. Fixed, Known Address: If the next address is predefined and known at design time,
the next MultiBoot address can be preloaded within the current FPGA bitstream using
the next_config_addr bitstream generator (BitGen) option. The parallel NOR Flash
address or the SPI serial Flash address is specified as an seven-character hexadecimal
string.

next_config_addr = 0x0000000

http://www.xilinx.com
http://www.xilinx.com/support/documentation/spartan-3an.htm#19543

272 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

2. Variable or Calculated Address: The FPGA application itself can supply the address
of the next MultiBoot image by writing a command sequence to the FPGA’s
ICAP_SPARTAN3A design primitive.

Required Data Spacing between MultiBoot Images
Extended Spartan-3A family MultiBoot addressing is flexible enough to allow a bitstream
to begin at any byte boundary. However, there are a few practical limitations, based on
specific application requirements.

Flash Sector, Block, or Page Boundaries

Extended Spartan-3A family FPGAs load MultiBoot configuration images from an external
Flash PROM. All Flash PROMs have an internal memory architecture that arranges the
memory into sectors, blocks, or pages. Nearly all PROMs have multiple sectors. Some
architectures provide additional granularity, splitting a sector into smaller blocks, or even
smaller still, pages.

Ideally, an Extended Spartan-3A family MultiBoot configuration image should be aligned
to a sector, block, or page boundary. The specific requirement depends on the Flash PROM
architecture. If the smallest erasable element in the Flash PROM is a sector, then align the
FPGA bitstream to a sector boundary. This way, one FPGA bitstream can be updated
without affecting others in the PROM.

Additional Memory Space Required for DCM_WAIT

An Extended Spartan-3A family application may contain one or more Digital Clock
Managers (DCMs). Each DCM provides an option setting that, during configuration,
causes the FPGA to wait for the DCM to acquire and lock to its input clock frequency
before the DCM allows the FPGA to finish the configuration process. The lock time, which
is specified in the Extended Spartan-3A family data sheet, depends on the DCM mode, and
the input clock frequency.

Even if the FPGA is waiting for one or more DCMs to lock before completing
configuration, the FPGA’s configuration controller continues searching for the next
synchronization word. If two adjacent MultiBoot images are placed one immediately
following the other, and the first FPGA bitstream contains a DCM with the DCM_WAIT
option set, then potential configuration problems can occur. If the controller sees the
synchronization word in the second FPGA bitstream before completing the current
configuration, it starts interpreting data from the second bitstream. However, the FPGA’s
configuration logic may complete the current configuration even though the FPGA has
read data from the second bitstream.

Caution! FPGA applications that use the DCM_WAIT option on a DCM must ensure sufficient
spacing between Extended Spartan-3A family MultiBoot configuration images!

Spacing MultiBoot bitstreams sufficiently apart in memory prevents the FPGA from ever
seeing the second synchronization word. The following are some points to consider.

• Is the DCM_WAIT option being used in the FPGA application? The potential issue
only occurs if DCM_WAIT=TRUE.

• Which DCM outputs are used? There are two lock time specifications in the data
sheet: LOCK_DLL specifies the lock time for the DLL outputs from the DCM (CLK0,
CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV) and LOCK_DFS specifies the
lock time for the DFS outputs (CLKFX, CLKFX180).

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 273
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

• The specified lock time also depends on the input clock frequency. Again, consider
both the DLL and DFS specifications. The lock time is longest at 5 ms for input
frequencies below 15 MHz

• The amount of spacing between bitstreams also depends on the ConfigRate bitstream
option setting in the bitstream and the maximum frequency of CCLK at that
ConfigRate setting.

• The number of spacing bits required also depends on the configuration mode. The SPI
Flash mode receives one bit per clock while the BPI mode receives eight bits or one
byte per clock.

Example

A Spartan-3A MultiBoot application includes an FPGA bitstream that contains at least
one DCM with the DCM_WAIT option set TRUE. The FPGA application uses a DLL
output from the DCM. The input clock frequency to the DCM is 33 MHz. The data
sheet lock time specification (LOCK_DLL) for DCM clocks faster than 15 MHz is 600
μs. The FPGA bitstream has the ConfigRate option set to 25. According to
DS529: Spartan-3A FPGA Family Data Sheet, setting ConfigRate:25 means that CCLK
will never have a period shorter than 45 ns. The MultiBoot application configures from
an SPI serial Flash.

Dividing the 600μs lock time by the 45 ns CCLK period yields 13,334 clock cycles. In
SPI mode, the FPGA receives one bit per clock cycle. Consequently, under these
conditions, two MultiBoot configuration images must be place more than 13,334 bit
locations from each other in memory.

If the FPGA configured from parallel Flash, then the FPGA receives 8 bits per clock
cycle. Consequently, the application must space the two configurations apart by more
than 13,334 byte locations, which is equivalent to 106,672 bits.

The memory space between two configuration images can contain data as long as it does
not contain a valid Spartan-3A configuration synchronization word, shown in Table 12-3,
page 244. Alternatively, leave the space between locations programmed with 0xFF, which
is the same state as an unprogrammed Flash location.

MultiBoot Command Sequence (ICAP Example)
The following steps are required to initiate a MultiBoot reconfiguration event from within
the FPGA application using the ICAP design primitive. MultiBoot events can also be
issued via JTAG, the Slave Serial, or the Slave Parallel (SelectMAP) interface. The specific
bit sequences supplied below are for the ICAP interface, but the same general approach
also applies for the other interfaces.

Caution! By Xilinx convention, data bit D0 is the most-significant bit. In many other
conventions, data bit D7 is the most-significant bit. In the application, ensure that the correct
value is being written to the ICAP interface, either by adjusting the data written to the interface or
by reversing the wiring connections to the interface.

Design Specification

• Enable the ICAP interface, which is required for MultiBoot functionality, in the FPGA
configuration bitstream, using the ICAP_Enable:Auto or ICAP_Enable:Yes bitstream
generator option setting.

Caution! The ICAP interface will not be available until the first configuration has completed
startup, including the End of Startup cycle. Allow a few additional clock cycles after the end of
configuration before beginning the ICAP MultiBoot sequence. See “Startup” in Chapter 12.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds529.pdf

274 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

• If the next address is fixed and already known at design time, preload the GENERAL1
and GENERAL2 registers with default values by setting the next_config_addr
bitstream generation (BitGen) option.

FPGA Application Run Time

• Issue the synchronization start word to the ICAP interface.

• If the FPGA application calculates the next MultiBoot configuration start address,
load the GENERAL1 and GENERAL2 registers via ICAP with the start address of the
next MultiBoot configuration image.

• OPTIONAL: If rebooting from a different configuration source, write the appropriate
values to the MODE_REG register. See “Switching between MultiBoot Configuration
Memory Types,” page 286 for more information.

• Issue the REBOOT command to the CMD register.

• Issue a NoOp command to the ICAP interface.

MultiBoot from an Address Preloaded during Configuration

Table 14-2 shows the command sequence to initiate a MultiBoot event, assuming the
following.

• The GENERAL1 and GENERAL2 registers are preloaded during configuration via the
next_config_addr bitstream generation (BitGen) option.

• The next MultiBoot address is in the same memory originally used to configure the
FPGA or the same memory used during the last MultiBoot operation.

Each 16-bit command is written as two bytes to the ICAP interface, with the high byte
presented first, followed by the low byte. Note that D0 is the most-significant bit (msb) for
the ICAP interface, which is the opposite direction from most processors.

MultiBoot to a Address Specified by the FPGA Application

Table 14-3 shows an example where the FPGA application specifies the address of the next
MultiBoot image. This specific example is for SPI serial Flash, but parallel NOR Flash is
similar with slightly different definitions of the bits written to the GENERAL2 register
(CLK cycles 9 and 10).

Table 14-2: Command Sequence to Initiate MultiBoot from a Preloaded Address

CLK
Cycle

Command
High or

Low Byte
D0 D1 D2 D3 D4 D5 D6 D7 Hex

1
SYNC WORD

High 1 0 1 0 1 0 1 0 0xAA

2 Low 1 0 0 1 1 0 0 1 0x99

3 Type 1 Write CMD
(1 Word)

High 0 0 1 1 0 0 0 0 0x30

4 Low 1 0 1 0 0 0 0 1 0xA1

5
REBOOT Command

High 0 0 0 0 0 0 0 0 0x00

6 Low 0 0 0 0 1 1 1 0 0x0E

7
No Op

High 0 0 1 0 0 0 0 0 0x20

8 Low 0 0 0 0 0 0 0 0 0x00

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 275
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

Each 16-bit command is written as two bytes to the ICAP interface, with the high byte
presented first, followed by the low byte. Note that D0 is the most-significant bit (MSB) for
the ICAP interface, which is the opposite direction from most processors.

The sequence in Table 14-3 uses 16 steps, and consequently 16 CLK cycles and 16 memory
locations. The sequence can be shortened to 12 CLK cycles by making the following simple
changes.

• Align the next MultiBoot address to a 16-bit (64K) boundary and pre-assign the
contents of the GENERAL1 register to 0x0000 by setting the
next_config_addr:00000000 bitstream generator option. The next MultiBoot address
is then selectable solely by writing to the GENERAL2 register. This eliminates the four
steps between CLK cycles 3 and 6.

MultiBoot using SelectMAP
ICAP is the internal mirror of the SelectMAP interface. The command sequence for
MultiBoot using the SelectMAP interface is the same as for the ICAP interface. You must
control CS_B/CSI_B and RDWR_B for any write to the SelectMAP interface; it is important
to avoid an Abort. An Abort is triggered when RDWR_B is toggled while CS_B/CSI_B is
asserted.

MultiBoot using Slave Serial
The command sequence for MultiBoot using the Slave Serial interface is the same as the
ICAP command sequence except the sequence starts with the LSB first.

Table 14-3: Command Sequence to Initiate MultiBoot to a Specified Address

CLK
Cycle

Command
High or

Low Byte
D0 D1 D2 D3 D4 D5 D6 D7 Hex

1
SYNC WORD

High 1 0 1 0 1 0 1 0 0xAA

2 Low 1 0 0 1 1 0 0 1 0x99

3 Type 1 Write GENERAL1
(1 Word)

High 0 0 1 1 0 0 1 0 0x32

4 Low 0 1 1 0 0 0 0 1 0x61

5 Lower 16 bits of MultiBoot
Address

High A15 A14 A13 A12 A11 A10 A9 A8

6 Low A7 A6 A5 A4 A3 A2 A1 A0

7 Type 1 Write GENERAL2
(1 Word)

High 0 0 1 1 0 0 1 0 0x32

8 Low 1 0 0 0 0 0 0 1 0x81

9 Upper bits of MultiBoot Address
(SPI mode example)

High C7 C6 C5 C4 C3 C2 C1 C0

10 Low A23 A22 A21 A20 A19 A18 A17 A16

11 Type 1 Write CMD
(1 Word)

High 0 0 1 1 0 0 0 0 0x30

12 Low 1 0 1 0 0 0 0 1 0xA1

13
REBOOT Command

High 0 0 0 0 0 0 0 0 0x00

14 Low 0 0 0 0 1 1 1 0 0x0E

15
No Op

High 0 0 1 0 0 0 0 0 0x20

16 Low 0 0 0 0 0 0 0 0 0x00

http://www.xilinx.com

276 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

MultiBoot using JTAG
The easiest method for MultiBoot using the JTAG interface is with an SVF file (see
XAPP503 SVF and XSVF File Formats for Xilinx Devices). The command sequence is the same
as the ICAP command sequence and can be loaded into configuration memory using a
CFG_IN instruction. The following is an example of how to construct the CFG_IN
instruction.

// MultiBoot command sequence
//FFFF => ffff Dummy word shifted in first
//AA99 => 1010 1010 1001 1001 => 1001 1001 0101 0101 => 9955 SYNC
//30A1 => 0011 0000 1010 0001 => 1000 0101 0000 1100 => 850a Type 1 Write to CMD
//000E => 0000 0000 0000 1110 => 0111 0000 0000 0000 => 7000 REBOOT command
//2000 => 0010 0000 0000 0000 => 0000 0000 0000 0100 => 0004 NOOP
//2000 => 0010 0000 0000 0000 => 0000 0000 0000 0100 => 0004 NOOP
// Append the commands and put them into an SDR for CFG_IN
// This will load the command sequence to config memory in the same way that the ICAP would
// For SDR command, 24 hex characters: 24 x 4 = 96 bit shift
// Loading device with a `cfg_in` instruction
SIR 6 TDI (05);
// Loads the instruction to the IR
//SDR 96 TDI (0004 0004 7000 850a 9955 ffff) SMASK (ffff ffff ffff ffff ffff ffff ffff)
SDR 96 TDI (000400047000850c9955ffff) SMASK (ffffffffffffffffffffffffffff);
STATE RESET;

MultiBoot Registers
Generally, there are three ICAP registers involved in a MultiBoot application. The address
of the next MultiBoot bitstream is stored in registers GENERAL1 and GENERAL2,
although they can be preloaded via BitGen option next_config_addr. To trigger a
MultiBoot event, the FPGA application must issue a REBOOT command using the CMD
register.

Next MultiBoot Start Address (GENERAL1, GENERAL2)

The start address of the next MultiBoot configuration image is stored in two 16-bit
registers, called GENERAL1 and GENERAL2. These registers can also be preloaded using
the bitstream generation (BitGen) option next_config_addr.

The GENERAL1 and GENERAL2 registers are not cleared or modified during a MultiBoot
event.

The GENERAL1 register holds the lower 16 bits of the next MultiBoot address, as shown in
Table 14-4.

The context of the GENERAL2 register depends on whether the next MultiBoot address is
in an external parallel NOR Flash (BPI mode) or an external SPI serial Flash (SPI mode).

In BPI mode, the GENERAL2 register contains the upper 10 bits of the 26-bit BPI address,
as shown in Table 14-5. The upper six bits of the register are reserved.

Table 14-4: GENERAL1 Register Definition

GENERAL1
Address 01_0011 (0x13)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 277
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

In SPI mode, the GENERAL2 register contains the upper 8 bits of the 24-bit SPI address, as
shown in Table 14-6. The upper eight bits of the register contain the specific byte-wide read
command for the attached external SPI serial Flash device.

Command Register (CMD)

Configuration commands control the operation of the configuration state machine. Each
command consists of five bits, as shown in Table 14-7.

Only one command is required for MultiBoot operations, the REBOOT command, which is
binary 01110.

Table 14-5: GENERAL2 Register Definition for BPI Mode Options

GENERAL2
Address 01_0100 (0x14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — A25 A24 A23 A22 A21 A20 A19 A18 A17 A16

Table 14-6: GENERAL2 Register Definition for SPI Mode Options

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI Flash Read Command Upper Byte of 24-bit SPI Read Address

C7 C6 C5 C4 C3 C2 C1 C0 A23 A22 A21 A20 A19 A18 A17 A16

Table 14-7: CMD Register Definition

CMD
Address 00_0101 (0x05)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

REBOOT

Command

0 1 1 1 0

http://www.xilinx.com

278 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

Configuration Mode Register (MODE_REG)

The configuration mode register, MODE_REG, defines which configuration mode the
FPGA uses upon the next MultiBoot trigger event. The NEW_MODE bit defines whether
the FPGA uses the M[2:0] mode settings defined by the M[2:0] pins of the FPGA or whether
the FPGA uses the settings defined by the BOOTMODE bits. Setting NEW_MODE = 1
allows the FPGA to MultiBoot to a different type of attached memory. This is an advanced
option that is not recommended for most situations. Note that SPI fallback is not supported
when using NEW_MODE=1.

Table 14-8 describes the bit options available in the MODE_REG register.

Generating an Extended Spartan-3A Family MultiBoot PROM Image using
iMPACT

Note: For Spartan-3AN, see also “Preparing an In-System Flash Programming File,” page 220.

The iMPACT programming software provides a graphical, step-by-step approach to create
a MultiBoot PROM file. Similar functionality is also available from the command line or
via scripts using the PROMGen utility, shown in Figure 14-10. Follow the steps outlined
below to create an Extended Spartan-3A family MultiBoot PROM file using the iMPACT
software. Figure 14-11, page 279 shows the Extended Spartan-3A family MultiBoot design
used in the following example.

Table 14-8: MODE_REG Bit Options

MODE_REG
Address 01_0101 (0x15)

Name Bit(s) Description Default

Reserved [15:7] Reserved 0

NEW_MODE 6

0: Sample M[2:0] pins and, if in SPI mode, the VS[2:0] pins
to determine MultiBoot configuration mode.

1: Use BOOTMODE value to determine MultiBoot
configuration mode.

0

BOOTMODE 5:3

Define the M[2:0] configuration mode select setting for
the next MultiBoot event. Requires NEW_MODE = 1.
Available options are identical to FPGA mode pin
settings, M[2:0], shown in Table 2-1, page 50. Default SPI
mode is not recommended since it does not support
fallback when using NEW_MODE=1.

001
(SPI)

Reserved 2:0 Reserved 111

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 279
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

1. Invoke the iMPACT programming software.

2. As shown in Figure 14-3, choose Prepare a PROM File.

3. Click Next.

Figure 14-11: Spartan-3A MultiBoot Example using XC3S700A and SPI Flash

Figure 14-12: Prepare a MultiBoot PROM Image

Spartan-3A
FPGA

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Initial Bitstream
(Default)

Always at 0

16Mbit
SPI Flash

MultiBoot
Bitstream 1

MultiBoot
Bitstream 2

0x0

0x60000

0xC0000

Up

Up

Up

Bitstream Spacing
• Flash sector boundary

alignment
• Minimum spacing

requirements if
DCM_WAIT=TRUE

(XC3S700A)

UG332_c14_19_082106

2

3

UG332_c14_04_112906

http://www.xilinx.com

280 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

4. As shown in Figure 14-13, target a PROM Supporting Multiple Design Revisions.

5. Choose the Spartan3A MultiBoot method.

6. Select a PROM File Format. The MCS format is supported by a variety of
programmers, but other options are available.

7. Enter a PROM File Name.

8. Click Next.

Figure 14-13: Select a PROM Supporting MultiBoot for Extended Spartan-3A
Family FPGAs

UG332_c14_12_082006

4
5

7

8

6

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 281
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

9. As shown in Figure 14-14, choose whether to create an Extended Spartan-3A family
MultiBoot image for SPI serial Flash or for parallel NOR Flash, using BPI mode. This
example uses an SPI PROM.

10. Click Next.

11. As shown in Figure 14-15, Select SPI PROM Density, which is always specified in bits.
This example uses a 16 Mbit PROM.

12. The initial MultiBoot image is always loaded starting at address 0.

13. To add additional images, check Enable Data Stream.

14. Specify the starting address of each MultiBoot image using hexadecimal notation.

Figure 14-14: SPI or Parallel Flash PROMs are Supported

Figure 14-15: Enter a PROM Density and Specify MultiBoot Image Start Locations

UG332_c14_13_082006

9

10

UG332_c14_14_082006

15

11

12

1413

http://www.xilinx.com

282 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

♦ What is the size of the FPGA configuration bitstream? Is the bitstream for a single
FPGA or a multi-FPGA daisy chain? Extended Spartan-3A family FPGAs do
support daisy chains when using MultiBoot.

♦ What are the page or sector boundaries of the Flash device? Ideally, the FPGA
bitstream should start on a Flash sector boundary.

♦ If using the DCM_WAIT option on a Digital Clock Manager (DCM) with the
FPGA application, is there enough additional spacing between images to
accommodate the extra lock time?

An uncompressed Spartan-3A XC3S700A FPGA configuration bitstream requires
2,732,640 bits. Dividing that number by eight provides the required number of bytes,
341,580 bytes. Divide the number of bytes by 1,024 to determine the number of
kilobytes, or 333.57K. The Atmel AT45DB161D serial Flash uses 128Kbyte sectors.
Consequently, a single XC3S700A configuration bitstream occupies ~2.6 sectors. The
first bitstream always starts at address 0. The next Extended Spartan-3A family
MultiBoot image should be placed on a following Flash sector boundary. The next
available boundary after the first configuration image begins at address hexadecimal
address 0x60000. Place the second bitstream at this address or any subsequent sector
boundary. With an image at 0x60000, a third image starts at 0xC0000.

15. Click Next.

16. The iMPACT software summarizes the current settings, as shown in Figure 14-16.
Click Finish to continue.

17. As shown in Figure 14-17, add the initial FPGA bitstream. This is the design that is
loaded into the FPGA at power-up, or whenever the PROG_B pin is pulsed Low. This
is also the default bitstream that is automatically loaded if the Configuration
Watchdog Timer (CWDT) expires during a MultiBoot operation.

Figure 14-16: Confirm PROM Settings

UG332_c14_15_082006

16

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 283
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family MultiBoot
R

18. Select the first FPGA configuration bitstream.

19. Click Open.

20. Click No.

21. Perform Steps 17 through 20, but this time for the second FPGA configuration
bitstream.

22. As shown in Figure 14-18, start adding the third FPGA configuration bitstream.

Figure 14-17: Select the First (Default) Configuration Image

UG332_c14_16_082106

17
18

19
20

Figure 14-18: Select the Third MultiBoot Configuration Image

UG332_c14_17_082106

22
23

24

25

26

http://www.xilinx.com

284 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

23. Select the third FPGA configuration bitstream.

24. Click Open.

25. Click No.

26. File selection is complete. Click OK.

27. As shown in Figure 14-19, the iMPACT software reports how much of the PROM is
consumed by the FPGA configuration bitstream files. Double-click Generate File.

28. The iMPACT software successfully generates a PROM file using the name specified in
Step 7 with the format and file extension specified in Step 6. The file is created in the
current directory. A “PROMGen Report File” is also created.

Configuration Fallback
The Spartan-3A, Spartan-3AN, and Spartan-3A DSP families include logic to automatically
“fallback” and re-start configuration after a configuration failure. These features are
particularly useful when providing the FPGA with “live” Flash updates. This feature is
especially useful in MultiBoot applications, including applications that will be updated in
the field, to help protect against failed updates. Two events may cause the device to
fallback.

1. A timeout without seeing the configuration synchronization word AA99 (fallback
always enabled)

2. A CRC error (fallback optional)

Figure 14-19: Generate the PROM File Using the Specified Parameters

UG332_c14_18_082106

27
28

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 285
UG332 (v1.5) March 16, 2009

Configuration Fallback
R

Configuration Watchdog Timer (CWDT) and Fallback
Extended Spartan-3A family FPGAs contain a configuration watchdog timer (CWDT). The
CWDT provides protection against errant configuration operations such as the following.

• Configuration or MultiBoot operations to an invalid start location

• Configuration or MultiBoot operations to a valid start location, but loaded with an
incomplete or partially valid configuration bitstream.

The CWDT is a 16-bit counter, clocked by the CCLK configuration clock signal. Upon any
FPGA configuration operation, be it from power-up, a PROG_B pulse, or a MultiBoot
event, the CCLK clock begins operation at its lowest ConfigRate setting, which is
approximately 1 MHz. The CWDT expires 64K clock cycles after the start of configuration,
or in approximately 65 ms.

If, during a MultiBoot operation, the FPGA does not see a valid configuration
synchronization word before the CWDT expires, then the FPGA will automatically fallback
to the default bitstream located at address 0. The FPGA automatically reconfigures from
the default bitstream, even resending the appropriate SPI Flash read command if using the
SPI configuration mode.

CRC Error and Fallback
Similarly, an Extended Spartan-3A family FPGA can also recover from a MultiBoot
operation to a bitstream that has a correct synchronization word, but that eventually issues
a CRC error for some reason. Set the Reset_on_err:Yes bitstream option to cause the FPGA
to automatically re-initialize and retry the first configuration at address 0 should a CRC
error occur. CRC checking must also be enabled, which is the default.

Note that the Reset_on_err:Yes bitstream option is included in the first part of the next
bitstream. For best support of fallback, Reset_on_err:Yes should be set in each bitstream
used in a MultiBoot application. If a synchronization word pattern is found but the
Reset_on_err:Yes bitstream option is not seen due to corrupt data, the device will not
fallback but will indicate a configuration error on INIT_B and wait for reconfiguration.
Also note that the CRC check is done at the end of the bitstream; therefore, if the end of the
bitstream is missing or corrupted the device will not perform the CRC check and automatic
fallback will not occur. Fallback helps automatically recover from minor corruptions in
otherwise valid bitstreams, but a significantly corrupted or invalid configuration file may
not permit fallback to occur. Therefore it is still important to make sure that a valid
configuration image is being read, while using fallback to recover from minor errors.

Fallback Limited to 3 Additional Tries
In BPI and SPI modes, if reconfiguration has failed and done fallback three times, then on
the fourth failure the FPGA halts and drives the INIT_B pin Low. Pulsing the PROG_B pin
or cycling power restarts the configuration process from the beginning.

The counter that keeps track of the failed configurations is reset only when PROG_B is
pulsed or power is cycled; it is not reset after a successful configuration. The FPGA will
stop attempting configuration if the initial design is good but the MultiBoot bitstream is
bad, after the fourth attempt at MultiBoot. Note that when configuring via SPI or BPI
modes and using the Reset_on_err:Yes bitstream option, any combination of successful
and failed configurations, over any period of time, will halt after the fourth failed
configuration, and require assertion of PROG_B or power cycling to reconfigure. It is good
design practice to have the ability to assert PROG_B to reset configuration if necessary.

http://www.xilinx.com

286 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

Advanced Capabilities

Switching between MultiBoot Configuration Memory Types

The Extended Spartan-3A family MultiBoot feature also provides the advanced capability
to jump between configuration modes and hence different types of external memory. This
feature is not recommended for most applications because switching to the SPI mode does
not support the Configuration Watchdog Timer.

As shown in Figure 14-20, during a MultiBoot event, the Extended Spartan-3A family
internal configuration controller determines which FPGA configuration mode to execute.
By default, the FPGA uses the mode select values physically defined on the FPGA’s M[2:0]
mode select pins. Similarly, if the FPGA mode pins specify the Master SPI Flash mode, then
the controller uses the Read Command associated with the variant select values, VS[2:0],
defined by the associated FPGA pins.

However, by setting the control bit NEW_MODE = 1 in the MODE_REG register, the
internal configuration controller uses the configuration mode specified by the
BOOTMODE bits. If BOOTMODE = 001 to specify the Master SPI Flash mode, then the
controller uses the Read Command specified in the higher-order byte {15:8] of the
GENERAL2 register, and the remaining lower-order byte of the GENERAL2 register
provides the upper 8 bits of the 24-bit MultiBoot address. If BOOTMODE = 010 to specify
the BPI Flash mode, then the lower 10 bits of the GENERAL2 register become the upper 10
bits of the 26-bit BPI MultiBoot address. In both cases, the GENERAL1 register provides
the lower 16 bits of the MultiBoot address (see “Next MultiBoot Start Address
(GENERAL1, GENERAL2),” page 276).

Caution! Fallback is not supported when switching to the SPI mode during MultiBoot.

Figure 14-20: Extended Spartan-3A Family MultiBoot Configuration Mode Control

M2 M1 M0 131415

M2

M1

M0

VS2

VS1

VS0

0

1

0

1

BOOTMODE GENERAL2

[7:0]

M[2:0]

SPI Read Command

FPGA Mode Select

Internal Configuration
Controller

NEW_MODE

FPGA

V
a

ri
an

t
S

e
le

ct
 P

in
s

M
o

d
e

S
e

le
ct

 P
in

s

UG332_c14_02_110507

0 = From Pins
1 = From Mode Register

8

Read
Cmd
Lookup

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 287
UG332 (v1.5) March 16, 2009

Configuration Fallback
R

MultiBoot Design Examples
The reference designs for the Spartan-3A/3AN FPGA Starter Kit board include MultiBoot
design examples:

http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm

XAPP468 Fail-safe MultiBoot Reference Design includes algorithms to test bitstream integrity
and to select the bitstream image to load.

http://www.xilinx.com
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm
http://www.xilinx.com/support/documentation/application_notes/xapp468.pdf

288 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 14: Reconfiguration and MultiBoot
R

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 289
UG332 (v1.5) March 16, 2009

R

Chapter 15

Protecting FPGA Designs

Similar to a processor, a Spartan®-3 generation FPGA receives its configuration
information, i.e., its application program, from an external memory source. The exposed
external interface makes both processor code and FPGA bitstreams potentially vulnerable
to copying or cloning.

Unlike a processor, there are no simple “reverse assemblers” for FPGA applications.
Processors have a defined, fixed instruction set and instruction length, making a reverse
assembler for a processor a straightforward task. However, reverse engineering an entire
FPGA design and then converting it to a human-understandable form is exceedingly
difficult. An FPGA configuration bitstream contains millions of interrelated bits.
Furthermore, the Xilinx® bitstream format is both proprietary and confidential.

While reverse engineering an FPGA bitstream is difficult, directly copying an FPGA
bitstream without understanding its underlying function, is rather straightforward. This
chapter describes the available, low-cost solutions to protect a design against cloning and
even to protect an intellectual property (IP) core implemented within an FPGA.

This chapter covers the following design security topics.

• “Basic FPGA Hardware-Level Security Options,” page 289

• “Approaches to Design Security,” page 292

• “Extended Spartan-3A Family Unique Device Identifier (Device DNA),” page 294

• “Authentication Design Examples,” page 297

• “U.S. Legal Protection of FPGA Configuration Bitstream Programs,” page 306

Basic FPGA Hardware-Level Security Options
Spartan-3 generation FPGAs provide advanced debugging capabilities via a function
called Readback. Similarly, the FPGA generally allows full access to all configuration
operations. However, for security-conscious applications, the Readback function and
configuration operations, especially via JTAG, provide a potential point of attack.

Fortunately, the FPGA bitstream optionally restricts access to configuration and readback
operations. By default, there are no restrictions and the JTAG port is always active,
providing access to configuration and Readback.

The SelectMAP configuration interface, which can also be used to perform Readback, is
disabled by default and is not available unless specifically enabled by setting the
Persist:Yes bitstream option.

The only way to remove a security setting in a configured FPGA is to clear the FPGA
program by asserting PROG_B or cycling power.

http://www.xilinx.com

290 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Spartan-3 and Spartan-3E Security Levels
Table 15-1 shows the available security levels on Spartan-3 and Spartan-3E FPGAs.
Extended Spartan-3A family FPGAs provide an extra level, as shown in Table 15-2.
t

Extended Spartan-3A Family Security Levels
Extended Spartan-3A family FPGAs provide an additional security level, as shown in
Table 15-2. Readback can be optionally disabled completely or disabled except for internal
access from the FPGA application via the Internal Configuration Access Port (ICAP).

Setting the Security Level in the Bitstream
There are two ways to set the security level in the bitstream, either from the ISE® software
Project Navigator or from the BitGen command-line utility.

ISE Software Project Navigator

Set the security level in the FPGA bitstream, as shown in Figure 15-1.

Table 15-1: Spartan-3 and Spartan-3E Security Levels

Security Level Description

None Default. Unrestricted access to all configuration and Readback functions

Level1 Disable all Readback functions from either the SelectMAP or JTAG port.

Level2
Disable all configuration and Readback functions from all configuration
and JTAG ports.

Table 15-2: Extended Spartan-3A Family BitGen Security Levels

Security Level Description

None Default. Unrestricted access to all configuration and Readback functions

Level1
Disable all Readback functions from both the SelectMAP or JTAG ports.
Readback via the Internal Configuration Access Port (ICAP) allowed.

Level2 Disables all Readback operations on all ports.

Level3
Disable all configuration and Readback functions from all configuration
and JTAG ports.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 291
UG332 (v1.5) March 16, 2009

Basic FPGA Hardware-Level Security Options
R

1. Right-click Generate Programming File.

2. Select Properties.

From the Process Properties dialog box shown in Figure 15-2, set the following options.

3. Select the Readback Options category.

4. Choose the Security level value that best meets the needs of the application.

Figure 15-1: Setting Bitstream Generator Options from ISE Project Navigator

2

1

UG332_c1_04_120306

Figure 15-2: Bitstream Generator Security Options

4

3

5

UG332_c16_07_0918

http://www.xilinx.com

292 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

BitGen Command-Line Utility

The security options are also available via the BitGen command-line utility, as shown
below. The available Security options are provided in Table 15-1 or Table 15-2, depending
on the Spartan-3 generation FPGA family used. Table 15-3 shows how the options entered
via the ISE Project Navigator relate to the BitGen command-line options. An example that
disables Readback is provided below.

bitgen -g Security:Level1 [remaining options]

Approaches to Design Security
Xilinx programmable logic devices incorporate a variety of approaches to design security,
as summarized in Table 15-4. Xilinx employs each of these security options in different
product families. The Spartan-3 generation FPGAs introduce a new option called
Authentication, which is described throughout the remainder of this chapter.

Table 15-3: Relation between ISE Project Navigator and BitGen Options

Value
Spartan-3/

Spartan-3E FPGAs

Spartan-3A/3AN
Spartan-3A DSP

FPGAs

Enable Readback and Reconfiguration (default) None None

Disable Readback Level1 Level1

Disable Readback and Reconfiguration Level2 Level3

Table 15-4: Programmable Logic Security Options Compared

Security Bits Encryption Authentication

Xilinx product family that uses this security
option

Xilinx CPLDs
Virtex®-II, Virtex-II

Pro, Virtex-4, Virtex-
5 FPGAs

Spartan-3A/3AN/
3A DSP FPGA (but

variations possible in
Spartan-3/3E FPGAs)

Is bitstream or programming file visible after
being secured? No

No, only in
encrypted form

Yes, but cannot be used
except in an

authenticated system

Does security method provide bitstream
(design) security?

Yes Yes Yes

What happens when an unauthorized or
unencrypted bitstream loaded into FPGA?

N/A Does not configure

Behavior defined by
FPGA application (see

“Handling Failed
Authentications”)

Does the security method provide an option to
secure application data?

No No Yes

Does the security method provide an option to
provide “Digital Rights Management”

No No Yes

Technical Limitations Requires a large
amount of on-chip

nonvolatile memory
Key management

Requires logic in the
FPGA application to
authenticate design

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 293
UG332 (v1.5) March 16, 2009

Approaches to Design Security
R

Security Bits
Complex PLD (CPLD) designs are programmed into on-chip, nonvolatile memory, similar
to simple microcontrollers. As such, CPLDs and microcontrollers typically offer a
“security” bit or bits that locks the internal memory array, preventing the array from being
read. Locking the array prevents the design from being easily copied.

Encryption
Some FPGAs employ bitstream encryption. Encryption essentially scrambles the external
bitstream so that it is unusable unless loaded into an FPGA containing the correct “key” to
decrypt the bitstream. The encryption circuitry is typically a dedicated embedded function
on the FPGA, consuming valuable silicon area. Applications that do not use encryption
pay for the feature regardless.

Encryption is considered highly secure, as implemented with battery back-up on the Xilinx
Virtex, Virtex-II Pro, Virtex-4, and Virtex-5 FPGA families.

The built-in encryption circuitry only protects the FPGA bitstream and is typically not
available after configuration to protect application data.

The primary downside of encryption is key management and key distribution.

Authentication
Authentication is another protection technique, widely used in a variety of applications.
Authentication is distinctly different than using either “security bits” or encryption. Here
are a few examples of everyday applications using authentication.

• When you access an Automated Teller Machine (ATM), you insert your bank card and
authenticate your identity by entering a Personal Identification Number (PIN). If
someone steals your ATM card, they cannot use it without also having your PIN
number.

• When you log onto your computer network, you enter your login name and your
password. The password authenticates your identity. An imposter must have both
your login name and your password to access the network from your account.

• Many software programs, including the Xilinx ISE development software, require an
authorization code before they operate on your computer. You can freely copy the
DVD but it can only be used when unlocked by the authorization code.

To be ideally effective, authentication requires an identity or authorization code with these
two essential attributes.

1. Unique

2. Not easily cloned, copied, or duplicated

Weaknesses in either of these elements potentially compromise security. For example, if
someone has your ATM card and your PIN number, kiss your cash goodbye. The PIN
number, once learned, is easily cloned. This is one of the reasons behind the move to
biometric authentication. While it is easy to learn a simple PIN number, it is presently quite
difficult to clone a human iris or a fingerprint.

http://www.xilinx.com

294 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Extended Spartan-3A Family Unique Device Identifier (Device
DNA)

Each Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA contains an embedded,
unique device identifier. The identifier is nonvolatile, permanently programmed into the
FPGA, and is unchangeable making it tamper resistant.

This identifier is called the Device DNA. The FPGA application accesses the identifier
value using the “Device DNA Access Port (DNA_PORT)” design primitive, shown in
Figure 15-3.

Identifier Value
As shown in Figure 15-4, the Device DNA value is 57 bits long. The two most-significant
bits are always ‘1’ and ‘0’. The remaining 55 bits are unique to a specific Extended Spartan-
3A family FPGA.

Operation
Figure 15-4 shows the general functionality of the DNA_PORT design primitive. An FPGA
application must first instantiate the DNA_PORT primitive, shown in Figure 15-3, within a
design.

To read the Device DNA, the FPGA application must first transfer the identifier value into
the DNA_PORT output shift register. Assert the READ input during a rising edge of CLK,
as shown in Table 15-5. This action parallel loads the output shift register with all 57 bits of
the identifier. Because bit 56 of the identifier is always ‘1’, the DOUT output is also ‘1’. The
READ operation overrides a SHIFT operation.

To continue reading the identifier values, assert SHIFT followed by a rising edge of CLK, as
shown in Table 15-5. This action causes the output shift register to shift its contents toward
the DOUT output. The value on the DIN input is shifted into the shift register.

Caution! Avoid a Low-to-High transition on SHIFT when CLK is High as this causes a spurious
initial clock edge. Ideally, only assert SHIFT when CLK is Low or on a falling edge of CLK.

Figure 15-3: Extended Spartan-3A Family DNA_PORT Design Primitive

UG332_C13_05_081406

DIN DOUT

DNA_PORT

READ

SHIFT

CLK

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 295
UG332 (v1.5) March 16, 2009

Extended Spartan-3A Family Unique Device Identifier (Device DNA)
R

If both READ and SHIFT are Low, the output shift register holds its value and DOUT
remains unchanged.

The Spartan-3A Starter Kit board has a design example that demonstrates how to read the
Device DNA value.

• Extended Spartan-3A Family Device DNA Reader Design Example
www.xilinx.com/products/boards/s3astarter/reference_designs.htm#dna_reader

Interface Timing
Table 15-6 provides the interface timing for the DNA_PORT design primitive. The timing
is the same regardless of the FPGA’s speed grade. As always, please refer to the associated
data sheet for official timing values.

Figure 15-4: DNA_PORT Operation

5655540

0 155-bit unique device identifier (Device DNA)

Factory programmed, unchangeable

560
DIN DOUT57-bit bit loadable shift register

READ=1

SHIFT=1

UG332_c15_01_110206

CLK

READ=0

Table 15-5: DNA_PORT Operations

Operation DIN READ SHIFT CLK Shift Register DOUT

HOLD X 0 0 X Hold previous value
Hold previous

value

READ X 1 X ↑ Parallel load with 57-bit ID
Bit 56 of

identifier, which
is always ‘1’

SHIFT DIN 0 1 ↑ Shift DIN into bit 0, shift contents of Shift
Register toward DOUT

Bit 56 of Shift
Register

Notes:
X = Don’t care
↑ = Rising clock edge

Table 15-6: DNA_PORT Interface Timing

Symbol Description Min Max Unit

tDNASSU Setup time on SHIFT before the rising edge of CLK 1.0 – ns

tDNASH Hold time on SHIFT after the rising edge of CLK 0.5 – ns

tDNADSU Setup time on DIN before the rising edge of CLK 1.0 – ns

tDNADH Hold time on DIN after the rising edge of CLK 0.5 – ns

tDNARSU Setup time on READ before the rising edge of CLK 5.0 10,000 ns

tDNARH Hold time on READ after the rising edge of CLK 0 – ns

http://www.xilinx.com
http://www.xilinx.com/s3astarter
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm#dna_reader

296 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Identifier Memory Specifications
Figure 15-4 presents the general characteristics of the DNA identifier memory. The unique
FPGA identifier value is retained for a minimum of ten years of continuous usage under
worst-case recommended operating conditions. The identifier can be read, using the
READ operation defined in Table 15-5, a minimum of 30 million cycles, which roughly
correlates to one read operation every 11 seconds for the operating lifetime of the
Spartan-3A/3AN/3A DSP FPGA.

Extending Identifier Length
As shown in Figure 15-5a, most applications that use the DNA_PORT primitive tie the DIN
data input to a static value. However, other options are possible.

As shown in Figure 15-5b, the length of the identifier can be extended by feeding the
DOUT serial output port back into the DIN serial input port. This way, the identifier can be
extended to any possible length. However, there are still only 55 unique bits, with a 57-bit
repeating pattern.

It is also possible to add additional bits to the identifier using FPGA logic resources. As
shown in Figure 15-5c, the FPGA application can insert additional bits via the DNA_PORT
DIN serial input. The additional bits provided by the logic resources could take the form of
an additional fixed value or a variable computed from the Device DNA.

tDNADCKO
Clock-to-output delay on DOUT after rising edge
of CLK 0.5 1.5 ns

tDNACLKF CLK frequency 0 100 MHz

tDNACLKL CLK High time 1.0 ∞ ns

tDNACLKH CLK Low time 1.0 ∞ ns

Table 15-6: DNA_PORT Interface Timing (Cont’d)

Symbol Description Min Max Unit

Table 15-7: Identifier Memory Characteristics

Symbol Description Minimum Units

DNA_CYCLES Number of READ operations, as defined
in Figure 15-3 or JTAG ISC_DNA read
operations. Unaffected by HOLD or
SHIFT operations.

30,000,000 Read cycles

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 297
UG332 (v1.5) March 16, 2009

Authentication Design Examples
R

JTAG Access to Device Identifier
The FPGA’s internal device identifier, plus any values shifted in on the DIN input, can be
read via the JTAG port using the private ISC_DNA command. This is a 1532 command and
therefore it requires the ISC_ENABLE to be loaded before the ISC_DNA command is
issued. JTAG access to the Device DNA value is only available before configuration of the
FPGA.

Bit 56 of the identifier, shown in Figure 15-4, appears on the TDO JTAG output following
the ISC_DNA command when the device enters the Shift-DR state. The remaining Device
DNA bits and any data on the input to the register are shifted out sequentially while the
JTAG controller is left in the Shift-DR state.

iMPACT Access to Device Identifier
The iMPACT software in the ISE 10.1 and later tools can also read the Device DNA value.
"readDna -p <position>" is the batch command that will read the Device DNA from
the unconfigured FPGA.

Authentication Design Examples
Authentication can take various forms in an application, as described in the examples
below. Some of these examples configure from an attached PROM, others are downloaded
into the FPGA.

• “Extended Spartan-3A Family FPGA: Imprinting or Watermarking the Configuration
PROM with Device DNA,” page 298

Figure 15-5: Possible Options for DIN Input

DIN DOUT

DNA_PORT

READ
SHIFT
CLK

DIN DOUT

DNA_PORT

READ
SHIFT
CLK

a) Shift in constant b) Circular shift

c) Bitstream specific code UG332_c15_02_120106

DIN DOUT

DNA_PORT

READ
SHIFT
CLK

Application Code

DIN DOUT
READ
SHIFT
CLK

READ
SHIFT

CLK

http://www.xilinx.com

298 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

• “Spartan-3E FPGA: Leveraging Security Features in Select Commodity Flash
PROMs,” page 299

• “Extended Spartan-3A Family FPGA: Authenticating a Downloaded Design,”
page 302

• “Authenticating any FPGA Design Using External Secure PROM,” page 303

Extended Spartan-3A Family FPGA: Imprinting or Watermarking the
Configuration PROM with Device DNA

The Extended Spartan-3A family FPGA in Figure 15-6 configures using one of the Master
configuration modes from an associated configuration PROM. The PROM contains both
the FPGA configuration bitstream and a previously generated authentication check value.
The PROM itself does not require any special features, just enough memory to contain both
the FPGA bitstream and the authentication check value. The Extended Spartan-3A family
FPGA has an internal unique Device DNA value.

At power-up or when PROG_B is pulsed Low, the FPGA configures normally.

As shown in Figure 15-7, part of the FPGA application includes circuitry that validates that
the bitstream programmed into the PROM is authorized to operate on the associated
Extended Spartan-3A family FPGA. In reality, the Device DNA and the authentication
check value are both multi-bit binary values. However, for the sake of clarity, this example
uses symbolic values. In this example, the FPGA’s Device DNA is “Blue” and the
configuration PROM is programmed with the check value “Blueberry.”

Figure 15-6: Extended Spartan-3A Family FPGA Configures Normally

Figure 15-7: Extended Spartan-3A Family FPGA Authenticates the PROM Image
Against Device DNA

Spartan-3A/3AN/3A DSP FPGA Configuration PROM

Device DNA

FPGA BitstreamFPGA Fabric

Authentication
Check Value

UG332_c16_03_040107

UG332_c16_04_040107

Spartan-3A/3AN/3A DSP FPGA Configuration PROM

FPGA BitstreamFPGA
ApplicationValid

PROM?

BlueberryBlue

OK

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 299
UG332 (v1.5) March 16, 2009

Authentication Design Examples
R

After configuration, the FPGA checks that the value contained in the PROM matches the
value expected by the FPGA application. In this example, the FPGA validates that a
“Blueberry” is indeed “Blue.” The bitstream loaded from the PROM is authentic, and the
FPGA application is enabled for full operation.

What happens if an attacker copies the contents of an authenticated PROM, shown in
Figure 15-7, and uses it with a different, similarly sized Extended Spartan-3A family
FPGA? If the check value in the PROM does not match the value expected by the FPGA
application, then the FPGA application decides how to handle this unauthorized copy.
There are a variety of potential scenarios, as described in “Handling Failed
Authentications,” page 304. In this example, the PROM image fails because the FPGA
application checks that a “Blueberry” is not “Yellow.”

Spartan-3E FPGA: Leveraging Security Features in Select Commodity
Flash PROMs

Only Extended Spartan-3A family FPGAs support the internal unique identifier feature.
The feature is not available on Spartan-3 or Spartan-3E FPGAs. However, Spartan-3E and
Spartan-3 FPGAs support a similar authentication method using commodity Flash PROMs
that have their own device ID values. Table 15-8 provides example devices; there are likely
others. The identifiers are only available in certain Flash PROM families and usually in the
larger-density members of the family. The size of the identifier also varies by vendor and
product family, from 64 bits to 256 bytes. Similarly, some devices also have a user-defined
field that can be used to extend the size of the unique ID.

Figure 15-8: Authentication Fails Using an Unauthorized Copy

UG332_c16_06_040107

Spartan-3A/3AN/3A DSP FPGA Configuration PROM

FPGA BitstreamFPGA
ApplicationValid

PROM?

BlueberryYellow

FAIL!

Table 15-8: Example Flash PROMs with Embedded Unique Identifiers

Vendor Family
Data

Format
Density Unique ID Field User Field

STMicro
(Numonyx) M29W Parallel

16 Mbit and
larger 64 bits –

Spansion S29A Parallel
32 Mbit and

larger
256 bytes

(ESN) –

Atmel AT45DBxxxD Serial All 64 bytes 64 bytes

Atmel AT45BV Parallel
8 Mbit and

larger
64 bits 64 bits

http://www.spansion.com/flash_memory_products/floating_gate.html
http://www.xilinx.com
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxIndustryStandardFlashM29.aspx
http://www.atmel.com/products/DataFlash/
http://www.atmel.com/dyn/products/devices.asp?family_id=624#702

300 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Figure 15-9 shows an authentication example using a Spartan-3E FPGA and a commodity
Flash PROM with an embedded device identifier. In this example, the configuration
PROM must contain a unique identifier. The PROM also contains the FPGA configuration
bitstream and the authentication check value, specific to this implementation.

At power-up or when PROG_B is pulsed Low, the FPGA configures normally.

As shown in Figure 15-10, part of the FPGA application includes circuitry that validates
that the bitstream programmed into the PROM is authorized to load. The PROM’s
Device ID and the authentication check value are both multi-bit binary values. For the sake
of clarity, this example uses symbolic values. The PROM’s Device ID is “Blue” and the
configuration PROM is programmed with the check value “Blueberry.” The Flash ID plus
the authentication check value should be as large as practical. A larger number of bits
thwarts a possible “spoof” or “middleman” attack using an extra interposing device or
devices that intercepts the access to the off-FPGA identifier and check value. The
interposing device or devices mimics the response from an authentic PROM. This
technique requires additional components and a new printed circuit board, the additional
development and component costs of which act as a suitable deterrent.

If the FPGA authentication application accesses a large data field or check value, then the
interposing device or devices must be more sophisticated and consequently more
expensive. This potential vulnerability also highlights the advantage of the Extended
Spartan-3A family Device DNA, which is securely accessed from inside the FPGA.

Intel
(Numonyx)

Embedded
Flash

(J3 v. D)
Parallel All 64 bits 64 bits

Intel
(Numonyx)

S33 Serial All 64 bits
64 bits + 3,920

bits

Macronix MX29 Parallel
32 Mbit and

larger
128 word or 64K

bytes –

Figure 15-9: Spartan-3E FPGA Authentication Example using Commodity Flash
PROM with Identifier

Table 15-8: Example Flash PROMs with Embedded Unique Identifiers

Vendor Family
Data

Format
Density Unique ID Field User Field

Spartan-3E FPGA Configuration PROM
with Device ID

FPGA Bitstream

FPGA Fabric

Authentication
Check Value

Device ID

UG332_c16_08_100406

http://www.xilinx.com
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/75d338438656550a48256f5500408bf7/?OpenDocument
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.numonyx.com/Documents/Datasheets/314822_S33_Discrete_DS.pdf

Spartan-3 Generation Configuration User Guide www.xilinx.com 301
UG332 (v1.5) March 16, 2009

Authentication Design Examples
R

After configuration, the FPGA checks that the value contained in the PROM matches the
value expected by the FPGA application. In this example, the FPGA validates that a
“Blueberry” is indeed “Blue.” The bitstream loaded from the PROM is authentic, and the
FPGA application is enabled for full operation.

The Spartan-3E Starter Kit board includes a design example demonstrating this technique.
This same method also applies for Spartan-3A, Spartan-3AN, Spartan-3A DSP FPGAs.

• Low-Cost Design Authentication for Spartan-3E FPGAs
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#authentication

Figure 15-10: Spartan-3E FPGA Authenticates the PROM Image Against the
PROM’s Device ID

UG332_c16_09_100406

Spartan-3E FPGA

FPGA
Application

Valid
PROM?

Configuration PROM
with Device ID

FPGA Bitstream

Blueberry

Blue

OK

http://www.xilinx.com
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#authentication

302 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Extended Spartan-3A Family FPGA: Authenticating a Downloaded Design
Authentication also works when downloading an FPGA design. In Figure 15-11, an
intelligent host such as a microprocessor, microcontroller, or JTAG tester downloads a
bitstream into an Extended Spartan-3A family FPGA. The bitstream is stored somewhere
in the system, either in local memory, a disk drive, or obtained via a network connection.
The downloaded FPGA application is not yet fully authenticated, but is partially
functional to support the authentication process.

In Figure 15-12, the intelligent host reads the FPGA’s Device DNA identifier, either
through the FPGA fabric or via the FPGA’s JTAG port. Using the Device DNA value, the
host either computes an authentication check value locally or communicates to a remote
host that generates the check value or looks up the value in a list of authenticated devices.

In Figure 15-13, the intelligent host writes the resulting authentication check value back
into the FPGA. The FPGA then uses this value and the Device DNA value to authenticate
the bitstream. If deemed authentic, the FPGA application is enabled for full operation.

Figure 15-11: Intelligent Host Downloads a Spartan-3A Bitstream

Figure 15-12: Host Reads Device DNA, Generates Authentication Value

Figure 15-13: Host Writes Authentication Value to Enable FPGA Application

Spartan-3A/3AN/3A DSP FPGA

Device DNA

FPGA Fabric

Intelligent Host

FPGA
Bitstream

UG332 c16 11 040107

UG332 c16 12 040107

Authentication
Check Value

Spartan-3A/3AN/3A DSP FPGA

FPGA Fabric

Intelligent Host

FPGA
Bitstream

Device DNA

UG332_c16_13_040107

Spartan-3A/3AN/3A DSP FPGA

FPGA Fabric

Intelligent Host

FPGA
Bitstream Valid

PROM?

OK

Device DNA

Authentication
Check Value

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 303
UG332 (v1.5) March 16, 2009

Authentication Design Examples
R

Authenticating any FPGA Design Using External Secure PROM
Authentication techniques are possible on any FPGA using an external secure PROM.
Xilinx provides an example design using a Dallas Semiconductor/Maxim DS2432 SHA-1
Secure EEPROM, as shown in Figure 15-14. This technique works with any Xilinx FPGA
family with block RAM.

The FPGA configures normally from any configuration PROM. Alternatively, the FPGA
bitstream can be downloaded using one of the Slave configuration modes.

The FPGA application contains an Authentication Core that communicates to an external
DS2432 secure EEPROM. The authentication challenge between the FPGA and the
EEPROM uses a random number and SHA-1 hashing to thwart attacks. If the
authentication challenge fails, the FPGA application is disabled. Similarly, the FPGA
application can re-authenticate the design at any time, during normal operation.

This application is discussed in more detail in Xilinx application note XAPP780. The
Spartan-3E Starter Kit board includes all the necessary components.

• XAPP780: FPGA IFF Copy Protection Using Dallas Semiconductor/Maxim DS2432
Secure EEPROMs
http://www.xilinx.com/support/documentation/application_notes/xapp780.pdf

• DS2432 1Kb Protected 1-Wire EEPROM with SHA-1 Engine
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2914

• Spartan-3E Starter Kit
http://www.xilinx.com/s3estarter

Although not supported by an application note or example design, similar solutions are
possible using external components with similar security features, such as the following.

• STMicroelectronics KryptoTM Secure Parallel Flash Memories
http://www.st.com/stonline/products/families/memories/fl_nor_emb/fl_m28w_fs.htm

• Atmel Crypto and Secure Memories
http://www.atmel.com/products/SecureMem/

Figure 15-14: FPGA Authentication Using SHA-1 Secure EEPROM

OISOIS

Authentication Core
1 Block RAM
~100 Slices

FOE DESIGN
DISABLE

CHECK
REQUESTIFF

FPGA
Application

Bitstream

UG332_c16_10_120406

FPGA

Secure
EEPROM

DS2432

680 Ω

+3.3V

Configuration
PROM

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp780.pdf
http://www.xilinx.com/s3estarter
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2914
http://www.st.com/stonline/products/families/memories/fl_nor_emb/fl_m28w_fs.htm
http://www.atmel.com/products/SecureMem/

304 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Handling Failed Authentications
One of the strengths of the Spartan-3 authentication scheme is that the designer and the
application decides how best to respond to a failed authentication. A spectrum of solutions
is possible, including the following.

• No functionality

• Limited functionality

• Full functionality for a limited period of time

• Active defense against tampering

No Functionality
The simplest way to respond to an unauthorized copy is for the application to stop
functioning. This is easily accomplished using features already on the FPGA, such as the
following.

• Assert the Global Set /Reset (GSR) signal on the STARTUP design primitive, which
holds all flip-flops reset. See “Start-Up (STARTUP),” page 255. The signal driving GSR
must be either a logic-based latch or from an SRL16 shift register, neither of which are
affected by the GSR signal.

• Assert the global three-state control on the STARTUP design primitive, which forces
all output pins to high-impedance (Hi-Z).

• Disable global clock signals using a BUFGCE global clock primitive that has an enable
input, which prevents the clock signal from being distributed within the design.

• Assert the reset input to a Digital Clock Manager (DCM).

• Drive the set or reset inputs to key logic in Configurable Logic Blocks (CLBs).

• Use a gating signal to disable key logic in Configurable Logic Blocks (CLBs).

• Selectively disable CLB flip-flops using the clock enable input.

• Any or all of the above.

The disadvantage of this approach is that it immediately tells an attacker whether an
attempted breach was successful or not.

Limited Functionality
Limited functionality provides partial or basic functionality. This approach allows a 3rd
party test house or contract manufacturers (CM) to build and test the unauthenticated
systems. This technique allows the CM to program the configuration PROM but does not
provide them authentication capability, eliminating the risk of potential overbuilding.

Disable key functions or special IP using one or more of the techniques described in “No
Functionality”. Optionally, degrade the performance of key features. For example, drop to
a lower communications data rate or a lower display resolution.

Full Functionality with Time Out
This technique allows an unauthenticated design to fully operate for a limited amount of
time. This approach is most useful when a 3rd party test house or contract manufacturer
requires full functionality to complete system testing. However, this technique does not
provide the contract manufacturer with the ability to create authentic copies, which
reduces the risk of potential overbuilding.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 305
UG332 (v1.5) March 16, 2009

Authentication Algorithm
R

In addition, the time out function makes a potential attack significantly more difficult. If
the system functions for awhile before failing, significantly more time is required to attack
the system using a brute force approach. Similarly, using a random time out value makes it
difficult for an attacker to determine if he or she cracked the system or whether there is an
inherent system design problem.

Active Defense
The final level of protection against unauthorized copying is an active defense. The active
defense can take many forms, again depending on the application requirements. For
example, the application can track the number of failed authentication attempts. Once the
number of failed attempts reaches a predefined threshold, the application can take more
drastic protection means such as erasing the configuration PROM or permanently locking
down sectors in the PROM.

Authentication Algorithm
The obvious question is “What is the authentication algorithm?” The answer is “It’s a
secret.” Something in the authentication process must be secret, either the authentication
algorithm or the authentication values. In the examples using the Extended Spartan-3A
family Device DNA or the Flash PROM with a Device ID, the authentication algorithm
must be kept secret.

Because the authentication algorithm is implemented using FPGA logic, the algorithm is
flexible and changeable. The algorithm need only be as simple or complex as required by
the application being protected. The algorithm can be changed between design releases or
versions. Similarly, multiple and different authentication checks can co-exist in the same
application. This approach tunes the “cost” and complexity of security to the needs of the
application.

Manufacturing Logistics
Authentication simplifies manufacturing logistics, especially for high-volume
applications, built at contract manufacturers.

• There are no special keys that need to be programmed into the FPGA. There is a a
programming step where the PROM is “married” to or authenticated with either the
FPGA’s Device DNA, the PROM’s Unique ID, or both but this operation does not
affect the FPGA bitstream.

• The FPGA bitstream is common to all units. There is no need to match a bitstream to a
specific FPGA or a set of FPGAs. The authentication step can be completely separate
from bitstream programming.

• Configuration PROMs can be bulk programmed. There is no need to match a PROM
to a specific FPGA or a set of FPGAs during high-volume manufacturing. The
authentication step can occur at any time, such as in final system test, in a secure
facility or at the end customer site.

• Using the “Limited Functionality,” page 304 or “Full Functionality with Time Out,”
page 304 techniques described early, the contract manufacturer can build and test the
end product without risk of overbuilding or unauthorized cloning.

http://www.xilinx.com

306 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Additional Uses of Authentication and Device ID
The authentication techniques described in this chapter primarily protect the FPGA
application. However, these techniques serve other potential purposes in an application.

Protecting Intellectual Property (IP)
FPGAs are a common deployment vehicle for intellectual property (IP) cores.
Authentication solves a key concern for IP vendors allowing them to protect the IP core
from unauthorized copying. The techniques described above also allow a vendor to
protect key IP but still allow potential customers to try the core before purchase.

Furthermore, the Device DNA feature in Extended Spartan-3A family FPGAs provides full
traceability, allowing an IP vendor to track unit shipments by a customer in order to
determine royalty-based payments for an IP core.

Code and Data Security
The Extended Spartan-3A family FPGA’s Device DNA identifier provides an additional
level of security for embedded applications. The Device DNA forms a key used to encrypt
and decrypt both code and data to protect an embedded processor application.

Figure 15-15 shows an example MicroBlaze™ processor application. The Extended
Spartan-3A family Device DNA identifier forms a key to encrypt and decrypt both code
and data.

U.S. Legal Protection of FPGA Configuration Bitstream Programs
The FPGA configuration bitstream program may qualify as a “computer program” as
defined in Section101, Title 17 of the United States Code, and as such may be protected
under the copyright law. It may also be protected as a trade secret if it is identified as such.

Xilinx suggests that a company wishing to claim copyright and/or trade secret protection
in the FPGA configuration bitstream consider taking the following steps.

Place an appropriate copyright notice on the FPGA or adjacent to it on the printed circuit
board (PCB) giving notice to third parties of the copyright. For example, because of space
limitations, this notice on the FPGA device could read “©2006 XYZ Company” or, if on the
PCB, could read “Bitstream © 2006 XYZ Company”.

Figure 15-15: Extended Spartan-3A Family Device DNA Used as a Key to Protect
Embedded Processing Applications

MicroBlaze
32-bit RISC

CPUC
od

e
D

ec
ry

pt
er

D
at

a
E

nc
ry

pt
er

/
D

ec
ry

pt
er

Device DNA

“Key”

In
st

ru
ct

io
n

M
em

or
y

D
at

a
M

em
or

y

UG332_c16_14_092806

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 307
UG332 (v1.5) March 16, 2009

U.S. Legal Protection of FPGA Configuration Bitstream Programs
R

File an application to register the copyright claim for the bitstream program with the U.S.
Copyright Office.

If practical, given the size of the printed circuit board, notice should also be given that the
user is claiming that the bit-stream program is the company's trade secret. A statement
could be added to the PCB such as: “Bitstream proprietary to XYZ Company. Copying or
other use of the bitstream program except as expressly authorized by XYZ Company is
prohibited.”

To the extent that documentation, data books, or other literature accompanies the FPGA-
based design, appropriate wording should be added to this literature providing third
parties with notice of the user's claim of copyright and trade secret in the bitstream
program.

For example, this notice could read: “Bitstream ©2006 XYZ Company. All rights reserved.
The bitstream program is proprietary to XYZ Company and copying or other use of the bit-
stream program except as expressly authorized by XYZ Company is expressly prohibited.”

To help prove unauthorized copying by a third party, additional nonfunctional code
should be included at the end of the bitstream program. Therefore, should a third party
copy the bitstream program without proper authorization, if the non-functional code is
present in the copy, the copier cannot claim that the bitstream program was independently
developed.

These are only suggestions, and Xilinx makes no representations or warranties with
respect to the legal effect or consequences of the above suggestions. Each end-user
company is advised to consult legal counsel with respect to seeking protection of a
bitstream program and to determine the applicability of these suggestions to the specific
circumstances.

http://www.xilinx.com

308 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Additional Information
For additional information see the following references on xilinx.com.

• Xilinx Design Security Solutions
http://www.xilinx.com/products/design_resources/security/index.htm

• Xilinx Spartan-3 Generation Device DNA Security
http://www.xilinx.com/products/design_resources/security/devicedna.htm

• WP266: Security Solutions Using Spartan-3 Generation FPGAs
http://www.xilinx.com/support/documentation/white_papers/wp266.pdf

• WP267: Advanced Security Schemes for Extended Spartan-3A Family FPGAs
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf

http://www.xilinx.com/support/documentation/white_papers/wp266.pdf
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf
http://www.xilinx.com
http://www.xilinx.com/products/design_resources/security/index.htm
http://www.xilinx.com/products/design_resources/security/devicedna.htm

Spartan-3 Generation Configuration User Guide www.xilinx.com 309
UG332 (v1.5) March 16, 2009

R

Chapter 16

Configuration CRC

All Spartan®-3 generation FPGAs have an embedded cyclic-redundancy checker (CRC)
circuit designed to flag errors when loading the configuration bitstream. The configuration
CRC circuit is always active during configuration unless specifically disabled in the
configuration bitstream. Extended Spartan-3A family FPGAs also optionally allow the
CRC circuit to continue operating after configuration.

CRC Checking during Configuration
As the configuration data frames are loaded, the FPGA calculates a Cyclic Redundancy
Check (CRC) value from the configuration data packets. After all the configuration data
frames are loaded, the configuration bitstream issues a Check CRC command to the FPGA,
followed by an expected CRC value. The CRC uses a 32-bit value in the Spartan-3 and
Spartan-3E families and a 22-bit value in the Extended Spartan-3A family. If the CRC check
values match, the FPGA continues the configuration process by progressing to the Startup
phase. If the CRC value does not match, then there are slightly different behaviors between
the various Spartan-3 generation product families, as described below.

Spartan-3 and Spartan-3E Configuration CRC Errors
If the CRC value calculated by the FPGA does not match the expected CRC value in the
bitstream, the FPGA drives the INIT_B pin Low and aborts configuration. When a CRC
error occurs, the CCLK output goes to the high-impedance state (Hi-Z), unless the HSWAP
or HSWAP_EN pin is Low, in which case the CCLK output is pulled High.

Configuration CRC Enabled by Default
The CRC check is included in the configuration bitstream by default (CRC:Enable).
However it is possible to disable the check, which should only be done in rare
circumstances and with great caution. If the CRC check is disabled, there is a risk of
loading incorrect configuration data frames, causing incorrect design behavior or damage
to the FPGA. The fallback capability is also disabled when CRC is disabled.

Possible CRC Escapes
There is a scenario where errors in transmitting the configuration bitstream can be missed
by the CRC check. Certain clocking errors, such as double-clocking, can cause loss of
synchronization between the bitstream packets and the configuration logic. Once
synchronization is lost, any subsequent commands are not understood by the FPGA,
including the command that performs the CRC check. In this situation, configuration fails
with the FPGA’s DONE pin Low and the INIT_B pin High because the CRC was ignored.
In Extended Spartan-3A family BPI mode, the address counter eventually overflows or

http://www.xilinx.com

310 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 16: Configuration CRC
R

underflows to cause wraparound, which triggers reconfiguration if the Reset_on_err:Yes
bitstream option is set.

Extended Spartan-3A Family Configuration CRC Errors and Configuration
Watchdog Timer

Extended Spartan-3A family FPGAs include a Configuration Watchdog Timer (CWDT)
function. If the FPGA configures in one of the Master modes, and if the Reset_on_err:Yes
bitstream option is set, then the Extended Spartan-3A family FPGA automatically re-
initializes itself and attempts to reconfigure if a CRC error occurs during configuration. In
BPI and SPI modes, if reconfiguration fails three times, then the FPGA halts and drives the
INIT_B pin Low. The CCLK output goes to the high-impedance state (Hi-Z), unless the
HSWAP or HSWAP_EN pin is Low, in which case the CCLK output is pulled High. Pulsing
the PROG_B pin or power cycling restarts the configuration process from the beginning.
The JTAG interface remains responsive and the device is still alive, only the BPI/SPI
interface is inoperable.

The counter that keeps track of the three failed configurations is reset only when PROG_B
is pulsed or power is cycled; it is not reset after a successful configuration. Note that when
configuring via SPI or BPI modes and using the Reset_on_err:Yes bitstream option, any
combination of successful and failed configurations, over any period of time, will halt after
the third failed configuration, and require assertion of PROG_B or power cycling to
reconfigure. It is good design practice to have the ability to assert PROG_B to reset
configuration if necessary.

Robust CMOS Configuration Latches (CCLs)
FPGA configuration data is stored in robust CMOS configuration latches (CCLs). Despite
being readable and writable like static RAM (SRAM), CCLs are designed primarily for
stability, resulting in improved stability over voltage and temperature. CCLs also exhibit
10 to 100 times better immunity to single-event upset (SEU) phenomenon than traditional
SRAM memories.

Xilinx is a world-leader in measuring and mitigating SEU effects on FPGAs. Extensive
proton-beam and atmospheric data is available upon request.

Post-Configuration CRC (Extended Spartan-3A Family Only)
Despite the robust stability of the CMOS configuration latches (CCLs) that hold the FPGA
configuration data, some high-reliability, high-demand applications require continuous
checking of all configuration memory locations. Extended Spartan-3A family FPGAs offer
this capability. The configuration CRC checker can be enabled so that it continues to
monitor the FPGA bitstream after configuration.

Overview
Figure 16-1, page 311 provides a conceptual overview of the post-configuration CRC
checker circuit.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 311
UG332 (v1.5) March 16, 2009

Post-Configuration CRC (Extended Spartan-3A Family Only)
R

If the POST_CRC=ENABLE configuration constraint is set, then the CRC checker circuit
continuously scans the FPGA bitstream, calculates a resulting CRC value, then compares
this value against a previously calculated, expected CRC value. If there is a difference
between the two CRC check values, then the CRC checker flags the error by driving the
FPGA’s INIT_B pin Low.

The calculated CRC value changes if any unmasked bit, in any location, changes for any
reason. Obviously, the FPGA application will modify some locations during the course of
normal operation. Consequently, all writable bits, such as flip-flops, latches, and block
RAM are automatically excluded from the CRC calculation. Any write operations to these
locations would otherwise result in a different calculated CRC value and a subsequent
CRC “error.” Similarly, the look-up tables (LUTs) within the SLICEM logic slices in each
Configurable Logic Block (CLB) also potentially contain writable functions, such as
distributed RAM or SRL16 shift registers.

Consequently, by default, all LUTs in all SLICEM logic slices are excluded from the
calculated CRC value. However, if all the LUTs in the FPGA application are only used for

Figure 16-1: Conceptual Overview of Post-Configuration CRC Calculator

LUT
LUTRAM
SRL16

LUT

LUT
LUT

LUTRAM
SRL16

SLICEM SLICEL SLICEM SLICEL

Logic
LUT

SLICEM SLICEL
LUT

LUTRAM
SRL16

LUT

LUT

SLICEM SLICEL

Logic
LUT

Logic
LUT

Logic
LUT

SLICEM LUTs
18K

Block
RAM

18K
Block
RAM

18K
Block
RAM

18K
Block
RAM

CMOS Configuration Latches (CCLs)Block RAM

Internal
Oscillator

POST_CRC

glutmask:Yes

ENABLE
Cyclic Redundancy

Checker (CRC)

POST_CRC_FREQ

Calculated CRC

Expected CRC
INIT_B

VCCO_2

Block RAM bits are
not checked by
CRC checker

FPGA Configuration

All FPGA configuration
bits are always checked
when the CRC checker
is enabled

All flip-flop and latch bits are
automatically ignored. All other
writable bits, such as distributed
RAM (LUTRAM) and SRL16
shift registers, found in SLICEM
slices are also ignored. If used
only as logic, these LUTs can be
optionally included in the CRC
calculation.

If the calculated CRC value does not match the
expected CRC, the FPGA drives the INIT_B pin Low.

Internal pull-up
resistor to VCCO_2.

Open-drain
output

Logic LUT
LUTRAM

SRL16

Logic LUT
LUTRAM

SRL16

Logic LUT
LUTRAM

SRL16

Logic LUT
LUTRAM

SRL16

Logic LUT
LUTRAM

SRL16

UG332_c17_01_092006

The internal oscillator is the most
common clock source. However,
see “Clock Source” for additional
information.

http://www.xilinx.com

312 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 16: Configuration CRC
R

logic, that is, there is no distributed RAM or SRL16 shift registers in the design, then the
SLICEM LUTs can be included in the calculation by setting the glutmask:No bitstream
option. See the ISE® software project summary report to determine if the design uses any
distributed RAM or SRL16 shift registers.

Block RAM is excluded from the CRC calculation because a change in the RAM content
would have a subsequent change in the CRC result. Byte-, half-word-, or word-level
changes are easily detected using the available parity bits provided as part of the block
RAM function. See “Techniques to Check Distributed and Block RAM Contents,” page 315
for more information.

Continuous CRC Checking Until Configuration, JTAG or Suspend Event
The CRC checker continues until one of the following events occurs. Upon any one of these
events, the CRC checker stops operating.

• The configuration controller receives a valid synchronization word, which can occur if
the FPGA is being reconfigured or from a MultiBoot operation.

• There is an active configuration operation via the JTAG port, or the Mode pins are set
to JTAG mode.

• The FPGA enters the power-saving Suspend mode.

If enabled in the bitstream, the CRC checker will reset and restart at the end of the
configuration event or when the FPGA awakens from Suspend mode.

Clock Source
If enabled, the post-configuration CRC checker is clocked by one of three sources,
depending on the specific FPGA application, ordered from least-likely to most-likely.

• If the bitstream option Persist:Yes is selected and the FPGA is configured using one of
the Slave configuration modes, then the post-configuration CRC checker is clocked
using the FPGA’s CCLK input pin.

• If the Internal Configuration Access Port (ICAP) feature is enabled, the post-
configuration CRC checker is clocked by the CLK input on the ICAP design primitive.

• Otherwise, the post-configuration CRC checker is clocked by the FPGA’s internal
oscillator. Set the frequency of the internal oscillator using the POST_CRC_FREQ
configuration constraint. See Table 16-1 for available options.

CRC Checking Time

The time required for each CRC calculation is similar to the serial configuration time, and
depends on the density and clock rate. The CRC engine is a one-bit-wide shift register as
are the internal registers of the device. So, for each clock period one bit will be shifted into
the CRC engine. The total time then to run one CRC check will be the (total number of
configuration bits) X (clock period). For example, the XC3S50A has 437,312 bits; running at
12 MHz, the CRC check will take 0.0364 seconds. The XC3S1400A has 4,755,296 bits;
running at 12 MHz, the CRC check will take 0.39627 seconds.

Behavior when CRC Error Occurs
As described earlier, the FPGA flags a post-configuration CRC error by driving the open-
drain INIT_B pin Low. The INIT_B pin will say Low until the device is re-configured. This
is identical to the way that the FPGA flags a CRC error during configuration. When the

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 313
UG332 (v1.5) March 16, 2009

Post-Configuration CRC (Extended Spartan-3A Family Only)
R

post-configuration CRC feature is enabled, the INIT_B pin is reserved as an open-drain
output with an internal, dedicated pull-up resistor to the VCCO_2 supply input. The
INIT_B pin cannot be used as an user-I/O when the CRC feature is enabled.

The POST_CRC_ACTION configuration constraint defines how the post-configuration
CRC checker behaves should it detect an error. If POST_CRC_ACTION=HALT, then the
CRC circuit stops calculating a new CRC value if an error occurs. This allows an external
device to check the CRC signature using Readback. If POST_CRC_ACTION=CONTINUE,
then the CRC circuit continues to check for additional post-configuration CRC errors, even
after detecting an error. The INIT_B pin stays Low after the first error, while additional
CRC changes would indicate additional errors.

The FPGA-based system separately determines what action to take when a CRC error
occurs. Most applications will simply decide to reconfigure the FPGA.

Verifying CRC Error Behavior

To verify the post-configuration CRC checking function, the user can force a change using
the SRL16 logic. Instantiate at least one SRL16 and set the glutmask:No bitstream option.
Write to the SRL16 to change its state and the post-configuration CRC feature should flag
the CRC error.

Preparing an Application to Use the Post-Configuration CRC Feature
• Enable the post-configuration CRC logic using the POST_CRC=ENABLE

configuration constraint.

• The post-configuration CRC checker is clocked by one of three possible clock sources
as described in “Clock Source”. Be sure that the application or system is providing the
required clock input. In most applications, the CRC checker uses the FPGA’s internal
oscillator as the clock source. Set the oscillator frequency using the POST_CRC_FREQ
configuration constraint. By default, the oscillator is set at 1, which roughly equates to
a 1 MHz clock. See Table 16-2 for available options.

• Using the POST_CRC_ACTION configuration constraint, define whether the CRC
checker will continue to check for additional CRC errors or will halt checking.

• If any look-up tables (LUTs) in the FPGA application are used as distributed RAM or
SRL16 shift registers, then leave the glutmask bitstream generator option at its default
value.

Example User Constraints File (UCF)
Figure 16-2 provides an example user constraints file to enable the post-configuration CRC
checker.

Figure 16-2: UCF Constraints for Post-Configuration CRC

Enable the post-configuration CRC checker
CONFIG POST_CRC = ENABLE ;

Set clock frequency for CRC checker circuitry
CONFIG POST_CRC_FREQ = 1 ;

Define if the CRC checker continues or halts after detecting an error
CONFIG POST_CRC_ACTION = CONTINUE ;

http://www.xilinx.com

314 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 16: Configuration CRC
R

CONFIG Constraints
Table 16-1 lists the available CONFIG constraints that control the post-configuration CRC
feature.

Bitstream Generator Options
Table 16-2 lists the bitstream generator (BitGen) options associated with the post-
configuration CRC feature. The shaded fields are hidden because the CONFIG constraints
are the preferred control mechanism, as described in “Preparing an Application to Use the
Post-Configuration CRC Feature,” page 313. The glutmask option has no associated
CONFIG constraint.

Table 16-1: Post-Configuration CRC CONFIG Constraints

CONFIG Constraint Setting Description

POST_CRC DISABLE Default. Disable the post-configuration CRC
checker. INIT_B pin is available as a user-I/O pin.

ENABLE Enable the post-configuration CRC checker.
INIT_B pin is reserved to flag CRC errors and not
available as a user-I/O pin.

POST_CRC_FREQ 1, 3, 6, 7, 8, 10, 12,
13, 17, 22, 25, 27,

33, 44, 50, 100

Default value is 1. Sets the clock frequency used
for the post-configuration CRC checker.

POST_CRC_ACTION CONTINUE Default. If a CRC mismatch is detected, continue
reading back the bitstream, computing the
comparison CRC, and making the comparison
against the precomputed CRC.

HALT If a CRC mismatch is detected, cease CRC check.

Table 16-2: Post-Configuration CRC Bitstream Generator Options

BitGen Option
Setting

(default)
Description

post_crc_en No Default. Disable the post-configuration CRC checker.

Yes Enable the post-configuration CRC checker.

post_crc_freq 1, 3, 6, 7, 8, 10, 12,
13, 17, 22, 25, 27,
33, 44, 50, 100

Sets the clock frequency used for the post-
configuration CRC checker. The available options are
the same as for the ConfigRate bitstream option.

post_crc_keep
No

Default. Stop checking when error detected. Allows
CRC signature to be read back.

Yes
Continue to check for CRC errors after an error was
detected.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 315
UG332 (v1.5) March 16, 2009

Post-Configuration CRC (Extended Spartan-3A Family Only)
R

Design Considerations
While all flip-flop and latch values are automatically ignored, the initial values for each
flip-flop and latch are included in the CRC calculation. Consequently, do not issue a
Readback CAPTURE operation when the post-configuration CRC feature is enabled. The
CAPTURE operation captures the current flip-flop and latch values and writes them back
to the memory cells that originally contained the initial values.

Techniques to Check Distributed and Block RAM Contents
As described earlier, block RAM, LUT RAM, and SRL16 shift registers are not included as
part of the CRC calculation. Any RAM errors, should they occur, are not flagged on the
INIT_B pin. However, it is possible to check RAM contents during operation using simple
parity, as shown in Figure 16-3.

Each block RAM has additional bit locations specifically to store parity values. The parity
generator is a simple XOR gate, implemented using FPGA logic. Parity is generated for any
data written to the block RAM. The parity checker is also a simple XOR gate, effectively
with an additional input. Parity is generated for any data value read from block RAM. The
generated parity value is compared against the parity bit also read from the RAM. If the
values are different, then an odd number of bits changed within the RAM location between
the time the value was written to the time it was read and checked.

Although Figure 16-3 shows a block RAM example, the same technique applies for
distributed RAM.

Similarly, both block RAM and distributed RAM support dual-port read operations. The
parity checker function can be moved to the second read port so that it can continuously

glutmask

Yes

Default. Mask out the Look-Up Table (LUT) bits from
the SLICEM logic slices. SLICEMs support writable
functions such as distributed RAM and SRL16 shift
registers, which generate CRC errors when bit
locations are modified.

No

Include the Look-Up Table (LUT) bits from SLICEM
logic slices. Use this option only if the application does
not include any distributed RAM or SRL16 shift
registers.

Table 16-2: Post-Configuration CRC Bitstream Generator Options (Cont’d)

BitGen Option
Setting

(default)
Description

Figure 16-3: Checking Block RAM Contents Using Simple Parity

DI[7:0] DO[7:0]

DIP DOP

RAMB16_S9

Parity Generator Parity Checker

ERROR

8 8

UG332_c17_02_092006

http://www.xilinx.com

316 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 16: Configuration CRC
R

monitor the RAM contents without affecting normal operation. Similarly, if the block RAM
contents are static, if used to store PicoBlaze™ processor code as an example, then FPGA
logic can use the second block RAM port and continuously calculate a CRC signature for
the block RAM contents. If the signature changes between subsequent checking
operations, then the circuit flags an error. This is similar to the method used to
continuously check the FPGA configuration memory cells.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 317
UG332 (v1.5) March 16, 2009

R

Chapter 17

Configuration Details

This chapter provides more extensive details on the configuration logic in the Extended
Spartan®-3A family, including the Spartan-3A, Spartan-3AN, and Spartan-3A DSP
platforms. The Spartan-3E family is similar, and details on the Spartan-3 family can be
found in XAPP452.

All user-programmable features inside Extended Spartan-3A devices are controlled by
volatile memory cells that must be configured at power-up. These memory cells are
collectively known as configuration memory. They define the LUT equations, signal routing,
IOB voltage standards, and all other aspects of the user design.

To program configuration memory, instructions for the configuration control logic and
data for the configuration memory are provided in the form of a bitstream. The bitstream
is automatically generated by the Xilinx ISE® design tools and is delivered to the device
through one of the configuration interfaces.

The composition of the bitstream is largely independent of the configuration method. A
bitstream for the Slave Parallel (SelectMAP) interface can look exactly the same as a
bitstream for the Master Serial interface. Certain configuration operations, however, such
as readback, can only be performed through the SelectMAP and JTAG interfaces.

The user generally does not need to know the details of the configuration format and
commands. However, this detail can be useful for debugging purposes. After initial
configuration, the user can send configuration commands to the device through the
permanent JTAG interface, through the SelectMAP port if Persist is selected, or through the
Internal Configuration Access Port if ICAP_SPARTAN3A is included in the design. The
easiest method for sending configuration commands using the JTAG interface is with an
SVF file (see XAPP503 “SVF and XSVF File Formats for Xilinx Devices”).

Configuration Memory Frames
Extended Spartan-3A family configuration memory is arranged in frames that are tiled
about the device. These frames are the smallest addressable segments of the Extended
Spartan-3A configuration memory space, and all operations must therefore act upon
whole configuration frames.

The FPGA configuration memory can be visualized as a rectangular array of bits. The bits
are grouped into vertical frames that are one-bit wide and extend from the top of the array
to the bottom. A frame is the atomic unit of configuration. It is the smallest portion of the
configuration memory that can be written to or read from. Frames do not directly map to
any single piece of hardware. For instance, a single frame does not configure a single CLB
or IOB, but actually configures a part of several logical resources, as well as some routing.
Frames are grouped into larger units called columns.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf

318 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

Extended Spartan-3A frame counts and configuration sizes are shown in Table 17-1.
Depending on bitstream generator (BitGen) options, additional overhead exists in the
configuration bitstream. The exact bitstream length is available in the .rbt (rawbits) file
created by using the "-b" option with BitGen or selecting "Create ASCII Configuration File"
in the Generate Programming File options popup in the ISE software. Bitstream length
(words) are roughly equal to the configuration array size (words) plus configuration
overhead (words). Bitstream length (bits) are roughly equal to the bitstream length in
words times 16.

Configuration Control Logic
The Extended Spartan-3A family configuration logic consists of a packet processor, a set of
registers, and global signals that are controlled by the configuration registers. The packet
processor controls the flow of data from the configuration interface (Parallel, JTAG, or
Serial) to the appropriate register. The registers control all other aspects of configuration.

Packet Types
The FPGA bitstream consists of two packet types: Type 1 and Type 2. These packet types
and their usage are described below.

Type 1 Packet

The Type 1 packet is used for register writes and reads. Only 6 register address bits are
used in Extended Spartan-3A FPGAs. The header section is always a 16-bit word.

Following the Type 1 packet header is the Type 1 Data section, which contains the number
of 16-bit words specified by the word count portion of the header. See Table 17-2,
Table 17-3, and Table 17-4.

Table 17-1: Extended Spartan-3A Frame Count and Length

Device Device
Frames

Frame Length
(words)(1)

Configuration Array
Size (words)(2)

Configuration
Overhead (words)(3)

XC3S50A/AN 367 74 147,600 174

XC3S200A/AN 540 138 243,048 238

XC3S400A/AN 692 170 381,792 270

XC3S700A/AN 844 202 552,352 302

XC3S1400A/AN 996 298 726,520 398

XC3SD1800A 1414 362 958,416 462

XC3SD3400A 1718 426 1,259,520 526

Notes:
1. All Extended Spartan-3A family configuration frames consist of 16-bit words.
2. Configuration array size equals the number of configuration frames times the number of words per

frame.
3. Configuration overhead consists of commands in the bitstream that are needed to perform

configuration, but do not themselves program any memory cells. Configuration overhead contributes
to the overall bitstream size.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 319
UG332 (v1.5) March 16, 2009

Configuration Control Logic
R

Type 2 Packet

The Type 2 packet, which must follow a Type 1 packet, is used to write long blocks. The
header section is always a 16-bit word. See Table 17-5.

Following the Type 2 packet header is the Type 2 Word count section, which contains two
16-bit words with the MSB in the first word. See Table 17-6 and Table 17-7.

Following the Type 2 Word count section is the Type 2 Data section, which contains the
number of 16-bit words specified by the Word count section. See Table 17-8.

Table 17-2: Type 1 Packet Header Format

Header Type Opcode Register Address Word Count

[15:13] [12:11] [10:5] [4:0]

001 xx xxxxxx xxxxx

Table 17-3: Type 1 Packet Data Format

Data [15:0]

Word 1 xxxxxxxxxxxxxxxx

... xxxxxxxxxxxxxxxx

Word [Word Count] xxxxxxxxxxxxxxxx

Table 17-4: Opcode Format

Opcode Function

00 NOOP

01 Read

10 Write

11 Reserved

Table 17-5: Type 2 Packet Header

Header Type Opcode Register Address Reserved

[15:13] [12:11] [10:5] [4:0]

010 xx xxxxx RRRRR

Notes:
1. “R” means the bit is not used and is reserved for future use.

Table 17-6: Type 2 Packet Word Count 1

Word Count 1

[31:16]

0000xxxxxxxxxxxx

http://www.xilinx.com

320 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

Configuration Registers
All bitstream commands are executed by reading or writing to the configuration registers.
Table 17-9 summarizes these registers. A detailed explanation of selected registers follows.

Table 17-7: Type 2 Packet Word Count 2

Word Count 2

[15:0]

xxxxxxxxxxxxxxxx

Table 17-8: Type 2 Packet Data

Data [15:0]

Word 1 xxxxxxxxxxxxxxxx

... xxxxxxxxxxxxxxxx

Word [Word Count] xxxxxxxxxxxxxxxx

Table 17-9: Configuration Registers

Reg. Name Read/Write Address Description

CRC Read/Write 00 0000 CRC Register (uses a 22-bit CRC checksum algorithm
to verify bitstream integrity during configuration)

FAR_MAJ Write 00 0001 See Frame Address Registers (FAR_MAJ and
FAR_MIN), Block and Major

FAR_MIN Write 00 0010 See Frame Address Registers (FAR_MAJ and
FAR_MIN), Minor

FDRI Write 00 0011 Frame Data Register, Input (write configuration data
by loading WCFG command and loading FDRI)

FDRO Read 00 0100

Frame Data Register, Output register (read
configuration data and optionally captured flip-flop
data by loading RCFG command and then
addressing the FDRO)

CMD Read/Write 00 0101 See Command Register (CMD)

CTL Read/Write 00 0110 See Control Register (CTL)

MASK Read/Write 00 0111 Masking Register for CTL (1 allows bit to be written -
default is all 0s)

STAT Read 00 1000 See Status Register (STAT)

LOUT Write 00 1001 Legacy Output Register (DOUT for serial daisy
chain)

COR1 Read/Write 00 1010 See Configuration Options Registers (COR1 and
COR2)

COR2 Read/Write 00 1011 See Configuration Options Registers (COR1 and
COR2)

PWRDN_REG Read/Write 00 1100 See Suspend Options Register (PWRDN_REG)

FLR Write 00 1101 Frame Length Register (number of 16-bit words in
the length of a frame; 16 bits with first 6 reserved at 0)

IDCODE Read/Write 00 1110 Device ID Register; includes 16 most significant bits
of IDCODE (family and array codes) - see Table 12-4

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 321
UG332 (v1.5) March 16, 2009

Configuration Control Logic
R

Command Register (CMD)

Configuration commands control the operation of the configuration state machine. Each
command consists of five bits, and the MSB is always zero. The command code is written
as part of a 16-bit value. Each 16-bit command is written as two bytes to the SelectMAP or
ICAP interface, with the high byte presented first, followed by the low byte. Note that D0
is the most-significant bit (MSB) for the ICAP interface, which is the opposite direction
from most processors.

The Command Register is used to instruct the configuration control logic to strobe global
signals and perform other configuration functions. The command present in the CMD
register is executed each time the Frame Address Registers are loaded with new values.
Table 17-10 gives the Command Register commands and codes.

SNOWPLOW Write 00 1111 Not supported; default is all 0s

HC_OPT_REG Read/Write 01 0000 See Housecleaning Options Register
(HC_OPT_REG)

reserved - 01 0001 -

CSBO Write 01 0010 Asserts CSO_B Output for Parallel Daisy Chaining

GENERAL1 Read/Write 01 0011 16 LSBs of MultiBoot Address - see “MultiBoot
Registers” in Chapter 14

GENERAL2 Read/Write 01 0100 16 MSBs of MultiBoot Address - see “MultiBoot
Registers” in Chapter 14

MODE_REG Read/Write 01 0101 MultiBoot Mode - see “Configuration Mode Register
(MODE_REG)” in Chapter 14

PU_GWE Write 01 0110 GWE Cycle Exiting Suspend Mode (10 bits)

PU_GTS Write 01 0111 GTS Cycle Exiting Suspend Mode (10 bits)

MFWR Write 01 1000 See Multiple Frame Write Register (MFWR)

CCLK_FREQ Write 01 1001
CCLK Frequency Select for Master Modes (16 bits); 6
MSBs reserved and default to 000001; 10 LSBs default
to 0110111110

SEU_OPT Write 01 1010 Post-Configuration CRC (POST_CRC) Options

EXP_SIGN Read/Write 01 1011 32-bit Expected CRC Signature for POST_CRC

RDBK_SIGN Read 01 1100 32-bit Calculated CRC Signature for POST_CRC

Table 17-9: Configuration Registers (Cont’d)

Reg. Name Read/Write Address Description

Table 17-10: Command Register Codes

Command Code Description

NULL 00000 Null Command

WCFG 00001 Write Configuration Data: used prior to writing configuration data to
the FDRI.

MFWR 00010 Multiple Frame Write: used to perform a write of a single frame of data
to multiple frame addresses.

LFRM 00011 Last Frame: Deasserts the GHIGH_B signal, activating all interconnect.
The GHIGH_B signal is asserted with the AGHIGH command.

RCFG 00100 Read Configuration Data: used prior to reading configuration data
from the FDRO.

http://www.xilinx.com

322 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

Control Register (CTL)

The Control Register is used to set the configuration security level, the persist setting, and
the Global Three-State signal. Writes to the CTL register are masked by the value in the
MASK register (this allows the GTS_USR_B signal to be toggled without re-specifying the
Security and Persist bits). The MASK register is cleared after each write to the CTL register,
which prevents inadvertent changes to the Control Register.

The fields are defined in Table 17-11.

START 00101
Begin Startup Sequence: initiates the startup sequence. The startup
sequence begins after a successful CRC check and a DESYNC
command are performed.

RCAP 00110 Reset Capture: resets the CAPTURE signal after performing readback-
capture in single-shot mode (see “Readback Capture” in Chapter 18).

RCRC 00111 Reset CRC: resets the CRC register

AGHIGH 01000

Assert GHIGH_B Signal: places all interconnect in a high-Z state to
prevent contention when writing new configuration data. This
command is only used in shutdown reconfiguration. Interconnect is
reactivated with the LFRM command.

reserved 01001 -

GRESTORE 01010 Pulse the GRESTORE Signal: sets/resets (depending on user
configuration) IOB and CLB flip-flops.

SHUTDOWN 01011
Begin Shutdown Sequence: initiates the shutdown sequence, disabling
the device when finished. Shutdown activates on the next successful
CRC check or RCRC instruction (typically an RCRC instruction).

GCAPTURE 01100 Pulse GCAPTURE: loads the readback capture cells with the current
register states (see “Readback Capture” in Chapter 18).

DESYNC 01101
Reset DALIGN Signal: used at the end of configuration to
desynchronize the device. After de-synchronization, all values on the
configuration data pins are ignored.

REBOOT 01110 MultiBoot operation (see “Extended Spartan-3A Family MultiBoot” in
Chapter 14).

reserved 01111 -

Table 17-10: Command Register Codes (Cont’d)

Command Code Description

Table 17-11: Control Register Description

Name Bit Index Description

EN_MBOOT 7
Enable MultiBoot mode.

0: MultiBoot Disabled (default)
1: MultiBoot Enabled

Reserved 6 Reserved CTL register bit. Always leave this bit set to 0.

SBITS 5:4

Security Level.

00: Read/Write OK (default)
01: Readback disabled except through ICAP
10: All Readback disabled, writing disabled except CRC

register

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 323
UG332 (v1.5) March 16, 2009

Configuration Control Logic
R

Frame Address Registers (FAR_MAJ and FAR_MIN)

The Frame Address Registers set the starting block and column address for the next
configuration data input. The typical bitstream starts at address 0 and increments to the
final count. The command in the CMD register is executed each time the FAR registers are
updated.

There are three types of write to the Frame Address Registers:

1. Write one word to FAR_MAJ (only update the FAR_MAJ)

2. Write one word to FAR_MIN (only update the FAR_MIN)

3. Write two words to FAR_MAJ (update FAR_MAJ with first data and FAR_MIN with
second data)

Status Register (STAT)

The Status Register indicates the value of numerous global signals. The register can be read
through the SelectMAP or JTAG interfaces. A detailed explanation of each bit position is
given in Table 17-13.

PERSIST 3

The configuration interface defined by M2:M0 remains after
configuration. Typically used only with the SelectMAP interface
to allow reconfiguration and readback.

0: No (default)
1: Yes

ICAP 2
ICAP Port Enable.

0: ICAP Port Disabled (default)
1: ICAP Port Enabled

Reserved 1 Reserved CTL register bit. Always leave this bit set to 0.

GTS_USER_B 0
Active Low high-Z state for I/Os.

0: I/Os placed in high-Z state
1: I/Os active (default)

Table 17-11: Control Register Description (Cont’d)

Name Bit Index Description

Table 17-12: Frame Address Register Description

Address Type Bit Index Description

FAR_MAJ Register

Reserved 15:13 Reserved FAR register bits. Always leave these bits set to 0.

Block Type 12:10 Block types include CLBs & I/O, block RAM, etc.

Reserved 9:8 Reserved FAR register bits. Always leave these bits set to 0.

Major Address 7:0 Selects a major column. Column addresses start at 0 on the left
and increase to the right.

FAR_MIN Register

Reserved 15:8 Reserved FAR register bits. Always leave these bits set to 0.

Minor Address 7:0 Selects a memory-cell address line within a major column.

http://www.xilinx.com

324 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

Configuration Options Registers (COR1 and COR2)

The Configuration Options Registers are used to set certain configuration options for the
device. The name of each bit position in COR1 and COR2 is described in Table 17-14.

Table 17-13: Status Register Description

Name Bit Index Description

SYNC_TIMEOUT 15
Configuration Watchdog Timer expired.

0: Default
1: Failed to find SYNC word before counter time out

SEU_ERR 14
Post-configuration CRC check error.

0: Default
1: POST_CRC error

DONE 13 Value on DONE pin.

INIT 12 Value on INIT_B pin.

MODE 11:9 Status of the MODE pins (M2:M0).

VSEL 8:6 Value on SPI Variant Select pins (VS2:VS0).

GHIGH_B 5

Status of GHIGH_B, asserted during configuration to disable
interconnect and prevent contention.

0: GHIGH_B asserted
1: GHIGH_B deasserted

GWE 4
Status of Global Write Enable.

0: Flip-flops and block RAM are write disabled
1: Flip-flops and block RAM are write enabled

GTS_CFG_B 3
Status of Global Three-State.

0: All I/Os are placed in high-Z state
1: All I/Os behave as configured

DCM_LOCK 2

0: DCMs not locked
1: DCMs are locked
This is a logical AND function of all DCM LOCKED signals.
Unused DCM LOCKED signals = 1.

ID_ERROR 1
Attempt to write to FDRI without successful DEVICE_ID check.

0: No ID_ERROR
1: ID_ERROR

CRC_ERROR 0
0: No CRC error
1: CRC error

Table 17-14: Configuration Options Register Description

Name
Bit

Index
Description Default

COR1

DRIVE_AWAKE 15
0: Do not drive AWAKE pin (drive Low or

disable)
1: Actively drive AWAKE pin (drive Low or High)

0

Reserved 14:5
Reserved COR register bits. Always leave these bits
set to 0111111000.

0111111000

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 325
UG332 (v1.5) March 16, 2009

Configuration Control Logic
R

CRC_BYPASS 4
0: CRC enabled.
1: CRC disabled.

0

DONE_PIPE 3

0: No pipeline stage for DONEIN
1: Add pipeline stage for DONEIN
The FPGA waits on DONE that is delayed by one
StartupClk cycle. Use this option when StartupClk is
running at high speeds.

0

DRIVE_DONE 2
0: DONE pin is open drain
1: DONE is actively driven High

0

SSCLKSRC 1:0

Startup-sequence clock source.

00: CCLK
01: UserClk (per connection on the

STARTUP_SPARTAN3A block)
1x: JTAGClk

00

COR2

RESET_ON_ERR 15
0: Do not fall back
1: On CRC error, fall back and retry first

configuration file

0

Reserved 14
Reserved COR register bit. Always leave this bit set to
0.

0

BPI_DIV8 13
0: Update BPI address at every bus_clk cycle
1: Update BPI address every 8th bus_clk cycle (for

serial daisy chains)

0

SINGLE 12

0: Readback is not single-shot
New captured values are loaded on each successive
CAP assertion on the CAPTURE_SPARTAN3A
primitive. Capture can also be performed with the
GCAPTURE instruction in the CMD register.

1: Readback is single-shot.
The RCAP instruction must be loaded into the CMD
register between successive readbacks.

0

DONE_CYCLE 11:9

Startup cycle to release the DONE pin.

001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6

100

Table 17-14: Configuration Options Register Description (Cont’d)

Name
Bit

Index
Description Default

http://www.xilinx.com

326 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

Suspend Options Register (PWRDN_REG)

The Suspend Options Register (PWRDN_REG) is used to set certain options for the device
Suspend and Awake features. The name of each bit position in PWRDN_REG is described
in Table 17-15.

LOCK_CYCLE 8:6

Startup cycle to stall in until DCMs lock.

000: Startup cycle 0
001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6
111: No Wait

111

GTS_CYCLE 5:3

Startup cycle to deassert the Global Three-State (GTS)
signal.

001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6

101

GWE_CYCLE 2:0

Startup phase to deassert the Global Write Enable
(GWE) signal.

001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6

110

Table 17-14: Configuration Options Register Description (Cont’d)

Name
Bit

Index
Description Default

Table 17-15: Suspend Options Register Description

Name Bit Index Description Default

WAKE_DELAY2 13:9 Wakeup cycle delay 2. 00100

WAKE_DELAY1 8:6 Wakeup cycle delay 1. 010

FILTER_B 5
0: SUSPEND filter on.
1: SUSPEND filter off.

0

EN_PGSR 4
0: No GSR pulse during wakeup.
1: Generate GSR pulse during wakeup.

0

Unused 3 0

EN_PWRDN 2
0: Suspend disabled.
1: Suspend enabled.

0

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 327
UG332 (v1.5) March 16, 2009

Bitstream Composition
R

Housecleaning Options Register (HC_OPT_REG)

The Housecleaning Options Register (HC_OPT_REG) is used to set certain options for
device housecleaning or reset of the configuration memory during initialization. The name
of each bit position in HC_OPT_REG is described in Table 17-16.

Multiple Frame Write Register (MFWR)

The Multiple Frame Write (MFWR) Register is used with the BitGen -g Compress
option. If more than one frame has identical data, it is possible to load that frame into the
configuration logic, and instruct the logic to load the frame into multiple address locations.
Depending on the utilization of the device, this may decrease the size of the bitstream
considerably. This feature is only supported upon initial configuration. Therefore, to
reconfigure the device with this feature, the part must be power-cycled or reset with
PROG_B. To write multiple frames with the same data, the following steps need to be
performed:

1. Write the WCFG command to the CMD register.

2. Write a desired frame to the FDRI register.

3. Write the FAR register with the first desired address.

4. Write the MFWR command to the CMD register.

5. Write two dummy words to the MFWR register.

6. Write the FAR register with the second desired address.

7. Write two dummy words to the MFWR register.

8. Repeat steps 6 and 7 until the last desired address is reached.

Bitstream Composition
Configuration can begin after the device is powered and initialization has finished, as
indicated by the INIT pin being released. After initialization, the packet processor ignores
all data presented on the configuration interface until it receives the synchronization word.

EN_PORB 1
Allow power supply rails to be lowered.
0: Enable Power-On-Reset.
1: Disable Power-On-Reset. (not recommended)

0

KEEP_SCLK 0
Use Configuration Startup clock for Suspend Startup.

0: Use Master CCLK for Startup sequence.
1: Use SSCLKSRC for Startup sequence.

1

Table 17-15: Suspend Options Register Description (Cont’d)

Name Bit Index Description Default

Table 17-16: Housecleaning Options Register Description

Name Bit Index Description Default

BRAM_SKIP 5
0: Reset block RAM.
1: Skip reset of block RAM.

0

TWO_ROUND 4
0: 1 round of housecleaning.
1: 2 rounds of housecleaning.

1

HC_CYCLE 3:0 Number of housecleaning cycles. 1111

http://www.xilinx.com

328 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

After synchronization, the packet processor waits for a valid packet header to begin the
configuration process.

Default Initial Configuration Process
Initial configuration using a default bitstream (a bitstream generated using the default
BitGen settings) begins by pulsing the PROG_B pin for serial/parallel configuration
modes or by issuing the JPROGRAM_B instruction for JTAG configuration mode.
Configuration proceeds as shown in Table 17-17:

Table 17-17: Configuration Sequence

Configuration
Data (hex)

Explanation

FFFF Dummy word

AA99 Sync word

30A1 Type 1 write 1 word to CMD

0007 RCRC command

3321 Type 1 write 1 word CCLK_FREQ

05BE CCLK frequency

31A1 Type 1 write 1 word FLR

0XXX Frame length

3141 Type 1 write 1 word to COR1

3F00 Configuration Option Register 1

3161 Type 1 write 1 word to COR2

09EE Configuration Option Register 2

31C2 Type 1 write 2 words to IDCODE

XXXX MSB Device_ID

XXXX LSB Device_ID

30E1 Type 1 write 1 word to MASK

0000 Data word 0

30C1 Type 1 write 1 word to CTL

0001 Data word 0

3181 Type 1 write 1 word to PWRDN_REG

0881 Data word 0

3201 Type 1 write 1 word to HC_OPT_REG

001F Data word 0

32C1 Type 1 write 1 word to PU_GWE

0006 Data word 0

32E1 Type 1 write 1 word to PU_GTS

0005 Data word 0

32A1 Type 1 write 1 word to MODE_REG

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 329
UG332 (v1.5) March 16, 2009

Bitstream Composition
R

000E Data word 0

3261 Type 1 write 1 word to GENERAL1_REG

0000 Data word 0

3281 Type 1 write 1 word to GENERAL2_REG

0000 Data word 0

3301 Type 1 write 1 word to SEU_OPT_REG

3FF0 Data word 0

3362 Type 1 write 2 words to EXP_SIGN_REG

0000 Data word 0

0000 Data word 1

3022 Type 1 write 2 words to FAR_MAJ

0XXX FAR_MAJ

00XX FAR_MIN

30A1 Type 1 write 1 word to CMD

0001 WCFG command

5062 Type 2 write 0 words to FDRI

0XXX Word count 1 (MSB)

XXXX Word count 2 (LSB)

XXXX Data 1

... ...

XXXX Data (word count)

3001 Type 1 write 1 word to CRC

XXXX Data word 0

30A1 Type 1 write 1 word to CMD

000A GRESTORE command

30A1 Type 1 write 1 word to CMD

0003 LFRM command

2000 Type 1 NOOP

... Type 1 NOOPs

2000 Type 1 NOOP

30A1 Type 1 write 1 word to CMD

0005 START command

30C1 Type 1 write 1 word to CTL

0001 Data word 0

3001 Type 1 write 1 word to CRC

Table 17-17: Configuration Sequence (Cont’d)

Configuration
Data (hex)

Explanation

http://www.xilinx.com

330 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

XXXX Data word 0

30A1 Type 1 write 1 word to CMD

000D DESYNC command

2000

Type 1 NOOP

2000

2000

2000

2000

2000

2000

2000

Table 17-17: Configuration Sequence (Cont’d)

Configuration
Data (hex)

Explanation

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 331
UG332 (v1.5) March 16, 2009

R

Chapter 18

Readback

This chapter provides more extensive details on the readback logic in the Extended
Spartan®-3A family, including the Spartan-3A, Spartan-3AN, and Spartan-3A DSP
platforms. The Spartan-3E family is similar, and details on the Spartan-3 family can be
found in XAPP452.

Spartan®-3, Spartan-3E, and Extended Spartan-3A devices allow users to read back the
configuration memory through the SelectMAP (slave parallel) or JTAG (IEEE 1149.1
boundary scan) interfaces. There are two styles of readback: Readback Verify and
Readback Capture. During Readback Verify, the user reads all configuration memory cells,
including the current values on all user memory elements (distributed LUT RAM, SRL16
shift registers, and block RAM). Readback Capture is a superset of Readback Verify—in
addition to reading all configuration memory cells, the current state of all internal CLB and
IOB registers is read, and is useful for design debugging.

To read configuration memory, users must send a sequence of commands to the device to
initiate the readback procedure; once initiated the device dumps the contents of its
configuration memory to the SelectMAP or JTAG interface. The configuration memory
read procedure sections for SelectMAP, IEEE 1149.1 JTAG, and IEEE 1532 JTAG describe
the steps for reading configuration memory.

Users can send the readback command sequence from a custom microprocessor, CPLD, or
FPGA-based system, or use iMPACT to perform JTAG-based readback verify. iMPACT,
the device programming software provided with the Xilinx Integrated Software
Environment (ISE® software), can perform all readback and comparison functions and
report to the user whether there were any configuration errors. iMPACT cannot perform
capture operations, although Readback Capture is seldom used for design debugging
because the ChipScope™ Pro tool’s ILA core, sold separately through the Xilinx website,
provides superior design debugging functionality in a user-friendly interface.

Once configuration memory has been read from the device, the next step is to determine if
there are any errors by comparing the readback bitstream to the configuration bitstream.
The “Verifying Readback Data” section explains how this is done.

Preparing a Design for Readback
To prepare a design for readback, the Bitstream Generator (BitGen) security setting must
not prohibit readback (-g security:none). Additionally, if readback is to be performed
through the SelectMAP interface, the port must be set to retain its function after
configuration by setting the persist option in BitGen (-g Persist:Yes), otherwise the
SelectMAP data pins revert to user I/O, precluding further configuration operations.
Beyond the security requirement, no special considerations are necessary to enable
readback through the Boundary-Scan port.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf

332 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

If capture functionality is needed, the CAPTURE_SPARTAN3A primitive can instantiated
in the user design (see “Readback Capture (CAPTURE)” in Chapter 13). To capture the
state of user registers, the user design triggers the CAP input on this primitive, storing the
current register values in configuration memory. Alternatively, writing the GCAPTURE
command to the CMD register can be used (see Readback Capture). The register values are
later read out of the device along with all other configuration memory.

Readback Command Sequences
Configuration memory is read from the FDRO (Frame Data Register - Output)
configuration register and can be accessed from the JTAG and SelectMAP interfaces.
Readback is possible while the FPGA design is active or in a shutdown state, although
block RAMs cannot be accessed by the user design while they are being accessed by the
configuration logic.

Accessing Configuration Registers through the SelectMAP Interface
To read configuration memory through the SelectMAP interface, the user must set the
interface for write control to send commands to the FPGA, and then switch the interface to
read control to read data from the device. Write and read control for the SelectMAP
interface is determined by the RDWR_B input: the SelectMAP data pins (D0:7) are inputs
when the interface is set for Write control (RDWR_B = 0); they are outputs when the
interface is set for Read control (RDWR_B = 1).

The CSI_B signal (CS_B in the Spartan-3 family) must be deasserted (CSI_B =1) before
toggling the RDWR_B signal, otherwise the user causes an abort (refer to “SelectMAP
ABORT” in Chapter 7 for details).

The procedure for changing the SelectMAP interface from Write to Read control, or vice
versa, is:

1. Deassert CSI_B.

2. Toggle RDWR_B.

RDWR_B = 0: Write control
RDWR_B = 1: Read control

3. Assert CSI_B.

4. This procedure is illustrated in Figure 18-1.

Figure 18-1: Changing the SelectMAP Port from Write to Read Control

RDWR_B

DATA[0:7]

UG332_48_030409

WRITE

Byte n Byte n

CCLK

Byte 0

READ

CSI_B

DOUT (BUSY)

Byte 0

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 333
UG332 (v1.5) March 16, 2009

Readback Command Sequences
R

The Extended Spartan-3A family has a DOUT pin which operates like the BUSY pin in
earlier families during readback. The BUSY signal goes Low to indicate when the DATA
bus contains valid readback data. However, it is not necessary to monitor BUSY since the
readback data is always valid three CCLK cycles after CSI_B is asserted.

Configuration Register Read Procedure (SelectMAP)
The simplest read operation targets a configuration register such as the COR or STAT
register. Any configuration register with read access can be read through the SelectMAP
interface, although not all registers offer read access. The procedure for reading the STAT
register through the SelectMAP interface in the Extended Spartan-3A family follows (for
the Spartan-3 and Spartan-3E families, refer to XAPP452):

1. Write the Synchronization word to the device.
2. Write the read STAT register packet header to the device.
3. Write two dummy words to the device to flush the packet buffer.
4. Read two bytes using SelectMAP; this is the Status register value.
5. Write the DESYNC command to the device
6. Write two dummy words to the device to flush the packet buffer.

The user must change the SelectMAP interface from write to read control between steps 3
and 4, and back to write control after step 4, as illustrated in Figure 18-2.

Table 18-1: Status Register Readback Command Sequence (SelectMAP)

Step
SelectMAP Port

Direction
Configuration

Data
Explanation

1 Write AA99 Sync Word

2 Write 2901 Read 1 word from STAT register

3 Write
2000 NOOP

2000 NOOP

4 Read SSSS
Device writes 1 word from the STAT
register to the configuration interface

5 Write
30A1 Type 1 write 1 word to CMD

000D Desync command

6 Write
2000 NOOP

2000 NOOP

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf

334 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

To read registers other than STAT, the address specified in the Type 1 packet header in Step
2 of Table 18-1 should be modified and the word count changed if necessary. Reading from
the FDRO register is a special case that is described in the next section.

Configuration Memory Read Procedure (SelectMAP)
The process for reading configuration memory from the FDRO register is similar to the
process for reading from other registers. Additional steps are needed to accommodate the
configuration logic. Configuration data coming from the FDRO register passes through the
frame buffer. The first frame of readback data should be discarded.

1. Write the Synchronization word to the device.

2. Write 1 NOOP command.

3. Write the RCRC command to the CMD register.

4. Write 2 NOOP commands.

5. Write the Shutdown command.

6. Write four NOOP instructions to ensure the shutdown sequence has completed.
DONE goes Low during the shutdown sequence.

7. Write the RCFG command to the CMD register.

8. Write the Starting Frame Address to the FAR (typically 0x00000000)

9. Write the read FDRO register packet header to the device. The FDRO read length is
given by:

FDRO Read Length = (words per frame) x (frames to read + 1) + 1

One extra frame is read to account for the frame buffer. The frame buffer produces one
dummy frame at the beginning of the read and one at the end. Also, one extra word is
read in SelectMAP mode.

10. Write two dummy words to the device to flush the packet buffer.

11. Read the FDRO register from the SelectMAP interface. The FDRO read length is the
same as in step 9 above.

12. Write one NOOP instruction.

13. Write the START command.

14. Write the RCRC command.

15. Write the DESYNC command.

Figure 18-2: SelectMAP Status Register Read

CSI_B

RDWR_B

DATA[0:7]

WRITE

CCLK

AA 99

READ

UG332_49_030409

DOUT (BUSY)

SS SS SS SS

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 335
UG332 (v1.5) March 16, 2009

Readback Command Sequences
R

16. Write at least 32 bits of NOOP commands to flush the packet buffer. Continue sending
CCLK pulses until DONE goes High.

Table 18-2 shows the readback command sequence.

Table 18-2: Shutdown Readback Command Sequence (SelectMAP)

Step SelectMAP Port Direction Configuration Data Explanation

1 Write AA99 Sync word

2 Write 2000 Type 1 NOOP word 0

3 Write
30A1 Type 1 write 1 word to CMD

0007 RCRC command

4 Write
2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

5 Write
30A1 Type 1 write 1 word to CMD

000B SHUTDOWN command

6 Write

2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

2000 Type 1 NOOP word 2

2000 Type 1 NOOP word 3

7 Write
30A1 Type 1 write 1 word to CMD

0004 RCFG command

8 Write

3022 Type 1 write 2 words to FAR_MAJ

0000 FAR_MAJ Address = 0000

0000 FAR_MIN Address = 0000

9 Write
2880 Type 1 read 0 words from FDRO

XXXX Type 2 read n words from FDRO

10 Write
2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

11 Read

0000 Packet data read FDRO word 0

...

0000 Packet data read FDRO word n

12 Write 2000 Type 1 NOOP word 0

13 Write
30A1 Type 1 write 1 word to CMD

0005 START command

14 Write
30A1 Type 1 write 1 word to CMD

0007 RCRC command

http://www.xilinx.com

336 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

Accessing Configuration Registers through the JTAG Interface
JTAG access to the configuration logic is provided through the JTAG CFG_IN and
CFG_OUT registers. Note that the CFG_IN and CFG_OUT registers are not configuration
registers, rather they are JTAG registers like BYPASS and BOUNDARY_SCAN. Data
shifted in to the CFG_IN register go to the configuration packet processor, where they are
processed in the same way commands from the SelectMAP interface are processed.

Readback commands are written into the configuration logic by going through the
CFG_IN register; configuration memory is read out through the CFG_OUT register. The
JTAG state transitions for accessing the CFG_IN and CFG_OUT registers are described in
Table 18-3.

15 Write
30A1 Type 1 write 1 word to CMD

000D DESYNC command

16 Write
2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

Table 18-2: Shutdown Readback Command Sequence (SelectMAP) (Cont’d)

Step SelectMAP Port Direction Configuration Data Explanation

Table 18-3: Shifting in the JTAG CFG_IN and CFG_OUT Instructions

Step Description
Set and Hold # of

Clocks
(TCK)TDI TMS

1
Clock five 1s on TMS to bring the device to the
TLR state

X 1 5

2 Move into the RTI state X 0 1

3 Move into the Select-IR state X 1 2

4 Move into the Shift-IR State X 0 2

5
Shift the first 5 bits of the CFG_IN or CFG_OUT
instruction, LSB first

00101
(CFG_IN)

0 5
00100

(CFG_OUT)

6
Shift the MSB of the CFG_IN or CFG_OUT
instruction while exiting SHIFT-IR

0 1 1

7 Move into the SELECT-DR state X 1 2

8 Move into the SHIFT-DR state X 0 2

9
Shift data into the CFG_IN register or out of the
CFG_OUT register while in SHIFT_DR, MSB first.

X 0 X

10 Shift the LSB while exiting SHIFT-DR X 1 1

11 Reset the TAP by clocking five 1s on TMS X 1 5

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 337
UG332 (v1.5) March 16, 2009

Readback Command Sequences
R

Configuration Register Read Procedure - JTAG

The simplest read operation targets a configuration register such as the COR or STAT
register. Any configuration register with read access can be read through the JTAG
interface, although not all registers offer read access. The procedure for reading the STAT
register through the JTAG interface follows:

1. Reset the TAP controller.

2. Shift the CFG_IN instruction into the JTAG Instruction Register through the Shift-IR
state. The LSB of the CFG_IN instruction is shifted first; the MSB is shifted while
moving the TAP controller out of the SHIFT-IR state.

3. Shift packet write commands into the CFG_IN register through the Shift-DR state:

a. Write the Synchronization word to the device.
b. Write one NOOP instruction to the device.
c. Write the read STAT register packet header to the device.
d. Write two dummy words to the device to flush the packet buffer.

The MSB of all configuration packets sent through the CFG_IN register must be sent
first. The LSB is shifted while moving the TAP controller out of the SHIFT-DR state.

4. Shift the CFG_OUT instruction into the JTAG Instruction Register through the Shift-IR
state. The LSB of the CFG_OUT instruction is shifted first; the MSB is shifted while
moving the TAP controller out of the SHIFT-IR state.

5. Shift 16 bits out of the Status register through the Shift-DR state.

6. Reset the TAP controller.

Table 18-4: Status Register Readback Command Sequence (JTAG)

Step Description
Set and Hold # of

Clocks
(TCK)TDI TMS

1

Clock five 1s on TMS to bring the device to the TLR state. X 1 5

Move into the RTI state. X 0 1

Move into the Select-IR state. X 1 2

Move into the Shift-IR state. X 0 2

2

Shift the first 5 bits of the CFG_IN instruction, LSB first.
00101

(CFG_IN)
0 5

Shift the MSB of the CFG_IN instruction while exiting
SHIFT-IR.

0 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

http://www.xilinx.com

338 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

The packets shifted in to the JTAG CFG_IN register are identical to the packets shifted in
through the SelectMAP interface when reading the STAT register through SelectMAP.

Configuration Memory Read Procedure (1149.1 JTAG)

The process for reading configuration memory from the FDRO register through the JTAG
interface is similar to the process for reading from other registers. However, additional
steps are needed to accommodate frame logic. Configuration data coming from the FDRO
register pass through the frame buffer, therefore the first frame of readback data is dummy
data and should be discarded. The 1149.1 JTAG readback flow is recommended for most
users.

1. Reset the TAP controller.

2. Shift the CFG_IN instruction into the JTAG Instruction Register. The LSB of the
CFG_IN instruction is shifted first; the MSB is shifted while moving the TAP controller
out of the SHIFT-IR state.

3. Shift packet write commands into the CFG_IN register through the Shift-DR state:

a. Write a dummy word to the device.
b. Write the Synchronization word to the device.
c. Write a NOOP instruction to the device.

3

Shift configuration packets into the CFG_IN data
register, MSB first.

a: 0xAA99
b: 0x2000
c: 0x2901
d: 0x2000

0x2000

0 79

Shift the LSB of the last configuration packet while
exiting SHIFT-DR.

0 1 1

Move into the SELECT-IR state. X 1 3

Move into the SHIFT-IR state. X 0 2

4

Shift the first 5 bits of the CFG_OUT instruction, LSB
first.

00100
(CFG_OUT)

0 5

Shift the MSB of the CFG_OUT instruction while exiting
Shift-IR.

0 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

5

Shift the contents of the STAT register out of the
CFG_OUT data register.

0xSSSS 0 31

Shift the last bit of the STAT register out of the CFG_OUT
data register while exiting SHIFT-DR.

S 1 1

Move into the Select-IR state. X 1 3

Move into the Shift-IR State. X 0 2

6 Reset the TAP Controller. X 1 5

Table 18-4: Status Register Readback Command Sequence (JTAG) (Cont’d)

Step Description
Set and Hold # of

Clocks
(TCK)TDI TMS

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 339
UG332 (v1.5) March 16, 2009

Readback Command Sequences
R

d. Write the RCRC command to the device.
e. Write two dummy words to flush the packet buffer.

4. Shift the JSHUTDOWN instruction into the JTAG Instruction Register.

5. Move into the RTI state; remain there for 12 TCK cycles to complete the Shutdown
sequence. The DONE pin goes Low during the Shutdown sequence.

6. Shift the CFG_IN instruction into the JTAG Instruction Register.

7. Move to the Shift-DR state and shift packet write commands into the CFG_IN register:

a. Write a dummy word to the device.
b. Write the Synchronization word to the device.
c. Write a NOOP instruction to the device.
d. Write the write CMD register header.
e. Write the RCFG command to the device.
f. Write the write FAR register header.
g. Write the starting frame address to the FAR register (typically 0x00000000).
h. Write the read FDRO register Type-1 packet header to the device.
i. Write a Type-2 packet header to indicate the number of words to read from the

device.
j. Write two dummy words to the device to flush the packet buffer.

The MSB of all configuration packets sent through the CFG_IN register must be sent
first. The LSB is shifted while moving the TAP controller out of the SHIFT-DR state.

8. Shift the CFG_OUT instruction into the JTAG Instruction Register through the
Shift-DR state. The LSB of the CFG_OUT instruction is shifted first; the MSB is shifted
while moving the TAP controller out of the SHIFT-IR state.

9. Shift frame data from the FDRO register through the Shift-DR state.

10. Reset the TAP controller.

Table 18-5: Shutdown Readback Command Sequence (JTAG)

Step Description
Set and Hold # of Clocks

(TCK)TDI TMS

1

Clock five 1s on TMS to bring the device to the
TLR state.

X 1 5

Move into the RTI state. X 0 1

Move into the Select-IR state. X 1 2

Move into the Shift-IR State. X 0 2

2

Shift the first 5 bits of the CFG_IN instruction,
LSB first.

00101 0 5

Shift the MSB of the CFG_IN instruction while
exiting Shift-IR.

1 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

http://www.xilinx.com

340 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

3

Shift configuration packets into the CFG_IN
data register, MSB first.

a: 0xFFFF
b: 0xAA99
c: 0x2000
d: 0x30A1

0x0007
e: 0x2000

0x2000

0 111

Shift the LSB of the last configuration packet
while exiting SHIFT-DR.

0 1 1

Move into the SELECT-IR State. X 1 3

Move into the SHIFT-IR State. X 0 2

4

Shift the first 5 bits of the JSHUTDOWN
instruction, LSB first.

01101 0 5

Shift the MSB of the JSHUTDOWN
instruction while exiting SHIFT-IR.

0 1 1

Move to RTI. X
1 1

0 1

5

Remain in RTI for 12 TCK cycles. X 0 12

Move into the Select-IR state. X 1 2

Move into the Shift-IR State. X 0 2

6

Shift the first 5 bits of the CFG_IN instruction,
LSB first.

00101 0 5

Shift the MSB of the CFG_IN instruction while
exiting SHIFT-IR.

1 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

7

Shift configuration packets into the CFG_IN
data register, MSB first.

a: 0xFFFF
b: 0xAA99
c: 0x2000
d: 0x30A1
e: 0x0004
f: 0x3022
g: 0x0000

0x0000
h: 0x2880
i: 0xXXXX
j: 0x2000

0x2000

0 191

Shift the LSB of the last configuration packet
while exiting SHIFT-DR.

0 1 1

Move into the SELECT-IR State. X 1 3

Move into the SHIFT-IR State. X 0 2

Table 18-5: Shutdown Readback Command Sequence (JTAG) (Cont’d)

Step Description
Set and Hold # of Clocks

(TCK)TDI TMS

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 341
UG332 (v1.5) March 16, 2009

Readback Command Sequences
R

Configuration Memory Read Procedure (1532 JTAG)

The IEEE 1532 JTAG readback procedure differs slightly from the IEEE 1149.1 JTAG
readback procedure in that readback commands are not sent to the configuration logic
through the CFG_IN JTAG register, rather the ISC_READ JTAG register is used to read
configuration memory directly.

At the end of 1532 JTAG readback, CRC Error status must be cleared by issuing the Reset
CRC command or writing the correct CRC value to the CRC register. The 1532 JTAG
readback procedure is illustrated in Figure 18-3.

8

Shift the first 5 bits of the CFG_OUT
instruction, LSB first.

00100
(CFG_OUT)

0 5

Shift the MSB of the CFG_OUT instruction
while exiting Shift-IR.

0 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

9

Shift the contents of the FDRO register out of
the CFG_OUT data register.

… 0
number of
readback
bits – 1

Shift the last bit of the FDRO register out of the
CFG_OUT data register while exiting SHIFT-
DR.

X 1 1

Move into the Select-IR state. X 1 3

Move into the Shift-IR State. X 0 2

10
End by placing the TAP controller in the TLR
state.

X 1 5

Table 18-5: Shutdown Readback Command Sequence (JTAG) (Cont’d)

Step Description
Set and Hold # of Clocks

(TCK)TDI TMS

http://www.xilinx.com

342 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

Verifying Readback Data
Table 18-6 lists the readback files.

Figure 18-3: IEEE 1532 JTAG Readback Flow

START

Load ISC_ENABLE

Load ISC_DISABLE

Go to Test Logic Reset

Load ISC_READ

Load ISC_PROGRAM

Load ISC_PROGRAM

RTI minimum
12 TCK cycles

RTI minimum
12 TCK cycles

RTI
1 TCK cycle

RTI
1 TCK cycle

Load 32 bits of
bitstream data

Load Reset CRC
command

Load 5'b00000

N

Y

N

Y

A

STOP

A

Shift 37 bits of
readback data +

status

EO
Data

EO
bitstream

UG071_50_081404

Table 18-6: Readback Files

File
Extension

File
Type

BitGen
Setting

Description

.rba ASCII
-b and -g
Readback

An ASCII file that contains readback commands, rather than
configuration commands, and expected readback data
where the configuration data normally is. This file must be
used with the .msk file.

.rbb Binary
-g

Readback
Binary version of .rba file. This file must be used with
the .msk file.

.rbd ASCII
-g

Readback

An ASCII file that contains only expected readback data,
including the initial pad frame. No commands are included.
This file must be used with the .msd file.

.msk Binary -m

A binary file that contains the same configuration commands
as a .bit file, but replaces the contents of the FDRI write
packet with mask data that indicate whether the
corresponding bits in the .bit file should be compared. If a
mask bit is 0, the corresponding bits in the readback data
stream should be compared. If a mask bit is 1, the
corresponding bit in the readback data stream should be
ignored.

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 343
UG332 (v1.5) March 16, 2009

Verifying Readback Data
R

The design.rba and design.rbb files combine readback commands with expected
readback data and the .rbd file contains only expected readback data. Systems that use
an .rbd file for readback must store readback commands elsewhere. The actual readback
data must be masked against an .msk or .msd mask file, as certain bits in the expected
readback stream in the .rba, .rbb, and .rbd files should be ignored.

The readback command set files do not indicate when users must change the SelectMAP or
JTAG interface from write to read control; the user must handle this based on the Readback
Command Sequences described above.

The readback data stream contains configuration frame data that are preceded by one
frame of pad data, as described in Configuration Memory Read Procedure (SelectMAP).
The readback stream does not contain any of the commands or packet information found
in the configuration bitstream and no CRC calculation is performed during readback. The
readback data stream is shown in Figure 18-4.

The readback data stream is verified by comparing it to the original configuration frame
data that were programmed into the device. Certain bits within the readback data stream
must not be compared, because these can correspond to user memory or null memory
locations. The location of don't care bits in the readback data stream is given by the mask
files, the .msk and .msd files. These files have different formats although both convey
essentially the same information. Once readback data have been obtained from the device,
either of the following comparison procedures can be used:

1. Compare readback data to the .rbd golden readback file. Mask by using the .msd file.

.msd ASCII
-g

readback

An ASCII file that contains only mask bits. The first bit in
the .msd file corresponds to the first bit in the .rbd file. Pad
data in the actual readback stream are accounted for in
the .msd and .rbd files. If a mask bit is 0, that bit should be
verified against the bit stream data. If a mask bit is 1, that bit
should not be verified.

.ll ASCII -l

An ASCII file that contains information on each of the nodes
in the design that can be captured for readback. The file
contains the absolute bit position in the readback stream,
frame address, frame offset, logic resource used, and name of
the component in the design.

Figure 18-4: Readback Data Stream

Table 18-6: Readback Files (Cont’d)

File
Extension

File
Type

BitGen
Setting

Description

Pad Frame

Frame Data
Total

number
device
frames

1 frame

Readback Data

UG071_51_092807

http://www.xilinx.com

344 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

The simplest way to verify the readback data stream is to compare it to the .rbd golden
readback file, masking readback bits with the .msd file. This approach is simple
because there is a 1:1 correspondence between the start of the readback data stream
and the start of the .rbd and .msd files, making the task of aligning readback, mask,
and expected data easier. See Figure 18-5.

The .rbd and .msd files contain an ASCII representation of the readback and mask
data along with a file header that lists the file name, etc. This header information
should be ignored or deleted. The ASCII 1s and 0s in the .rbd and .msd files
correspond to the binary readback data from the device. Take care to interpret these
files as text, not binary sources. Users can convert the .rbd and .msd files to a binary
format using a script or text editor, to simplify the verify procedure for some systems
and to reduce the size of the files by a factor of eight.

The drawback to this approach is that in addition to storing the initial configuration
bitstream and the .msd file, the golden .rbd file must be stored somewhere, increasing
the overall storage requirement.

2. Compare readback data to the configuration .bit file, mask using the .msk file.

Another approach for verifying readback data is to compare the readback data stream
to the frame data within the FDRI write in the original configuration bitstream,
masking readback bits with the .msk file.

After sending readback commands to the device, comparison begins by aligning the
beginning of the readback frame data to the beginning of the FDRI write in the .bit
and .msk files. The comparison ends when the end of the FDRI write is reached. See
Figure 18-6.

This approach requires the least in-system storage space, because only the .bit, .msk,
and readback commands must be stored.

Figure 18-5: Comparing Readback Data Using the .msd and .rbd Files

Pad Frame

Frame Data

Pad Frame

File Header

Frame Data
Mask

Total
number
device
frames

1 frame

Readback
Data Stream

UG071_52_073007

.msd
File

Pad Frame

File Header

Frame Data

.rbd
File

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 345
UG332 (v1.5) March 16, 2009

Verifying Readback Data
R

The .rba and .rbb files contain expected readback data along with readback
command sets. They are intended for use with the .msk file.

Figure 18-6: Comparing Readback Data Using the .msk and .bit Files

Pad Frame

Frame Data

File Header

Frame Data
Mask

Total
number
device
frames

1 frame

Readback
Data Stream

UG071 53 073007

.msk
File

Commands Commands

Commands Commands

Pad Frame Pad Frame

File Header

Frame Data

.bit
File

http://www.xilinx.com

346 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

Readback Capture
The configuration memory readback command sequence is identical for both Readback
Verify and Readback Capture. However, the Capture sequence requires an additional step
to sample internal register values.

Users can sample CLB and IOB registers by instantiating the CAPTURE_SPARTAN3A
primitive in their design (Figure 18-7) and asserting the CAP input on that primitive while
the design is operating. On the next rising clock edge on the CAPTURE_SPARTAN3A CLK
input, the internal GRDBK signal is asserted, storing all CLB and IOB register values into
configuration memory cells. These values can then be read out of the device along with the
IOB and CLB configuration columns by reading configuration memory through the
readback process. Register values are stored in the same memory cell that programs the
register's initial state configuration. Therefore, sending the GRESTORE command to the
configuration logic after the Capture sequence can cause registers to return to an
unintended state.

Alternatively, the GRDBK signal can be asserted by writing the GCAPTURE command to
the CMD register. This command asserts the GRDBK signal for two CCLK or TCK cycles,
depending on the Startup clock setting.

If the CAP signal is left asserted over multiple clock cycles, the Capture cell is updated
with the new register value on each rising clock edge. To limit the capture operation to the
first rising clock edge, the user can add the ONESHOT attribute to the
CAPTURE_SPARTAN3A primitive. More information on the ONESHOT attribute can be
found in the Constraints Guide.

Once the configuration memory frames have been read out of the device, the user can pick
the captured register values out of the readback data stream. The capture bit locations are
given in the logic allocation file (design.ll) as described in Figure 18-8.

Figure 18-7: Extended Spartan-3A Library Primitive

Table 18-7: Capture Signals

Signal Description Access

GCAPTURE
Captures the state of all slice and
IOB registers. Complement of
GRESTORE.

GCAPTURE command through
the CMD register or CAP input on
capture block, user controlled.

GRESTORE Initializes all registers as
configured.

CMD register and
STARTUP_SPARTAN3A block.

UG332_54_xxxxx

CAP

CLK

CAPTURE_SPARTAN3A
Trigger with
external or

internal signal

Synchronize
to external or
internal clock

http://www.xilinx.com

Spartan-3 Generation Configuration User Guide www.xilinx.com 347
UG332 (v1.5) March 16, 2009

Readback Capture
R

Figure 18-8 shows a snippet from a logic allocation file for an example design. The line
from the header comments explaining the line format has been moved to the start of the bit
offset data for clarity. The <offset> field gives the absolute bit offset from the beginning of
the readback frame data. The <frame address> field gives the frame address that the
capture bit is located in, and the <frame offset> field gives the bit offset from the start of the
frame. The <information> field gives the mapping between the bit and the user design—
for example, the DIR register (Figure 18-8) that is located in Slice X8Y15 is located at bit
offset 100790.

Note that captured flip-flop values, along with distributed RAM and SRL16 values, are
stored in their inverted sense.

Figure 18-8: Logic Allocation File Format

UG071_55_081404

http://www.xilinx.com

348 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 18: Readback
R

http://www.xilinx.com

	Spartan-3 Generation Configuration User Guide
	Revision History
	Table of Contents
	Schedule of Figures
	Schedule of Tables
	Overview and Design Considerations
	Design Considerations
	FPGA Configuration Bitstream Sizes
	Uncompressed Bitstream Image Size
	Bitstream Format
	Bitstream Compression
	Packet Format

	Setting Bitstream Options, Generating an FPGA Bitstream
	ISE Software Project Navigator
	BitGen Command Line Utility

	Additional Resources
	Data Sheets
	Application Notes

	Configuration Pins and Behavior during Configuration
	General Configuration Control Pins
	Choose a Configuration Mode: M[2:0]
	DONE Pin
	Program or Reset FPGA: PROG_B
	Configuration Clock: CCLK
	Initializing Configuration Memory, Configuration Error: INIT_B
	Pull-Up Resistors During Configuration

	Pin Descriptions
	Pin Behavior During Configuration
	Extended Spartan-3A Family FPGA
	Spartan-3E FPGAs
	Spartan-3 FPGAs

	Default I/O Standard During Configuration
	Lowering VCCO_2 After Configuration in Extended Spartan-3A Family

	Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins
	Dedicating the HSWAP, PUDC_B, M[2:0], and VS[2:0] Pins
	Reusing HSWAP, PUDC_B, M[2:0], and VS[2:0] After Configuration
	Spartan-3E HSWAP Considerations
	Dual-Purpose Pins Become User I/O

	VCCAUX Level

	Master Serial Mode
	Master Serial Mode Connections
	Voltage Compatibility
	Platform Flash PROM
	FPGA
	JTAG Interface

	Supported Platform Flash PROMs
	CCLK Frequency
	Daisy-Chained Configuration
	Ganged or Broadside Configuration
	JTAG Interface
	Storing Additional User Data in Platform Flash
	Generating the Bitstream for a Master Serial Configuration
	ConfigRate: CCLK Frequency
	StartupClk: CCLK
	DriveDone: Actively Drive DONE Pin
	GTS_cycle: Global Three-State Release Timing for Daisy Chains

	Preparing a Platform Flash PROM File
	iMPACT

	Platform Flash In-System Programming via JTAG using iMPACT
	Prepare Board for Programming
	Programming via iMPACT

	Production Programmers
	Additional Information

	Master SPI Mode
	Master SPI Mode Differences between Spartan-3 Generation FPGA Families
	Choosing a Compatible SPI Serial Flash
	SPI Flash PROM Density Requirements

	FPGA Connections to the SPI PROM
	Voltage Compatibility
	Power-On Precautions if System 3.3V Supply is Last in Sequence
	Extended Spartan-3A Family and Configuration Watchdog Timer

	CCLK Frequency
	SPI Flash Interface after Configuration
	If Not Using SPI Flash after Configuration
	If Using SPI Flash Interface after Configuration

	Daisy-Chained Configuration
	Ganged or Broadside Configuration
	Programming Support
	Third-Party Programmer (Off-board Programming)
	Direct, SPI In-System Programming
	Direct, In-system SPI Programming Using FPGA as Intermediary
	Indirect, In-System SPI Programming Using FPGA JTAG Chain

	Generating the Bitstream for a Master SPI Configuration
	ConfigRate: CCLK Frequency
	StartupClk: CCLK
	DriveDone: Actively Drive DONE Pin
	DONE_cycle: Daisy Chains with Spartan-3E Master
	GTS_cycle: Global Three-State Release Timing for Daisy Chains

	Preparing an SPI PROM File
	iMPACT
	PROMGen

	Direct SPI Programming using iMPACT
	Prepare Board for Programming
	Programming via iMPACT

	Indirect SPI Programming using iMPACT
	Programming Setup
	Using iMPACT

	Serial Peripheral Interface (SPI) Configuration Timing
	Multi-Package Layout
	Saving Power
	Deassert CSO_B to Enter Standby Mode

	Master BPI Mode
	Overview
	Master BPI Mode Differences between Spartan-3 Generation FPGA Families
	PROM Address Generation
	Voltage Compatibility
	Compatible Parallel NOR Flash Families
	Required Parallel Flash PROM Densities
	CCLK Frequency
	Using the BPI Interface after Configuration
	Precautions Using x8/x16 Flash PROMs
	Daisy Chaining
	Parallel Daisy Chaining
	Serial Daisy Chaining (Extended Spartan-3A Family FPGAs Only)

	Using Xilinx Platform Flash PROMs with Master BPI Mode
	ConfigRate Settings Using Platform Flash

	Generating the Bitstream for a Master BPI Configuration
	ConfigRate: CCLK Frequency
	StartupClk: CCLK
	DriveDone: Actively Drive DONE Pin
	GTS_cycle: Global Three-State Release Timing for Daisy Chains

	Preparing a Parallel NOR Flash PROM File
	iMPACT

	Indirect Parallel Flash Programming Using iMPACT
	In-System Programming Support
	Power-On Precautions if 3.3V Supply is Last in Sequence
	Extended Spartan-3A Family and Configuration Watchdog Timer

	Byte Peripheral Interface (BPI) Timing
	Limitations when Reprogramming via JTAG if FPGA Set for BPI Configuration
	Spartan-3E BPI Mode Interaction with Right and Bottom Edge Global Clock Inputs
	BPI Data Ordering

	Master Parallel Mode
	Slave Parallel (SelectMAP) Mode
	Voltage Compatibility
	Daisy Chaining
	Spartan-3E/Extended Spartan-3A Family Slave Parallel Daisy Chains
	Slave Parallel Daisy Chains Using Any Modern Xilinx FPGA Family

	SelectMAP Data Loading
	CSI_B
	RDWR_B
	CCLK
	BUSY

	Continuous SelectMAP Data Loading
	Non-Continuous SelectMAP Data Loading
	Deasserting CSI_B
	Pausing CCLK

	SelectMAP ABORT
	Configuration Abort Sequence Description
	Readback Abort Sequence Description
	ABORT Status Word
	Resuming Configuration or Readback After an Abort

	Persist
	SelectMAP Reconfiguration
	SelectMAP Data Ordering
	Byte Swapping

	Slave Serial Mode
	Voltage Compatibility
	Daisy Chaining

	JTAG Configuration Mode and Boundary-Scan
	JTAG Cable Voltage Compatibility
	JTAG Device ID
	JTAG User ID
	Using JTAG Interface to Communicate to a Configured FPGA Design
	Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE Standard 1149.1
	Test Access Port (TAP)
	TAP Controller
	Boundary-Scan Architecture
	Using Boundary-Scan in Spartan-3 Generation FPGAs

	Programming Cables and Headers
	Programming an FPGA Using JTAG
	Mode Pin Considerations when Programming a Spartan-3AN FPGA via JTAG using iMPACT

	Configuration via JTAG using an Embedded Controller

	Internal Master SPI Mode
	Internal Flash Memory
	Mode Select Pins, M[2:0]
	Variant Select Pins, VS[2:0]
	Supply Voltage Requirements
	Accessing the Internal SPI Flash PROM After Configuration
	No Configuration Daisy Chains in Internal Master SPI Mode
	Generating the Bitstream for a Master SPI Configuration
	ConfigRate: CCLK Frequency
	StartupClk: CCLK
	DriveDone: Actively Drive DONE Pin

	Programming a Spartan-3AN FPGA Using JTAG
	Preparing an In-System Flash Programming File
	iMPACT
	PROMGen

	Programming Spartan-3AN FPGAs Using iMPACT
	Third-Party Programmer Support
	BPM Microsystems

	Configuration Bitstream Generator (BitGen) Settings
	Sequence of Events
	Overview
	Setup for Configuration (Steps 1-3)
	Wake from Reset
	Clear Configuration Memory (Initialization)
	Sample Control Pins
	Delaying Configuration

	Bitstream Loading (Steps 4-7)
	Synchronization
	Check Array IDCODE
	Load Configuration Data Frames
	Cyclic Redundancy Check

	Startup
	Startup Clock Source
	Waiting for DCMs to Lock, DCI to Match

	Configuration-Related Design Primitives
	Boundary-Scan (BSCAN)
	Usage
	Port Descriptions

	Start-Up (STARTUP)
	Usage
	Port Descriptions

	Readback Capture (CAPTURE)
	Usage
	Port Description
	Attributes

	Internal Configuration Access Port (ICAP)
	Usage
	Port Description

	Device DNA Access Port (DNA_PORT)
	Usage
	Port Descriptions
	Attributes

	Reconfiguration and MultiBoot
	Overview
	MultiBoot Options Compared between Spartan-3 Generation FPGA Families
	Spartan-3E MultiBoot
	Generating a Spartan-3E MultiBoot PROM Image using iMPACT
	PROMGen Report File
	Spartan-3E MultiBoot using Xilinx Platform Flash PROMs

	Extended Spartan-3A Family MultiBoot
	Specifying the Next MultiBoot Configuration Address
	Required Data Spacing between MultiBoot Images
	MultiBoot Command Sequence (ICAP Example)
	MultiBoot using SelectMAP
	MultiBoot using Slave Serial
	MultiBoot using JTAG
	MultiBoot Registers
	Generating an Extended Spartan-3A Family MultiBoot PROM Image using iMPACT

	Configuration Fallback
	Configuration Watchdog Timer (CWDT) and Fallback
	CRC Error and Fallback
	Fallback Limited to 3 Additional Tries
	Advanced Capabilities
	MultiBoot Design Examples

	Protecting FPGA Designs
	Basic FPGA Hardware-Level Security Options
	Spartan-3 and Spartan-3E Security Levels
	Extended Spartan-3A Family Security Levels
	Setting the Security Level in the Bitstream

	Approaches to Design Security
	Security Bits
	Encryption
	Authentication

	Extended Spartan-3A Family Unique Device Identifier (Device DNA)
	Identifier Value
	Operation
	Interface Timing
	Identifier Memory Specifications
	Extending Identifier Length
	JTAG Access to Device Identifier
	iMPACT Access to Device Identifier

	Authentication Design Examples
	Extended Spartan-3A Family FPGA: Imprinting or Watermarking the Configuration PROM with Device DNA
	Spartan-3E FPGA: Leveraging Security Features in Select Commodity Flash PROMs
	Extended Spartan-3A Family FPGA: Authenticating a Downloaded Design
	Authenticating any FPGA Design Using External Secure PROM

	Handling Failed Authentications
	No Functionality
	Limited Functionality
	Full Functionality with Time Out
	Active Defense

	Authentication Algorithm
	Manufacturing Logistics
	Additional Uses of Authentication and Device ID
	Protecting Intellectual Property (IP)
	Code and Data Security

	U.S. Legal Protection of FPGA Configuration Bitstream Programs
	Additional Information

	Configuration CRC
	CRC Checking during Configuration
	Spartan-3 and Spartan-3E Configuration CRC Errors
	Configuration CRC Enabled by Default
	Possible CRC Escapes
	Extended Spartan-3A Family Configuration CRC Errors and Configuration Watchdog Timer

	Robust CMOS Configuration Latches (CCLs)
	Post-Configuration CRC (Extended Spartan-3A Family Only)
	Overview
	Continuous CRC Checking Until Configuration, JTAG or Suspend Event
	Clock Source
	Behavior when CRC Error Occurs
	Preparing an Application to Use the Post-Configuration CRC Feature
	Example User Constraints File (UCF)
	CONFIG Constraints
	Bitstream Generator Options
	Design Considerations
	Techniques to Check Distributed and Block RAM Contents

	Configuration Details
	Configuration Memory Frames
	Configuration Control Logic
	Packet Types
	Configuration Registers

	Bitstream Composition
	Default Initial Configuration Process

	Readback
	Preparing a Design for Readback
	Readback Command Sequences
	Accessing Configuration Registers through the SelectMAP Interface
	Configuration Register Read Procedure (SelectMAP)
	Configuration Memory Read Procedure (SelectMAP)
	Accessing Configuration Registers through the JTAG Interface

	Verifying Readback Data
	Readback Capture

