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Chapter 1

Overview and Design Considerations

Xilinx® Field Programmable Gate Arrays (FPGAs) are highly flexible, reprogrammable 
logic devices that leverage advanced CMOS manufacturing technologies, similar to other 
industry-leading processors and processor peripherals. Like processors and peripherals, 
Xilinx FPGAs are fully user programmable. For FPGAs, the program is called a 
configuration bitstream, which defines the FPGA's functionality. The bitstream loads into the 
FPGA at system power-up or upon demand by the system.

The process whereby the defining data is loaded or programmed into the FPGA is called 
configuration. Configuration is designed to be flexible to accommodate different 
application needs and, wherever possible, to leverage existing system resources to 
minimize system costs. 

Similar to microprocessors, Xilinx FPGAs optionally load or boot themselves 
automatically from an external nonvolatile memory device. Alternatively, similar to 
microprocessor peripherals, Spartan-3 generation FPGAs can be downloaded or 
programmed by an external “smart agent”, such as a microprocessor, DSP processor, 
microcontroller, PC, or board tester. In either case, the configuration data path is either 
serial to minimize pin requirements or byte-wide for maximum performance or for easier 
interfaces to processors or to byte-wide Flash memory.

Similar to both processors and processor peripherals, Xilinx FPGAs can be reprogrammed, 
in system, on demand, an unlimited number of times. After configuration, the FPGA 
configuration bitstream is stored in highly robust CMOS configuration latches (CCLs). 
Although CCLs are reprogrammable like SRAM memory, CCLs are designed primarily for 
data integrity, not for performance. The data stored in CCLs is written only during 
configuration and remains static unless changed by another configuration event.

This user guide provides both an introduction to the configuration options available to the 
user, and a detailed description of the configuration logic. This user guide includes the 
Extended Spartan-3A family, which includes the Spartan-3A, Spartan-3AN, and Spartan-
3A DSP platforms. The user guide also includes the earlier Spartan-3 and Spartan-3E 
families. Together, these families are sometimes referred to as the Spartan-3 generation. 
Most basic configuration features are similar between the families, and differences are 
noted where necessary.

Design Considerations
Before starting a new FPGA design, spend a few minutes to consider which FPGA 
configuration mode best matches your system requirements. Each configuration mode 
dedicates certain FPGA pins and may borrow others. Similarly, the configuration mode 
may place voltage restrictions on some FPGA I/O banks.
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If you have already selected an FPGA configuration mode, feel free to jump to the relevant 
section in the user guide. Otherwise, please evaluate the following design considerations 
to understand the options available.

Will the FPGA load configuration data itself from external or internal memory 
or will an external processor/microcontroller download configuration data?

Spartan-3 generation FPGAs are designed for maximum flexibility. The FPGA either 
automatically loads itself with configuration data, like a processor, or alternatively, another 
external intelligent device like a processor or microcontroller can download the 
configuration data. It is your choice and Table 1-2 summarizes the available options.

The self-loading FPGA configuration modes, generically called Master modes, are 
available with either a serial or byte-wide data path as shown in Figure 1-1. The Master 
modes leverage various types of nonvolatile memories to store the FPGA's configuration 
information, as shown in Table 1-1. In Master mode, the FPGA's configuration bitstream 
typically resides in nonvolatile memory on the same board, generally external to the 
FPGA. The FPGA internally generates a configuration clock signal called CCLK and the 
FPGA controls the configuration process.

Spartan-3AN FPGAs optionally configure from internal In-System Flash (ISF) memory, as 
shown in Figure 1-1c. In this mode, the configuration memory and the control and data 
signals are inside the package. Spartan-3AN FPGAs also optionally support all the other 
Spartan-3A FPGA configuration modes, as well.

http://www.xilinx.com
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Figure 1-1: Spartan-3 Generation Self-Loading (Master) Configuration Modes
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 Notes:
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Table 1-1: Spartan-3 Generation Self-Loading Configuration Modes and Memory Sources

External Memory
Information on 

FPGA Configuration Mode
Supported Spartan-3 Generation 

Families

Xilinx Platform Flash PROM
(either XCFxxS or XCFxxP PROMs)

Chapter 3, “Master Serial Mode” All

Xilinx Platform Flash PROM
(XCFxxP PROMs only)

Chapter 6, “Master Parallel Mode”

Primarily Spartan-3 FPGAs, 
but possible in 

Spartan-3E/3A/3AN/3A DSP FPGAs 
using BPI mode or Slave Parallel mode

http://www.xilinx.com/products/silicon_solutions/proms/pfp/
http://www.xilinx.com/products/silicon_solutions/proms/pfp/
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The downloaded FPGA configuration modes, generically called Slave modes, are also 
available with either a serial or byte-wide data path. In Slave mode, an external “intelligent 
agent” such as a processor, microcontroller, DSP processor, or tester downloads the 
configuration image into the FPGA, as shown in Figure 1-2. The advantage of the Slave 
configuration modes is that the FPGA bitstream can reside just about anywhere in the 
overall system. The bitstream could reside in Flash, on board, along with the host 
processor's code. It could reside on a hard disk. It could originate somewhere over a 
network connection. The possibilities are nearly endless.

The Slave Parallel mode, also called SelectMAP mode in other FPGA architectures, is 
essentially a simple byte-wide processor peripheral interface, including a chip-select input 
and a read/write control input. The Slave Serial mode is extremely simple, consisting only 
of a clock and serial data input.

The four-wire JTAG interface is common on many board testers and debugging hardware. 
In fact, the Xilinx programming cables for Spartan-3 generation FPGAs, listed below, use 
the JTAG interface for prototype download and debugging. Regardless of which 
configuration mode is ultimately used in the application, it is best to also include a JTAG 

Commodity Parallel 
NOR Flash PROM

Chapter 5, “Master BPI Mode”
Spartan-3E, Extended Spartan-3A 

family FPGAs

Commodity SPI Serial Flash PROM Chapter 4, “Master SPI Mode”
Spartan-3E, Extended Spartan-3A 

family FPGAs

Table 1-1: Spartan-3 Generation Self-Loading Configuration Modes and Memory Sources (Cont’d)

External Memory
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FPGA Configuration Mode
Supported Spartan-3 Generation 

Families

Figure 1-2: Spartan-3 Generation Downloaded (Slave) Configuration Modes
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configuration path for easy design development. Also see “Programming Cables and 
Headers,” page 207.

• Platform Cable USB II
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

• Parallel Cable IV
http://www.xilinx.com/products/devkits/HW-PC4.htm

Table 1-2: Spartan-3 Generation Configuration Options

Master 
Serial SPI BPI

Master 
Parallel

Internal 
Master SPI

Slave 
Parallel Slave Serial JTAG

Spartan-3 
Generation 
Families

All Spartan-3A
Spartan-3AN
Spartan-3A DSP

Spartan-3E

Spartan-3A
Spartan-3AN
Spartan-3A DSP

Spartan-3E

Spartan-3 
only

Spartan-3AN 
only

All All All

M[2:0] mode 
pin settings

<0:0:0> <0:0:1> <0:1:0>=Up
Spartan-3E 

only:
<0:1:1>=Dow

n

<0:1:1: <0:1:1> <1:1:0> <1:1:1> <1:0:1>

Data width Serial Serial Byte-wide Byte-wide Serial Byte-wide Serial Serial

Configuration 
memory 
source

Xilinx 
Platform 
Flash

Commodity 
SPI serial 
Flash

Commodity 
parallel NOR 
Flash or Xilinx 
parallel 
Platform 
Flash

Xilinx 
parallel 
Platform 
Flash, etc.

Internal In-
System 
Flash (ISF) 
memory

Any source 
via micro-
controller, 
CPU, Xilinx 
parallel 
Platform 
Flash, etc.

Any source 
via micro-
controller, 
CPU, Xilinx 
Platform 
Flash, etc.

Any source 
via micro-
controller, 
CPU, System 
ACE™ CF, 
etc.

Clock source
Internal oscillator External clock signal 

applied on CCLK pin
External 
clock on TCK 
pin

Total I/O pins 
borrowed 
during 
configuration

8 13 46 12 7 21 8 0

Configuration 
mode for 
downstream 
daisy-chained 
FPGAs

Slave 
Serial

Slave Serial Slave Parallel
Extended 

Spartan-3A 
family only:
Slave Serial

Slave 
Serial

Not 
Supported

Slave 
Parallel or 
Memory 
Mapped

Slave Serial JTAG

Stand-alone 
FPGA 
applications 
(no external 
download 
host)

Possible 
using 
XCFxxP 
Platform 
Flash, which 
optionally 
generates 
CCLK

Possible 
using 
XCFxxP 
Platform 
Flash, 
which 
optionally 
generates 
CCLK

http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/pfp/index.htm
http://www.xilinx.com/products/silicon_solutions/proms/system_ace/
http://www.xilinx.com/products/silicon_solutions/proms/system_ace/
http://www.xilinx.com
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm
http://www.xilinx.com/products/devkits/HW-PC4.htm
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Does the application use a single FPGA or multiple FPGAs?

Most Spartan-3 generation FPGA applications use a single FPGA. However, some 
applications require multiple FPGAs for increased logic density or I/O. Obviously, each 
FPGA in a multi-FPGA design could have its own separate configuration source. However, 
using a configuration daisy-chain, multiple FPGAs share a single configuration source. 
Daisy-chaining reduces system costs and simplifies programming and logistics.

The most common style is a serial daisy chain, illustrated in Figure 1-3a. Generally, the first 
device in the chain may use any one of the configuration modes, except JTAG mode. When 
the first device finishes loading its configuration bitstream, it passes data to the 
downstream FPGAs via its DOUT serial data output pin.

The JTAG interface also supports multi-FPGA configuration as shown in Figure 1-3b. The 
TDO serial data output is connected to the TDI serial data input of the next device in the 
chain. The mode select input, TMS, and the clock input, TCK, are common to all devices in 
the JTAG chain. The TDO serial data output of the last device in the chain feeds back to the 
JTAG connector.

Lastly, Figure 1-3c shows a parallel daisy chain. All of the FPGA connections are common, 
except for the chip select inputs, which are unique per FPGA.

Caution! The Spartan-3AN FPGA family does not support configuration daisy-chains when 
configured using the Internal Master SPI mode.

http://www.xilinx.com
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Is the “easiest possible” configuration solution the more important 
consideration?

Let's face it, in some applications, the easiest solution is the best solution. The best solution 
for these applications is either Internal Master SPI mode supported only by Spartan-3AN 
FPGAs or Master Serial mode using a Xilinx Platform Flash PROM, which is available for 
any Spartan-3 generation FPGA. These solutions use the fewest FPGA pins, have flexible 
I/O voltage support, and is fully supported by iMPACT, the Xilinx JTAG-based 
programming software.

Figure 1-3: Spartan-3 Generation Configuration Daisy-Chain Options

DIN

CCLK

Xilinx
FPGA

DOUT DIN

CCLK

Xilinx
FPGA

DOUT

TDI

TMS

TCK

TDO

Xilinx
FPGA

TDI

TMS

TCK

TDO

Xilinx
FPGA

TDI

TMS

TCK

TDO

Xilinx
FPGA

DIN

CCLK

Xilinx
FPGA

DOUT

CCLK

First FPGA

DOUT

(a) Serial Daisy Chain (using Slave Serial mode)

D[7:0]

RDWR_B

CCLK

BUSY

CSI_B

Spartan-3 
Generation

FPGA

D[7:0]

RDWR_B

CCLK

BUSY

CSI_B

Spartan-3
Generation

FPGA

DATA[7:0]

Select_FPGA1

Select_FPGA2

(b) Multi-FPGA configuration JTAG mode

(c) Parallel Daisy Chain (using Slave Parallel mode)
UG332_c1_03_080706

http://www.xilinx.com


34 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 1: Overview and Design Considerations
R

Will the application require a nonvolatile FPGA?

A nonvolatile FPGA provides convenience, security, and a cost-effective single-chip 
solution. Multiple FPGA bitstream options can be stored in a single device, plus any 
nonvolatile data needed for the system. Up to 11 Mb of user data is available in the 
Spartan-3AN family. For more information on using this memory space, see
UG333, Spartan-3AN FPGA In-System Flash user guide. 

Is the “lowest cost” solution the more important consideration?

For cost-sensitive applications, obviously the lowest-cost configuration solution is best. 
However, which option is lowest cost? The answer depends on your specific application.

• Is there spare external nonvolatile memory already available in the system in which to 
store the FPGA configuration bitstream(s)? The bitstream image can be stored in 
system memory, stored on a hard drive, or even downloaded remotely over a network 
connection. If so, consider one of the downloaded modes, Master Parallel Mode, Slave 
Serial Mode, or JTAG Configuration Mode and Boundary-Scan.

• Is there a way to consolidate the nonvolatile memory required in the application? For 
example, can the FPGA configuration bitstream(s) be stored with any processor code 
for the board? If the processor is a MicroBlaze™ soft processor core embedded in the 
FPGA, the FPGA configuration data and the MicroBlaze code can easily share the 
same nonvolatile memory device.

• Spartan-3A and Spartan-3E FPGAs optionally configure from commodity SPI serial 
Flash and parallel NOR Flash memories. Because these memories have common 
footprints and multiple suppliers, they may have lower pricing due to the highly-
competitive marketplace.

Is “fastest possible configuration time” the more important consideration?

Some applications require that the logic be operational within a short time. Certain FPGA 
configuration modes and methods are faster than others. The configuration time includes 
the initialization time plus the configuration time. Configuration time depends on the size 
of the device and speed of the configuration logic. For example, an XC3S1400A 
programming at 10 MHz will require 4755296 bits / 10 MHz or approximately 500 ms.

• At the same clock frequency, parallel configuration modes are inherently faster than 
the serial modes, since they program 8 bits at a time.

• Configuring a single FPGA is inherently faster than configuring multiple FPGAs in a 
daisy-chain. In a multi-FPGA design where configuration speed is a concern, 
configure each FPGA separately and in parallel.

• In Master modes, the FPGA internally generates the CCLK configuration clock signal. 
By default, the CCLK frequency starts out low but can be increased using the 
ConfigRate bitstream option. The maximum supported CCLK frequency setting 
depends on the read specifications for the attached nonvolatile memory. A faster 
memory may allow for faster configuration.

• Furthermore, in Master modes, the FPGA's CCLK output frequency varies with 
process, voltage, and temperature. The fastest guaranteed configuration rate depends 
on the slowest guaranteed CCLK frequency as shown in the respective data sheet. If 
an external clock is available on the board, it is also possible to configure the FPGA in 
a Slave mode while still using an attached nonvolatile memory.

http://www.xilinx.com/microblaze
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf


Spartan-3 Generation Configuration User Guide www.xilinx.com 35
UG332 (v1.5) March 16, 2009

Design Considerations
R

Will the FPGA or FPGAs be loaded with a single configuration image or 
loaded with multiple images?

In most FPGA applications, the FPGA is loaded only when the system is powered on.

However, some applications reload the FPGA multiple times while the system is 
operating, with different FPGA bitstreams for different functions. For example, the FPGA 
may be loaded with one bitstream to implement a power-on self-test, followed by a second 
bitstream with the final application. In many test equipment applications, the FPGA is 
loaded with different bitstreams to execute hardware-assisted tests. In this way, one 
smaller FPGA can implement the equivalent functionality of a larger ASIC or gate array 
device.

The downloaded or Slave configuration modes easily support reloading the FPGA with 
multiple images. However, this is also possible on Spartan-3E and Extended Spartan-3A 
family FPGAs using the MultiBoot feature. 

See Chapter 14, “Reconfiguration and MultiBoot” for more information.

What I/O voltages are required in the end application?

The chosen FPGA configuration mode places some constraints on the FPGA application, 
specifically the I/O voltage allowed on the FPGA's configuration banks.

For example, the SPI or BPI modes leverage third-party Flash memory components that 
are usually 3.3V-only devices. This then requires that the I/O voltage on the bank or banks 
attached to the memory also be 3.3V. In most applications, this is not an issue.

However, if a voltage other than 3.3V is required, specifically 2.5V, consider using a Xilinx 
Platform Flash PROM, which supports a range of output voltages via a separate supply on 
the Platform Flash PROM.

Will the FPGA application need to store nonvolatile data?

Some FPGA applications store data in external nonvolatile memory. Spartan-3E or 
Spartan-3A/3A DSP FPGAs provide some useful enhancements for these applications.

• Spartan-3E and Spartan-3A/3A DSP FPGAs can configure directly from external 
commodity serial or parallel Flash PROMs.

• The Flash PROM address, data, and control pins are only borrowed by the FPGA 
during configuration. After configuration, the FPGA has full read/write control over 
these pins.

• The FPGA configuration bitstreams and the application’s nonvolatile data can share 
the same PROM, reducing overall system cost.

See Chapter 4, “Master SPI Mode” or Chapter 5, “Master BPI Mode” for additional 
information.

Should the FPGA I/O pins be pulled High via resistors during configuration?

Some of the FPGA pins used during configuration have dedicated pull-up resistors during 
configuration. However, the majority of user-I/O pins have optional pull-up resistors that can 
be enabled during the configuration process. During configuration, a single control line 
determines whether the pull-up resistors are enabled or disabled. The name of the control pin 
varies by Spartan-3 generation family. On Extended Spartan-3A family FPGAs, this pin is called 
PUDC_B (pull-up during configuration, active Low) and on Spartan-3E FPGAs, this same pin is 
called HSWAP, short for hot-swap. On Spartan-3 FPGAs, the same pin is called HSWAP_EN.

http://www.xilinx.com
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Why enable the pull-up resistors during configuration? Floating signal levels are problematic in 
CMOS logic systems. Other logic components in the system may require a valid input level 
from the FPGA. The internal pull-up resistors generate a logic High level on each pin. 
Generally, a device driving signals into the FPGA can overcome the pull-up resistor. Similarly, 
an individual pin can be pulled down using an appropriately-sized external pull-down resistor.

Why disable pull-up resistors during configuration? In hot-swap or hot-insertion applications, 
the pull-up resistors provide a potential current path to the I/O power rail. Turning off the pull-
up resistors disables this potential path. However, then external pull-up or pull-down resistors 
may be required on each individual I/O pin.

See “Pull-Up Resistors During Configuration,” page 62 for additional information.

Does the application target a specific FPGA density or should it support 
migrating to other FPGA densities in the same package footprint?

The package footprint and pinouts for Xilinx Spartan-3 generation FPGAs are designed to 
allow migration between different densities within a specific family. For example, three 
different Spartan-3E FPGAs support the identical package footprint when using the 320-
ball fine-pitch ball grid array package (FG320). As shown in Table 1-4, the smallest of 
devices, the XC3S500E, requires approximately 2.2 Mbits for configuration. The largest of 
these devices, the XC3S1600E, requires 5.7 Mbits for configuration.

Likewise, an FPGA application may store other nonvolatile data in the Flash memory, 
requiring a larger storage device.

To support design migration between device densities, allow sufficient configuration 
memory to cover the largest device in the targeted package. In the example provided 
above, allow up to 5.7 Mbits for configuration. This allows the application to use any 
Spartan-3E FPGA available in the FG320 package.

In downloaded applications, simply reserve enough space in memory for the largest 
anticipated, uncompressed FPGA bitstream.

In self-loaded applications, use a PROM footprint and the associated FPGA configuration 
mode to facilitate easy migration. Table 1-3 provides example migration options using 
different FPGA configuration modes, different PROM families, and different package 
options. For example, Xilinx Platform Flash provides excellent migration between 1 to 4 
Mbits using the XCFxxS serial family and between 8 to 32 Mbits using the XCFxxP parallel 
family. If an application spans between the two, use two separate footprints, one for each 
Platform Flash sub family. Be aware that the XCFxxP Flash family requires a 1.8V core 
supply voltage input while the XCFxxS requires 3.3V. Both families provide 3.3V I/O.

http://www.xilinx.com
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The SPI serial Flash vendors offer a wider migration range but do require a multi-package 
footprint. For example, the Atmel DataFlash SPI serial Flash family spans the range of 
1 Mbit to 64 Mbit using a single footprint that accommodates the JEDEC and EIAJ versions 
of the 8-pin SOIC package along with the 8-connector CASON package. The STMicro 
(Numonyx) SPI serial Flash has uses a different footprint that uses a combined 8-pin and 
16-pin SOIC footprint and is also compatible with devices from multiple SPI Flash 
vendors. See “Multi-Package Layout,” page 141.

Similarly, parallel Flash supports a wide density range in a common, multi-vendor 
package footprint.

What is the anticipated production lifetime for the end product?

Consider whether your application has a relatively short or a relatively long production 
lifetime. Commodity memories generally have a shorter production lifetime than the 
proprietary Xilinx Platform Flash PROMs. For example, if building an industrial 
application that will be manufactured for five years or more, then Xilinx Platform Flash 
PROMs may provide better long-term availability. Similarly, the In-System Flash (ISF) 
memory on Spartan-3AN comes integrated with the FPGA.

Products with shorter production lifetimes may benefit from the multi-vendor pricing and 
multi-sourcing of commodity memories.

Table 1-3: PROM Families and Footprint Compatible Package Migration

Config. 
Mode

PROM
Family

Package 
Option

PROM Density in Bits/Associated Part Numbers

1M 2M 4M 8M 16M 32M 64M

Master 
Serial 
Mode

XCFxxS serial 
Platform Flash VO20 XCF01S XCF02S XCF04S – – – –

XCFxxP parallel 
Platform Flash

VO48 – – – XCF08P XCF16P XCF32P –

FS48 – – – XCF08P XCF16P XCF32P –

Master 
SPI Mode

ST-compatible 
SPI Flash 
(Multi-Package 
Footprint)

8SOIC JEDEC
8SOIC EIAJ

16SOIC
8MLP

Part number varies by vendor.

Atmel 
AT45DBxxxD 
SPI Flash 
(Multi-Package 
Footprint)

8SOIC JEDEC
8SOIC EIAJ

8CASON
‘011D ‘021D ‘041D ‘081D ‘161D ‘321D ‘642D

Master 
BPI Mode

x8 Parallel NOR 
Flash 40-pin TSOP Part number varies by vendor. – –

x8/x16 Parallel 
NOR Flash

48-pin TSOP – Part number varies by vendor.

x8 or x8/x16 
Parallel NOR 
Flash

48-ball FBGA – Part number varies by vendor.

Notes: 
1. Platform Flash PROMs also work in Master BPI mode, as described in “Using Xilinx Platform Flash PROMs with Master BPI Mode,” 

page 158.

http://www.xilinx.com
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Do you want to protect your FPGA bitstream against unauthorized 
duplication?

Like processor code, the bitstream that defines the FPGA’s functionality loads into the 
FPGA during power-on. Consequently, this means that an unscrupulous company can 
capture the bitstream and create an unauthorized copy of the design.

Like processors, there are multiple techniques to protect the FPGA bitstream and any 
intellectual property (IP) cores embedded in the FPGA. The most powerful of these is 
called authentication and is more fully described in Chapter 15, “Protecting FPGA 
Designs.”

Do you want to load multiple FPGAs with the same configuration bitstream?

Generally, there is one configuration bitstream image per FPGA in a system. As shown in 
Figure 1-3, multiple, different FPGA bitstream images can share a single configuration 
PROM by leveraging a configuration daisy-chain. However, what if all the FPGAs in the 
application have the same part number and use the same bitstream? Fortunately, in this 
case, only a single bitstream image is required. An alternative solution, called a ganged or 
broad-side configuration, loads multiple, similar FPGAs with the same bitstream. See 
Figure 3-5, page 87 or Figure 4-7, page 120 for an example.

Caution! The Spartan-3AN FPGA family does not support configuration daisy-chains when 
configured using the Internal Master SPI mode.

Will the FPGA be used in a PCI™ application?

The PCI™ Local Bus Specification, Revision 3.0 (“the PCI specification”) defines a number 
of power and reset requirements. These requirements, when considered in an FPGA 
implementation, create several challenges that must be addressed for long term reliability 
and broad interoperability. See XAPP457, “Powering and Configuring Spartan-3 
generation FPGAs in Compliant PCI Applications”, for more details.

Where to go for debugging support

This user guide attempts to make FPGA configuration easy and straight forward. Should 
problems occur, please visit the interactive Configuration Debug Guide to you through the 
configuration debugging process.

• Configuration Debug Guide
http://survey.xilinx.com/ss/wsb.dll/Xilinx/Configuration_Debug_Guide.htm

FPGA Configuration Bitstream Sizes
By default, FPGA configuration images are uncompressed. In an uncompressed FPGA 
bitstream, the size of the image is constant regardless of the complexity of the underlying 
FPGA application. Put another way, a single inverter requires the same bitstream size as a 
complex MPEG4 encoder implemented in the same FPGA array.

Uncompressed Bitstream Image Size
Table 1-4 provides the number of bits in an uncompressed FPGA bitstream for each 
specific part number of the Spartan-3 generation.

http://www.xilinx.com/support/documentation/application_notes/xapp457.pdf
http://www.xilinx.com
http://survey.xilinx.com/ss/wsb.dll/Xilinx/Configuration_Debug_Guide.htm
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Bitstream Format
The typical FPGA user does not need a bit-level understanding of the configuration 
stream. However, for the purpose of understanding configuration options and for 
debugging, an overview of the bitstream format is helpful. For more details, see the 
chapter Configuration Details and XAPP452: Spartan-3 Advanced Configuration Architecture.

Synchronization Word

Embedded at the beginning of an FPGA configuration bitstream is a special 
synchronization word. The synchronization word alerts the FPGA to upcoming 
configuration data and aligns the configuration data with the internal configuration logic. 
Any data on the configuration input pins prior to synchronization is ignored. Because the 
synchronization word is automatically added by the Xilinx bitstream generation software, 
this step is transparent in most applications. The length and contents of the 
synchronization word differ between the Extended Spartan-3A family FPGA families and 
the Spartan-3 and Spartan-3E FPGA families, as outlined in Table 12-3.

Table 1-4: Number of Bits in an Uncompressed FPGA Bitstream Image

Spartan-3 Generation
FPGA Family

FPGA Part Number
Number of

Configuration Bits

Spartan-3A/3AN FPGA

XC3S50A/AN 437,312

XC3S200A/AN 1,196,128

XC3S400A/AN 1,886,560

XC3S700A/AN 2,732,640

XC3S1400A/AN 4,755,296

Spartan-3A DSP
XC3SD1800A 8,197,280

XC3SD3400A 11,718,304

Spartan-3E FPGA

XC3S100E 581,344

XC3S250E 1,353,728

XC3S500E 2,270,208

XC3S1200E 3,841,184

XC3S1600E 5,969,696

Spartan-3 FPGA

XC3S50 439,264

XC3S200 1,047,616

XC3S400 1,699,136

XC3S1000 3,223,488

XC3S1500 5,214,784

XC3S2000 7,673,024

XC3S4000 11,316,864

XC3S5000 13,271,936

http://www.xilinx.com
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Array ID

Next the array IDCODE is embedded in the bitstream so that the FPGA can check that it 
matches its internal array ID. This prevents the FPGA from mistakenly attempting to load 
configuration data intended for a different FPGA array. For example, the array ID check 
prevents an XC3S1000 from being configured with an XC3S200 bitstream. Table 12-4 shows 
the array ID codes.

Data Frames

Next is the internal configuration memory, partitioned into segments called "data frames." 
The configuration memory can be visualized as a rectangular array of bits. The bits are 
grouped into vertical frames that are one-bit wide and extend from the top of the array to 
the bottom. A frame is the atomic unit of configuration. It is the smallest portion of the 
configuration memory that can be written to or read from. The number and size of frames 
varies with device size (see Table 1-5). The total number of configuration bits for a 
particular device is calculated by multiplying the number of frames by the number of bits 
per frame, and then adding the total number of bits needed to perform the configuration 
register writes.
 

Table 1-5: Configuration Data Frames

FPGA Family FPGA Part Number
Number of

Frames
Frame Length 

in Bits

Spartan-3A/3AN FPGA

XC3S50A/AN 367 1,184

XC3S200A/AN 540 2,208

XC3S400A/AN 692 2,720

XC3S700A/AN 844 3,232

XC3S1400A/AN 996 4,768

Spartan-3A DSP
XC3SD1800A 1,414 5,792

XC3SD3400A 1,718 6,816

Spartan-3E FPGA

XC3S100E 368 1,568

XC3S250E 577 2,336

XC3S500E 729 3,104

XC3S1200E 958 4,000

XC3S1600E 1,186 5,024

Spartan-3 FPGA

XC3S50 368 1,184

XC3S200 615 1,696

XC3S400 767 2,208

XC3S1000 995 3,232

XC3S1500 1,223 4,384

XC3S2000 1,451 5,280

XC3S4000 1,793 6,304

XC3S5000 1,945 6,816
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CRC

Next is the Cyclic Redundancy Check (CRC) value. As the configuration data frames are 
loaded, the FPGA calculates a CRC value. After the configuration data frames are loaded, 
the configuration bitstream issues a Check CRC instruction to the FPGA. If the CRC value 
calculated by the FPGA does not match the expected CRC value in the bitstream, then the 
FPGA pulls INIT_B Low and aborts configuration. Refer to “CRC Checking during 
Configuration,” page 309 for additional information.

Bitstream Compression
By default, FPGA bitstreams are uncompressed. However, Spartan-3 generation FPGAs 
support basic bitstream compression. The compression is fairly simple, yet effective for 
some applications. The ISE® bitstream generator software examines the FPGA bitstream 
for any duplicate configuration data frames. These duplicates occur often in the following 
situations.

• FPGA designs with unused block RAM or hardware multipliers.

• FPGA design with low logic utilization, i.e., most of the FPGA array is empty.

The ISE software can then generate a compressed FPGA bitstream. When the FPGA 
configures, the internal configuration controller copies the redundant data frame to 
multiple locations. Because of the extra processing required by the FPGA configuration 
controller, the maximum configuration clock frequency is reduced to 20 MHz on Spartan-
3 and Spartan-3E FPGAs, as shown in Table 1-6. Extended Spartan-3A family FPGAs 
support the full CCLK frequency range, even with compressed bitstreams.

The amount of compression is non-deterministic. Changes to the source FPGA design may 
cause the size of the compressed bitstream to grow. Sparse, mostly-empty FPGA designs 
have the greatest overall compression factor. Similarly, FPGA designs with an empty 
column of block RAM have a high compression factor.

The overall benefits of a compressed bitstream are as follows.

• Smaller memory footprint.

• Faster programming time for nonvolatile memory.

There are two methods to generate a compressed bitstream, from within the ISE Project 
Navigator or from the command line.

From Project Navigator, check the Enable BitStream Compression option, shown as Step 
4 in Figure 1-6.

From the command line, add the -g Compress option to the BitGen command line.

bitgen -g Compress <other options>...

Furthermore, the parallel Platform Flash PROMs offer their own compression 
mechanisms.

Table 1-6: Maximum CCLK Frequency When Using Compressed Bitstream

Spartan-3 
FPGA

Spartan-3E 
FPGA

Spartan-3A
Spartan-3AN

Spartan-3A DSP
FPGA

Maximum CCLK Frequency When 
Using Compressed Bitstream

20 MHz 20 MHz 80 MHz
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Packet Format
A Spartan-3 generation bitstream consists of a specific sequence of writes to the 
configuration registers. After synchronization, all data, register writes, and frame data are 
encapsulated in packets. There are two kinds of packets: Type 1 and Type 2. A Type 1 
packet consists of two parts: a header and the data. The header (see Figure 1-4) describes 
which register is being accessed, whether it is a read or write operation, and the size of the 
data to follow. The data portion, always immediately following the header, is the number 
of 32-bit words specified in the header.

For information on Spartan-3 FPGA packet formats, see XAPP452 Spartan-3 Advanced 
Configuration Architecture.

Setting Bitstream Options, Generating an FPGA Bitstream
After specifying and compiling an FPGA design, generate an FPGA bitstream using either 
the ISE Project Navigator or the bitstream generator command-line utility, BitGen. The 
specific details of the bitstream options are described throughout this user guide.

ISE Software Project Navigator
Figure 1-5 shows how to set options for the Bitstream Generator from within the ISE 
Project Navigator window.

1. Right-click Generate Programming File.

2. Click Properties.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Type Op Register Address Word Count

0 0 1 x x x x x x x x x x x x x

1. Type = "001" for Type 1 and "010" for Type 2
2. Op = "10" for Write and "01" for Read

Figure 1-4: Extended Spartan-3A Family Type 1 Packet 
Header

Figure 1-5: Setting Bitstream Generator Options from ISE Project Navigator

2

1

UG332_c1_04_120306
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3. Click General Options, as shown in Figure 1-6.

4. To compress the FPGA bitstream, check Enable BitStream Compression.

5. To enter specific bitstream generator command-line options that are not already 
supported by the graphical interface, enter the option strings in the space provided.

Figure 1-6: Bitstream Generator General Options

ug332_C1_05_091106

4

3

5
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6. Click Configuration Options, as shown in Figure 1-7.

7. If using one of the Master configuration modes, set the CCLK Configuration Rate 
frequency. This setting is not used for Slave mode configuration. The specific setting 
depends on the specific FPGA family, the attached configuration memory, and the 
configuration mode. Specific values are recommended in later chapters, depending on 
the speed of the attached memory.

8. The FPGA’s DONE and PROG_B (Program) pins each have a dedicated pull-up 
resistor during configuration. These resistors become optional after configuration. The 
specific example is from a Spartan®-3E FPGA application. Spartan-3 and Spartan-3A 
FPGAs have additional options.

9. The FPGA’s JTAG pins each have a dedicated pull-up resistor during configuration. 
These resistors become optional after configuration.

10. By default, unused I/O blocks are configured as inputs with a pull-down resistor. 
Other options are available. See UnusedPin bitstream option.

11. Each FPGA bitstream can include an 8-digit hexadecimal (32-bit) identifier that can be 
read via the FPGA’s JTAG port.

Figure 1-7: Bitstream Generator Configuration Options

UG332_c1_06_091106
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12. Click Startup Options, as shown in Figure 1-8.

13. After the FPGA configuration bitstream is loaded into the FPGA, the FPGA enters its 
Startup phase. The timing of each Startup cycle is controlled by a selectable clock 
source. See “Startup Clock Source,” page 250.

14. The Startup phase of FPGA configuration provides six different cycles to synchronize 
the following startup events. The event can be assigned to a specific cycle or be 
synchronized to the DONE signal. See “Startup,” page 248.

♦ The timing of when output drivers are enabled 

♦ The timing of when the write-protect lock is removed from writable clocked 
elements

♦ The timing of when the DONE pin goes active.

15. If the DCM_WAIT=TRUE attribute is set on a Digital Clock Manager (DCM) within the 
FPGA, the FPGA optionally waits for the Delay-Locked Loop (DLL) within the DCM 
to lock to the incoming clock signal before finishing configuration. See “Waiting for 
DCMs to Lock, DCI to Match,” page 250.

16. The FPGA’s DONE pin can actively drive High after configuration. This option should 
only be set for single-FPGA applications or for the last FPGA in a multi-FPGA 
configuration daisy chain. See “DONE Pin,” page 52.

Figure 1-8: Bitstream Generator Startup Options
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17. Click Readback Options, as shown in Figure 1-9. 

18. By default, FPGA bitstreams can be read back via JTAG. Other options exist to disable 
FPGA readback. See “Basic FPGA Hardware-Level Security Options,” page 289.

19. Click OK when finished.

BitGen Command Line Utility
For designers that prefer command-line processing and to support scripting, the ISE 
software also provides a command-line bitstream generator utility called BitGen.

For a quick summary of available options for particular FPGA family, type the command 
shown in Table 1-7 in a DOS box or command window.

For complete documentation on the bitstream generator software, please refer to the 
BitGen chapter of the following software manual.

• ISE 10.1 Development System Reference Guide
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf

Figure 1-9: Bitstream Generator Readback Options
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Table 1-7: Command Line to Review Bitstream Generator Options per Family

FPGA Family Command Line

Spartan-3 FPGAs bitgen -help spartan3

Spartan-3E FPGAs bitgen -help spartan3e

Spartan-3A FPGAs bitgen -help spartan3a

Spartan-3AN FPGAs bitgen -help spartan3an

Spartan-3A DSP FPGAs bitgen -help spartan3adsp

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf
http://www.xilinx.com
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Additional Resources
The following also provide information related to FPGA configuration.

Data Sheets
DS529, Spartan-3A FPGA Family: Data Sheet

DS557, Spartan-3AN FPGA Family Data Sheet

DS610, Spartan-3A DSP FPGA Family: Data Sheet

DS312, Spartan-3E FPGA Family: Complete Data Sheet

DS099, Spartan-3 FPGA Family Data Sheet

Application Notes

Configuration

www.xilinx.com/support/documentation/topicfpgafeaturedesign_configur.htm

Reference Designs for Boards

Spartan-3A/3AN: www.xilinx.com/products/boards/s3astarter/reference_designs.htm

Spartan-3E: www.xilinx.com/products/boards/s3estarter/reference_designs.htm

Spartan-3: www.xilinx.com/products/boards/DO-SPAR3-DK/reference_designs.htm

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds557.pdf
www.xilinx.com/support/documentation/data_sheets/ds610.pdf
www.xilinx.com/support/documentation/data_sheets/ds312.pdf
www.xilinx.com/support/documentation/data_sheets/ds099.pdf
www.xilinx.com/support/documentation/data_sheets/ds529.pdf
www.xilinx.com/support/documentation/topicfpgafeaturedesign_configur.htm
www.xilinx.com/products/boards/s3astarter/reference_designs.htm
www.xilinx.com/products/boards/s3estarter/reference_designs.htm
www.xilinx.com/products/boards/DO-SPAR3-DK/reference_designs.htm
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Chapter 2

Configuration Pins and Behavior during 
Configuration

The FPGA’s configuration flexibility means that many pins serve multiple purposes. Some 
pins are merely borrowed during configuration, only to be released back to the FPGA 
application as user-defined I/O pins. Other pins are dedicated to configuration. This 
chapter describes how these various pins behave during the configuration process. During 
configuration includes the time when the FPGA first powers up, after PROG_B is pulsed 
Low, or during configuration or re-configuration including MultiBoot. 

General Configuration Control Pins
A few pins control the overall FPGA configuration process. These include the following 
and are similar on all Spartan®-3 generation FPGAs. The four-wire JTAG interface is a 
separate and independent configuration interface discussed primarily in Chapter 9, “JTAG 
Configuration Mode and Boundary-Scan”.

• The mode select pins, M[2:0], define the configuration mode that the FPGA uses to 
load its configuration data.

• The DONE pin, when High, indicates when the FPGA successfully completed loading 
its configuration data.

• The program pin, PROG_B, initiates the configuration process. The FPGA also 
automatically initiates configuration on power-up. The JTAG interface has a separate 
JTAG command to initiate configuration. The PROG_B pin also forces a master reset 
on the FPGA.

• The configuration clock pin, CCLK, defines the timing for the FPGA’s configuration 
process. If the M[2:0] mode select pins define a Master mode, then the FPGA 
internally generates CCLK. If the M[2:0] mode select pins define a Slave mode, then 
CCLK is an input to the FPGA from an external timing reference.

• The INIT_B pins performs multiple functions. At the start of configuration, INIT_B 
goes Low indicating that the FPGA is clearing its internal configuration memory--a 
process called housecleaning. Later, when the FPGA is actively loading its 
configuration bitstream, INIT_B goes Low if the bitstream fails its CRC check. On 
Extended Spartan-3A family FPGAs, if so enabled in the FPGA application, the 
INIT_B pin also potentially signals a post-configuration CRC error.

• During configuration, some pins have built-in pull-up resistors. The remaining pins 
each have an optional pull-up resistor controlled by a single control input pin. This 
pin has different names on different architectures as shown in Table 2-12.

http://www.xilinx.com
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Choose a Configuration Mode: M[2:0]
The mode select pins, M[2:0], define the configuration mode that the FPGA uses to load its 
bitstream, as shown in Table 2-1. The logic levels applied to the mode pins is sampled on 
the rising edge of INIT_B, immediately after the FPGA completes initializing its internal 
configuration memory.

M[2:0] Functional Differences between Spartan-3 Generation Families

Table 2-2 summarizes the slight differences in functionality between the Spartan-3 
generation families.

Table 2-1: Mode Pin Settings and Associated FPGA Configuration Mode by Family

M[2:0]

FPGA Family

Spartan-3 Spartan-3E 
Spartan-3A

Spartan-3A DSP
Spartan-3AN

<0:0:0> Master Serial (Platform Flash) Mode

<0:0:1> Reserved Master SPI Mode

<0:1:0> Reserved BPI Up

<0:1:1> Master Parallel BPI Down Reserved
Internal Master 

SPI

<1:0:0> Reserved

<1:0:1> JTAG Mode

<1:1:0> Slave Parallel Mode

<1:1:1> Slave Serial Mode

Table 2-2: M[2:0] Mode Pin Differences between Spartan-3 Generation FPGAs

Spartan-3 
FPGA

Spartan-3E 
FPGA

Extended 
Spartan-3A 

Family FPGAs

Available as possible user I/O pin after 
configuration?

No Yes Yes

Dedicated internal pull-up resistor 
during configuration?

Yes No Yes

Mechanism to define post-configuration 
behavior

M2Pin, 
M1Pin, 
M0Pin 

bitstream 
options

User I/O User I/O

Input supply voltage VCCAUX VCCO_2 VCCO_2

Output supply voltage N/A VCCO_2 VCCO_2

Same voltage as other pins in the 
configuration interface?

Only when 
interface is at 

2.5V
Yes Yes

http://www.xilinx.com
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Extended Spartan-3A Family and Spartan-3E FPGA Families

On the Extended Spartan-3A and Spartan-3E FPGA families, the M[2:0] mode select pins 
are borrowed during configuration and become full user I/O after configuration 
successfully completes. The M[2:0] pins are powered by the VCCO_2 supply.

Spartan-3E FPGAs

The Spartan-3E FPGA mode pins do not have dedicated pull-up resistors during 
configuration. However, these pins have optional pull-up resistors during configuration, 
controlled by the Spartan-3E HSWAP pin. If the mode pins are unconnected and if the 
HSWAP is Low, then the Spartan-3E FPGA defaults to the Slave Serial configuration mode 
(M[2:0] = <1:1:1>.

Extended Spartan-3A Family FPGAs

The Extended Spartan-3A family FPGA mode pins have dedicated internal pull-up 
resistors during configuration, regardless of the PUDC_B pin. If the mode pins are 
unconnected, then the Extended Spartan-3A family FPGA defaults to the Slave Serial 
configuration mode (M[2:0] = <1:1:1>.

Spartan-3 FPGA Family

On the Spartan-3 FPGA family, the M[2:0] mode select pins are dedicated inputs, powered 
by the VCCAUX supply.

Before and during configuration, the mode pins have a relatively strong internal pull-up 
resistor to the VCCAUX supply, regardless of the HSWAP_EN pin.

If the mode pins are unconnected, then the FPGA defaults to the Slave Serial configuration 
mode (M[2:0] = <1:1:1>. These resistors can be controlled after the Spartan-3 FPGA 
successfully configures using the bitstream generator options M2Pin, M1Pin, and M0Pin. 
These options define whether a pull-up resistor, pull-down resistor, or no resistor is 
present on its respective mode pin, M0, M1, or M2. By default, all three pins will have an 
internal pull-up resistor to VCCAUX.

Defining M[2:0] after Configuration for Minimum Power Consumption

During configuration, the M[2:0] pin may be tied directly to power or ground, tied High or 
Low using external resistors, or actively driven by an external component. To further 
minimize power consumption, adjust the post-configuration behavior of the M[2:0] pins so 
that they match the required configuration setting shown in Table 2-1, page 50, either by 
defining their value in the FPGA application or by adjusting the associated bitstream 
options. Essentially, avoid any unnecessary current paths through pull-up or pull-down 
resistors.

Table 2-3 summarizes the default post-configuration behavior on both Spartan-3 and 
Spartan-3E/3A/-3AN FPGA families, which have slightly different functionality.
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DONE Pin
The FPGA actively drives the DONE pin Low during configuration. When the 
configuration process successfully completes, the FPGA either actively drives the DONE 
pin High (“DriveDone”) or allows the DONE pin to float High using either an internal or 
external pull-up resistor, controlled by the DonePin bitstream generator option.

In a multi-FPGA daisy-chain or broadside configuration, the open-drain option permits 
the DONE lines of multiple FPGAs to be tied together, so that the common node transitions 
High only after all of the FPGAs have successfully completed configuration. Externally 
holding the open-drain DONE pin Low stalls the “Startup” sequence.

The DONE pin is powered by the VCCAUX supply. The DONE pin functionality is common 
to all Spartan-3 generation FPGAs.

Associated Bitstream Generator (BitGen) Options

The DONE pin has various option bits that controls this pin’s behavior during and after 
configuration. These options are summarized immediately below and described in detail 
on the next few pages.

• DriveDone defines whether the DONE pin is an active driver or an open-drain 
output.

• DonePin defines whether or not the DONE pin has an internal pull-up resistor.

• DONE_cycle defines the Startup state where is DONE driven High or released to float 
High.

• DonePipe adds an extra pipelining stage before the FPGA actually completes 
configuration.

Table 2-3: Default Post-Configuration Behavior of M[2:0] Pin

Spartan-3 FPGAs Spartan-3E, Extended Spartan-3A Family FPGAs

After configuration, the M[2:0] 
pins have optional pull-up and 
pull-down resistors controlled by 
the M2Pin, M1Pin, and M0Pin 
bitstream options. Unless changed 
in the bitstream, all three M[2:0] 
have pull-up resistors.

After configuration, the M[2:0] pin are available as user-
I/O pins. If these pins are not defined in the FPGA 
application, then these pins are treated as unused I/O 
pins. The behavior of unused I/O pins is defined by the 
UnusedPin bitstream option. Unless defined in the 
FPGA application or changed via the UnusedPin option, 
all three M[2:0] have internal pull-down resistors.
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DriveDone

The DriveDone bitstream generator option, shown in Table 2-4, defines whether the DONE 
pin has a totem-pole output that actively drives High or acts an open-drain output. If 
configured as an open-drain output—which is the default behavior—then a pull-up 
resistor is required to produce a High logic level. The DonePin bitstream option controls 
the pull-up resistor.

Set DriveDone:Yes in single-FPGA applications or for the first design in a multi-FPGA 
design.

This option is set graphically in the “ISE Software Project Navigator,” page 42 by checking 
Drive Done Pin High during Step 16 in Figure 1-8, page 45.

See Table 2-6 for the interaction between DriveDone and DonePin.

DonePin

The DonePin bitstream generator option, shown in Table 2-5, defines whether or not an 
internal pull-up resistor is present on the DONE pin to pull the pin to VCCAUX. If the 
pull-up resistor is eliminated, then the DONE pin must be pulled High using an external 
300Ω to 3.3kΩ pull-up resistor.

This option is set graphically in the “ISE Software Project Navigator,” page 42 by selecting 
the Configuration Pin Done setting during Step 8 in Figure 1-7, page 44.

See Table 2-6 for the interaction between DriveDone and DonePin.

Table 2-4: DriveDone Bitstream Generator Option

Setting Description

No
Default. The DONE pin is an open-drain output. A pull-up resistor to VCCAUX is 
required. An internal pull-up resistor is available using the DonePin:Pullup 
bitstream generator option.

Yes
The DONE pin actively drives High when the FPGA completes the configuration 
process.

Table 2-5: DonePin Bitstream Generator Option

Setting Description

Pullup Default. After configuration, the DONE pin has an internal pull-up 
resistor to VCCAUX.

Pullnone

There is no internal pull-up resistor on DONE. An external 300Ω to 3.3kΩ 
pull-up resistor to VCCAUX is required. The pull-up resistor must be 
strong enough to pull the DONE pin to a valid High within less than one 
CCLK cycle.
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DONE_cycle

The DONE_cycle option controls during which cycle the DONE pin is asserted during the 
Startup sequence, just prior to the completion of a successful configuration. See “Startup,” 
page 248.

This option is set graphically in the “ISE Software Project Navigator,” page 42 by adjusting 
the Done (Output Events) setting during Step 14 in Figure 1-8, page 45.

DonePipe

The DonePipe option is used in a some multi-FPGA applications.

After all DONE pins are released in a multi-FPGA configuration, the DONE pin must 
transition from Low to High in a single Startup clock cycle (StartupClk). If additional time 
is required for the DONE signal to rise within a single Startup cycle, set the DonePipe:Yes 
bitstream generator option for all devices in the daisy chain or broadside configuration.

Set this option graphically in “ISE Software Project Navigator,” page 42 by checking the 
Enable Internal Done Pipe option box shown in Figure 1-8, page 45.

DONE Synchronizes Multiple FPGAs in a Daisy Chain or Broadside 
(Ganged) Configuration

In a single-FPGA application, the DONE pin merely indicates when the FPGA successfully 
configures.

In a multi-FPGA daisy-chain or broadside application, however, the DONE pin also 
synchronizes the “Startup” sequence of all the FPGAs, ensuring that the FPGAs transition 
smoothly from the configuration process to the active FPGA application.Figure 2-1 
provides a three-FPGA example. In a daisy-chain application, FPGAs of different densities 

Table 2-6: Interaction between DriveDone and DonePin Bitstream Generator Options for DONE Pin

DONE Actively Drives
Open-Drain with

Internal Pull-up (Default)
Open-Drain with
External Pull-Up

Diagram

DriveDone: Yes No No

DonePin: Pullnone Pullup Pullnone

Recommended Usage for Various Configuration Topographies

Single FPGA Best OK OK but requires external pull-up

Daisy-Chain Only on first FPGA 
in the chain

For all down-stream FPGAs in 
the chain. Also allowed on the 

first FPGA in the chain.
OK but requires external pull-up

Broadside Do Not Use!
All FPGAs in a broadside 

configuration
OK but requires external pull-up

FPGA

DONE

Active driver

VCCAUX

UG332_c2_01_120106a

LVCMOS

Startup
Sequencer

FPGA

DONE

VCCAUX

VCCAUX

UG332_c2_01_120106b

Startup
Sequencer

FPGA

DONE

VCCAUX

VCCAUX

330Ω to 
3.3kΩ

UG332_c2_01_120106c

Startup
Sequencer
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and architectures are configured in series with different bitstreams. In a broad-side 
example, multiple, identical FPGAs are simultaneously loaded with the same bitstream.

Connect All DONE Pins

Connect the DONE pins for all devices in a multi-FPGA daisy chain or broadside 
configuration. For debugging purposes, it is often helpful to have a way of disconnecting 
individual DONE pins from the common DONE signal, so that devices can be individually 
configured through the serial or JTAG interface. In Figure 2-1, the FPGAs can be 
disconnected by temporarily remove the 0-ohm resistors on the board. Stake-pin or wire 
jumpers also work.

DONE Pin Bitstream Generator Options

When generating the bitstream files for each of the FPGAs in the daisy-chain or broadside 
configuration, set the DONE pin options as indicated in Table 2-6, page 54.

Also, to successfully configure a daisy-chain, the GTS_cycle bitstream option must be set 
to a Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the 
software default setting. Optionally, set GTS_cycle:Done. 

Cautions When Mixing Spartan-3A FPGAs with VCCAUX = 3.3V and Other 
Spartan-3 Generation FPGAs in a Daisy-Chain Configuration

The DONE pin is powered by the FPGA’s VCCAUX supply. The VCCAUX voltage on 
Spartan-3 and Spartan-3E FPGAs is solely 2.5V. For Spartan-3A FPGAs, however, the 
VCCAUX voltage can be either 2.5V or 3.3V. Spartan-3AN FPGAs require VCCAUX at 3.3V. 
See “VCCAUX Level”.

Caution! In a multi-FPGA configuration that mixes Extended Spartan-3A family and other 
Xilinx® FPGAs where the Extended Spartan-3A family VCCAUX = 3.3V, check for voltage 
compatibility on the common DONE node.

Figure 2-1: DONE and INIT_B Synchronize Daisy-Chain or Broadside Configurations

INIT_B
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FPGA

0Ω

0Ω
INIT_B

DONE

FPGA

0Ω

0Ω
INIT_B

DONE

FPGA

0Ω

0Ω

33
0Ω

VCCO_2

4.
7k

Ω

VCCAUX

Common INIT_B node
synchronizes initialization 
(clearing configuration memory)
between different array sizes

Common DONE node 
synchronizes the Startup 
sequence between 
different FPGAs

0Ω resistors provide a means 
to isolate an individual FPGA to 
easily debug a configuration 
issue UG332_c2_02_111406
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Program or Reset FPGA: PROG_B
The PROG_B pin is an asynchronous control input to the FPGA. When Low, the PROG_B 
pin resets the FPGA, initializing the configuration memory. When released, the PROG_B 
begins the configuration processes. The initialization process does not start until PROG_B 
returns High. Asserting PROG_B Low for an extended period delays the configuration 
process. The various PROG_B functions are outlined in Table 2-7.

At power-up or after a master reset, PROG_B always has a pull-up resistor to VCCAUX, 
regardless of the “Pull-Up Resistors During Configuration” control input. After 
configuration, the bitstream generator option ProgPin defines whether or not the pull-up 
resistor is remains active. By default, the ProgPin option retains the pull-up resistor.

After configuration, hold the PROG_B input High. Any Low-going pulse on PROG_B, 
lasting 500 ns or longer (300 ns in the Spartan-3 FPGAs), restarts the configuration process.

The PROG_B pin functionality is identical among all Spartan-3 generation FPGAs.

Configuration Clock: CCLK
The configuration clock signal, CCLK, synchronizes the reading or writing of 
configuration data. In Master modes, CCLK is generated from an internal oscillator within 
the FPGA. In Slave modes, CCLK is an input, driven by the external device providing the 
configuration data.

CCLK Differences between Spartan-3 Generation FPGA Families

Table 2-8 summarizes the primary differences between the various Spartan-3 generation 
FPGA families. On Spartan-3 FPGAs, the CCLK pin is a dedicated function while on the 
other families, CCLK becomes available as a user-programmable I/O pin after 
configuration successfully completes.

The CCLK pin is an input-only pin for the Slave Serial and Slave Parallel configuration 
modes.

Table 2-7: PROG_B Operation

PROG_B Input Response

Power-up
Internal “Power-On Reset (POR)” circuit automatically initiates FPGA 
configuration process.

Low-going pulse Initiate (re)configuration process and continue to completion.

Extended Low Initiate (re)configuration process and stall process in the “Clear 
Configuration Memory (Initialization)” step. Configuration is stalled 
until PROG_B returns High.

1 If the configuration process is started, continue to completion. If 
configuration process is complete, the FPGA remains configured.
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In the Master configuration modes, the FPGA internally generates the CCLK clock source. 
As shown in Figure 2-2, there are slight differences in the CCLK circuitry between the 
Spartan-3 / Spartan-3E FPGA families and the Extended Spartan-3A family.

As shown in Figure 2-2a, Spartan-3/3E FPGAs drive the internally-generation CCLK 
signal to an output. Like the configuration PROM connected to the FPGA, the FPGA’s 
internal configuration logic is clocked by the CCLK signal at the FPGA pin, which 
simplifies the interface timing. However, any switching noise on the CCLK pin potentially 
also affects the FPGA. Therefore, treat CCLK as a full bidirectional I/O pin for signal 
integrity analysis; the FPGA uses the value at the pin to clock internal logic. See “CCLK 
Design Considerations,” page 58.

As shown in Figure 2-2b, CCLK is strictly an output on Extended Spartan-3A family 
FPGAs in the Master configuration modes. The FPGA’s internal configuration logic is 
clocked by the internally-generated CCLK signal and is not susceptible to external 
switching noise. That said, good signal integrity on the CCLK board trace is a good design 
practice.

Table 2-8: CCLK Differences between Spartan-3 Generation FPGA Families

Spartan-3 Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

CCLK pin becomes full user-I/O 
after configuration

No;
dedicated pin Yes Yes

CCLK pin supply voltage VCCAUX VCCO_2 VCCO_2

CCLK pin behavior after 
configuration

Pull-up or pull-
down resistor 
controlled by 

CclkPin 
bitstream 

option

User I/O User I/O

CCLK pin directionality during 
Master mode configuration I/O I/O

Output only for 
improved signal 

integrity

CCLK frequency options during 
Master mode configuration 
(ConfigRate)

3, 6, 12, 25, 50 1, 3, 6, 12, 25, 50
1, 3, 6, 7, 8, 10, 12, 
13, 17, 22, 25, 27, 

33, 44, 50, 100

CCLK frequency variation ±50% of 
ConfigRate 
frequency

Fully 
characterized. 

Specified in 
data sheet.

Fully 
characterized. 

Specified in data 
sheet.
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CCLK Design Considerations

The FPGA’s configuration process is controlled by the CCLK configuration clock. 
Consequently, signal integrity of CCLK is important to guarantee successful configuration. 
Poor CCLK signal integrity caused by ringing or reflections potentially causes double-
clocking, which might result in failed configuration.

Although the CCLK frequency is relatively low, the FPGA’s output edge rates are fast. 
Therefore, pay careful attention to the CCLK signal integrity on the printed circuit board. 
Signal integrity simulation with IBIS is recommended. For all configuration modes except 
JTAG, the signal integrity must be considered at every CCLK trace destination, including 
the FPGA’s CCLK pin.

This analysis is especially important for Spartan-3E FPGAs where the FPGA re-uses the 
CCLK pin as a user-I/O after configuration. In these cases, there might be unrelated 
devices attached to CCLK, which add additional trace length and signal destinations.

In the Master Serial, SPI, and BPI configuration modes, the FPGA drives the CCLK pin and 
CCLK should be treated as a full bidirectional I/O pin for signal integrity analysis. In BPI 
mode, CCLK is only connected to other devices in multi-FPGA daisy-chains, but switching 
noise at the FPGA pin could potentially cause false clocking.

The best signal integrity is ensured by following these basic PCB guidelines:

• Route the CCLK signal as a 50 Ω controlled-impedance transmission line.

• Route the CCLK signal without any branching. Do not use a “star” topology.

• Keep stubs, if required, shorter than 12.5 mm (0.5 inches).

• Terminate the end of the CCLK transmission line. 

The clock termination examples shown below use parallel termination (Thevenin), but 
other approaches are acceptable. In parallel termination, the resistor values are twice the 
characteristic impedance of the board trace. The examples shown assume 50 Ω trace 
impedance. The disadvantage of parallel termination is that there is always a current path. 
Using series termination at the source and the end minimizes power, but use IBIS 
simulation to optimize resistor values for the specific application.

Figure 2-2: Differences between Spartan-3/3E and Extended Spartan-3A Family 
FPGAs for Master Configuration Modes
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a) Spartan-3 and Spartan-3E FPGAs b) Spartan-3A/3AN/3A DSP
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Figure 2-3 shows the basic point-to-point topology where the CCLK output from the 
Master FPGA drives one clock input receiver, either on the configuration PROM or on a 
slave FPGA.

Caution! On Spartan-3E and Extended Spartan-3A family FPGAs, be sure to define a valid 
logic level on CCLK. Otherwise, the clock trace might float and cause spurious clocking to other 
devices in the system.

Figure 2-4 shows the basic multi-drop flyby topology where the CCLK output from the 
Master FPGA drives two or more clock input receivers. Constrain the trace length on any 
clock stubs.

Figure 2-3: Point-to-Point: Master CCLK Output Drives Single Clock Load

Figure 2-4: Multi-Drop: Master CCLK Output Drives Two Clock Inputs
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Figure 2-5 shows a star topology where the Master FPGA CCLK transmission line 
branches to the multiple clock receiver inputs. The branch point creates a significant 
impedance discontinuity. Do not use this topology.

ConfigRate: Bitstream Option for CCLK

For Master configuration mode, the ConfigRate bitstream generator option defines the 
frequency of the internally-generated CCLK oscillator. The actual frequency is 
approximate due to the characteristics of the silicon oscillator and varies by up to 50% over 
the temperature and voltage range. On Spartan-3E and Extended Spartan-3A family 
FPGAs, the resulting frequency for every ConfigRate setting is fully characterized and 
specified in the associated FPGA family data sheet. At power-on, CCLK always starts 
operation at its lowest frequency. Use the ConfigRate option to set the oscillator frequency 
to one of the other values shown in Table 2-8. 

Set this option graphically in “ISE Software Project Navigator,” page 42, as shown in Step 7 
in Figure 1-7, page 44.

The FPGA does not start operating at the higher CCLK frequency until the ConfigRate 
control bits are loaded during the configuration process.

Persist: Reserve CCLK As Part of SelectMAP Interface

By default, any clocks applied to CCLK after configuration are ignored unless the 
bitstream option Persist:Yes is set, which retains the configuration interface. If Persist:Yes, 
then all clock edges are potentially active events, depending on the other configuration 
control signals. On Spartan-3E and Extended Spartan-3A family FPGAs, CCLK becomes a 
full-featured user-I/O pin after configuration.

Figure 2-5: Star Topology Is Not Recommended
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Extended Spartan-3A Family and Spartan-3E FPGA Families

On the Extended Spartan-3A and Spartan-3E FPGA families, the CCLK pin is borrowed 
during configuration and becomes a full user I/O after configuration successfully 
completes.

The CCLK pin does not have a dedicated pull-up resistor during configuration. However, 
CCLK has an optional pull-up resistor to VCCO_2 during configuration, controlled by the 
Spartan-3E HSWAP pin or the Extended Spartan-3A family PUDC_B pin.

If the CCLK pin is not otherwise used by the FPGA application, then drive the pin High or 
Low.

Spartan-3 FPGA Family

During configuration, the CCLK pin has a dedicated internal pull-up resistor to VCCAUX, 
regardless of the HSWAP_EN pin. After configuration, the CCLK pin is pulled High to 
VCCAUX by default as defined by the CclkPin bitstream selection, although this behavior is 
programmable. 

Any clocks applied to CCLK after configuration are ignored unless the bitstream option 
Persist:Yes is set, which retains the configuration interface. The Persist:No by default. 
However, if Persist:Yes, then all clock edges are potentially active events, depending on the 
other configuration control signals.

Initializing Configuration Memory, Configuration Error: INIT_B
The INIT_B pin serves multiple purposes during configuration. Shortly after power is 
applied, the FPGA drives the INIT_B pin Low, indicating that initialization (i.e., 
housecleaning) of the configuration memory has in progress. When INIT_B returns High, 
the FPGA samples the M[2:0] mode select pins and begins the configuration process.

During configuration, the INIT_B pin is an open-drain, bidirectional I/O pin with a 
dedicated, internal pull-up resistor, required to produce a High logic level. On Extended 
Spartan-3A family and Spartan-3E FPGAs, the INIT_B pull-up resistor connects to 
VCCO_2; on Spartan-3 FPGAs, the pull-up resistor connects to VCCO_4 or 
VCCO_BOTTOM (the connected VCCO_4 and VCCO_5), depending on the package style.

In a multi-FPGA daisy-chain or broadside configuration, connect (wire-AND) the INIT_B 
pins from all FPGAs together, as shown in Figure 2-1, page 55. The common node ensures 
that all FPGAs in the design complete their respective housecleaning before any of the 
FPGAs is allowed to start configuring. The common node transitions High only after all of 
the FPGAs have been successfully initialized.

Externally holding this pin Low beyond the initialization phase delays the start of 
configuration. This action stalls the FPGA at the configuration step just before the M[2:0] 
mode select pins are sampled. See “Delaying Configuration,” page 243.

During configuration, the FPGA indicates the occurrence of a configuration data error (i.e., 
CRC error) by asserting INIT_B Low. See “CRC Checking during Configuration,” 
page 309.

After Configuration

After configuration successfully completes, i.e., when the DONE pin goes High, the 
INIT_B pin is available as a full user-I/O pin. The only exception if the “Extended Spartan-
3A Family FPGA Post-Configuration CRC” feature is enabled in the application, in which 
case the INIT_B is dedicated after configuration as well.

http://www.xilinx.com


62 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 2: Configuration Pins and Behavior during Configuration
R

If the INIT_B pin is not used by the FPGA application after configuration, actively drive it 
High or Low. If left undefined, INIT_B, like all other unused pins, is defined by default as 
an input with an internal pull-down resistor. If the FPGA board uses an external pull-up 
resistor on INIT_B, then the unused pin will float at an intermediate value due to the 
presence of both a pull-up and pull-down resistor. To change the default configuration for 
unused pins, change the UnusedPin bitstream generator option setting.

If the bitstream generator option Persist:Yes is set, then INIT_B is reserved after 
configuration completes.

Extended Spartan-3A Family FPGA Post-Configuration CRC

If using a Spartan-3A FPGA, and if using the post-configuration CRC feature, then the 
INIT_B pin becomes a dedicated pin and flags any difference in the CRC signature during 
normal FPGA operation. See “Post-Configuration CRC (Extended Spartan-3A Family 
Only),” page 310 for more information.

Extended Spartan-3A Family and Spartan-3E FPGA Families

INIT_B is located in I/O Bank 2 and its output voltage determined by VCCO_2.

Spartan-3 FPGA Family

INIT_B is located in I/O Bank 4 and its output voltage determined by VCCO_4 or 
VCCO_BOTTOM, depending on package style.

Pull-Up Resistors During Configuration
The FPGA’s configuration control pins have a dedicated, internal pull-up resistor that is 
active during the configuration process. All other I/O or Input-only pins have an optional 
pull-up resistor during configuration, controlled by a separate control input. The name of 
the control input varies by Spartan-3 generation family, as shown in Table 2-12.

Pins with Dedicated Pull-Up Resistors during Configuration

Table 2-9 shows the configuration control pins on all Spartan-3 generation FPGAs that 
have a built-in, dedicated, pull-up resistor during configuration. The table also indicates 
the supply rail to which the resistor is connected. The dedicated configuration pins also 
have a separate bitstream generator (BitGen) option setting that controls the pin’s behavior 
after configuration.
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As highlighted in Table 2-2, page 50, the Extended Spartan-3A family FPGAs add a few 
more dedicated internal pull-up resistors, as shown in Table 2-10. On Spartan-3E FPGAs, 
these pins do not have a dedicated internal pull-up resistor, but do have an optional pull-
up resistor controlled when HSWAP = 0.

The Spartan-3 FPGA family uses dedicated configuration pins, as shown in Table 2-11. The 
post-configuration behavior is controlled by bitstream settings.

Table 2-9: Pins with Dedicated Pull-Up Resistors during Configuration (All 
Spartan-3 Generation FPGAs)

Pin Name
Pull-Up Resistor Supply 

Rail
Post Configuration Control

PROG_B VCCAUX ProgPin BitGen setting

DONE VCCAUX DonePin and DriveDone BitGen settings

Pull-up during 
Configuration 
control input,

HSWAP, 
PUDC_B, or 
HSWAP_EN 

(see Table 2-12)

VCCO_0

Spartan-3E and Extended Spartan-3A family 
FPGAs: User I/O after configuration. 
Controlled by the FPGA application

Spartan-3 FPGA: Controlled by HswapenPin 
BitGen setting

INIT_B

Spartan-3E/3A/3AN/ 
Spartan-3A DSP FPGAs:

VCCO_2

Spartan-3 FPGA:
VCCO_4 or

VCCO_BOTTOM

User I/O after configuration. Controlled by 
the FPGA application

TDI VCCAUX TdiPin BitGen setting

TMS VCCAUX TmsPin BitGen setting

TCK VCCAUX TckPin BitGen setting

TDO VCCAUX TdoPin BitGen setting

Table 2-10: Pins with Dedicated Pull-Up Resistors during Configuration (Extended 
Spartan-3A Family FPGAs Only)

Pin Name
Pull-Up Resistor 

Supply Rail
Post Configuration Control

M[2:0] VCCO_2 User I/O after configuration. Controlled by the FPGA 
application

VS[2:0] VCCO_2

Pull-up resistors only active when M[2:0]=<0:0:1>, Master 
SPI mode, or in Spartan-3AN FPGAs when M[2:0]=<0:1:1>, 
Internal Master SPI mode. User I/O after configuration. 
Controlled by the FPGA application
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Pins with Optional Pull-Up Resistors during Configuration

All user-I/O pins, input-only pins, and dual-purpose pins that are not actively involved in 
the currently-selected configuration mode are high impedance (floating, three-stated, 
Hi-Z) during the configuration process. These pins are indicated in Table 2-17 as gray 
shaded table entries or cells.

A control input determines whether all user-I/O pins, input-only pins, and dual-purpose 
pins have a pull-up resistor to the supply rail or not. The control input has different names 
on different FPGA families as shown in Table 2-12, but all function similarly. When the 
control is Low, each pin has an internal pull-up resistor that is active throughout 
configuration, starting immediately on power-up. Once the Mode pins are read, some of 
the dual-purpose pins will take on their configuration function for the remainder of the 
configuration process. After configuration, pull-up and pull-down resistors are available 
in the FPGA application by instantiating PULLUP or PULLDOWN primitive or by 
applying similarly-named constraints to a specific pin.

The control pin itself has a pull-up resistor enabled during configuration. However, the 
VCCO_0 supply voltage must be applied before the pull-up resistor becomes active. If the 
VCCO_0 supply ramps after the VCCO_2 power supply, do not let the control input pin 
float; tie the pin to the desired logic level externally. Note that Spartan-3E step 0 silicon 
requires that VCCINT be applied before VCCAUX when using a pull-up on HSWAP.

FPGA Pull-Up Resistor Values

The value of the dedicated and optional pull-up resistors is specified as a current, symbol 
IPU in the respective Spartan-3 generation data sheet. The equivalent resistor values 
provided in Table 2-13 are for reference. The pull-up resistors on the Spartan-3 FPGA 
family are stronger than the other families.

Caution! The pull-up resistors in Spartan-3 FPGAs are strong, especially at higher VCCO 
voltages.

Table 2-11: Pins with Dedicated Pull-Up Resistors during Configuration (Spartan-3 
FPGA Family Only)

Pin Name
Pull-Up Resistor 

Supply Rail
Post Configuration Control

M2 VCCAUX M2Pin BitGen setting

M1 VCCAUX M1Pin BitGen setting

M0 VCCAUX M0Pin BitGen setting

CCLK VCCAUX CclkPin BitGen setting

Table 2-12: Pull-Up Resistor during Configuration Control Input

FPGA Family Pin Name Function

Spartan-3A/3AN/
3A DSP FPGA

PUDC_B 0: Pull-up resistors enabled during configuration

1: No pull-up resistors during configuration. Pins 
that are not active during the configuration 
process float Hi-Z.

Spartan-3E FPGA HSWAP

Spartan-3 FPGA HSWAP_EN
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Pin Descriptions
Table 2-15 lists the various pins involved in the configuration process, including which 
configuration mode, the pin’s direction, and a summary description. The table also 
describes how to use the pin during and after configuration.

Table 2-13: Pull-Up Resistor Ranges by Spartan-3 Generation Family

Voltage Range
Spartan-3 

FPGA
Spartan-3E 

FPGA

Spartan-3A/3AN
Spartan-3A DSP 

FPGA
Units

VCCAUX or VCCO = 3.0 to 3.6V
5.1 to 23.9

kΩ
VCCO = 3.0 to 3.45V 1.27 to 4.11 2.4 to 10.8

VCCAUX or VCCO = 2.3 to 2.7V 1.15 to 3.25 2.7 to 11.8 6.2 to 33.1

VCCO = 1.7 to 1.9V 2.45 to 9.10 4.3 to 20.2 8.4 to 52.6

Table 2-14: Recommended External Pull-Up or Pull-down Resistor Values to Define Input Values during 
Configuration

PUDC_B, HSWAP, or 
HSWAP_EN

Desired Pull 
Direction

I/O Standard
Spartan-3 

FPGA
Spartan-3E 

FPGA

Spartan-3A/3AN
Spartan-3A DSP 

FPGA

= 0
(also applies to all 
pins that have a 

dedicated pull-up 
resistor during 

configuration, see 
“Pins with Dedicated 

Pull-Up Resistors 
during 

Configuration,” 
page 62)

Pull-Up All
No pull-up required. Internal pull-up resistors are 

enabled. See Table 2-13 for resistor range.

Pull-Down
(required to 

overcome maximum 
IRPU current and 
guarantee VIL)

LVCMOS33
LVTTL

≤ 330 Ω ≤ 620 Ω ≤ 1.1 kΩ

LVCMOS25 ≤ 470 Ω ≤ 820 Ω ≤ 1.8 kΩ
LVCMOS18 ≤ 510 Ω ≤ 820 Ω ≤ 3.3 kΩ
LVCMOS15 ≤ 820 Ω ≤ 1.2 kΩ ≤ 5.4 kΩ
LVCMOS12 ≤ 1.5 kΩ ≤ 1.5 kΩ ≤ 9.6 kΩ

= 1
(optional pull-up 

resistors are disabled 
during 

configuration. Does 
not apply to pins 

with dedicated pull-
up resistors during 

configuration)

Pull-Up
(required to 

overcome single-
load, maximum IL 

leakage current and 
guarantee VIH)

LVCMOS33
LVTTL

≤ 40 kΩ ≤ 100 kΩ

LVCMOS25 ≤ 60 kΩ
LVCMOS18 ≤ 37 kΩ
LVCMOS15 ≤ 28 kΩ
LVCMOS12 ≤ 38 kΩ

Pull-Down
(required to 

overcome single-
load, maximum IL 

leakage current and 
guarantee VIL)

LVCMOS33
LVTTL

≤ 32 kΩ ≤ 80 kΩ

LVCMOS25 ≤ 70 kΩ
LVCMOS18

≤ 38 kΩ
LVCMOS15

LVCMOS12 ≤ 59 kΩ
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Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function

Pin Name
Config. 
Mode(s)

FPGA 
Direction

Description During Configuration After Configuration

HSWAP

or

PUDC_B

or

HSWAP_EN

(depends on 
FPGA family)

All Input User I/O Pull-Up Control. 
When Low during 
configuration, enables 
pull-up resistors in all I/O 
pins to respective I/O bank 
VCCO input.

0: Pull-ups during 
configuration
1: No pull-ups

Drive at valid logic 
level throughout 
configuration.

Spartan-3:
Dedicated pin (don’t 
care after 
configuration)
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

User I/O

M[2:0] All Input Mode Select. Selects the 
FPGA configuration mode 
as defined in Table 2-1.

Must be at the logic 
levels shown in 
Table 2-1, page 50. 
Sampled when INIT_B 
goes High.

User I/O (dedicated 
on Spartan-3 FPGAs)

DIN Serial 
Modes, SPI

Input Serial Data Input. for all 
serial configuration modes

Receives serial data 
from PROM serial data 
output.

User I/O

CCLK Master 
Modes, SPI, 

BPI

Output

(treat as 
I/O for 
signal 

integrity)

Configuration Clock. 
Generated by FPGA 
internal oscillator. 
Frequency controlled by 
ConfigRate bitstream 
generator option. See 
“Configuration Clock: 
CCLK,” page 56.

Drives PROM’s clock 
input.

User I/O (dedicated 
on Spartan-3 FPGAs)

Slave 
Modes

Input Configuration clock input. Input configuration 
clock source.

DOUT Output Serial Data Output. Not used in single-
FPGA designs; DOUT 
is pulled up, not 
actively driving. In a 
serial daisy-chain 
configuration, this pin 
connects to DIN input 
of the next FPGA in the 
chain.

User I/O

INIT_B All Open-drain 
bidirec-

tional I/O

Initialization Indicator. 
Active Low. See 
“Initializing Configuration 
Memory, Configuration 
Error: INIT_B,” page 61.

Drives Low after 
power-on reset (POR) 
or when PROG_B 
pulsed Low while the 
FPGA is clearing its 
configuration memory. 
If a CRC error detected 
during configuration, 
FPGA again drives 
INIT_B Low.

User I/O. If unused 
in the application, 
drive INIT_B High or 
Low to avoid a 
floating value. See 
INIT_B “After 
Configuration”.

http://www.xilinx.com


Spartan-3 Generation Configuration User Guide www.xilinx.com 67
UG332 (v1.5) March 16, 2009

Pin Descriptions
R

DONE All Open-drain 
bidirec-

tional I/O

FPGA Configuration 
Done. Low during 
configuration. Goes High 
when FPGA successfully 
completes configuration. 
Powered by VCCAUX 
supply.

0: FPGA not configured

1: FPGA configured

See “DONE Pin,” page 52

Actively drives Low 
during configuration.

 When High, 
indicates that the 
FPGA successfully 
configured.

PROG_B All Input Program FPGA. Active 
Low. When asserted Low 
for 500 ns or longer, forces 
the FPGA to restart its 
configuration process by 
clearing configuration 
memory and resetting the 
DONE and INIT_B pins. If 
driving externally with a 
3.3V output, use an open-
drain or open-collector 
driver or use a current 
limiting series resistor. See 
“Program or Reset FPGA: 
PROG_B,” page 56.

Must be High during 
configuration to allow 
configuration to start. 

Drive PROG_B Low 
and release to 
reprogram FPGA.

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
VS[2:0]

Master SPI Input Variant Select. Instructs the 
FPGA how to communicate 
with the attached SPI Flash 
PROM.

Must be at the logic 
levels shown in 
Table 4-2, page 105. 
Sampled when INIT_B 
goes High.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
MOSI

Master SPI Output Serial Data Output. FPGA sends SPI Flash 
memory read 
commands and 
starting address to the 
PROM’s serial data 
input.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP
FPGA:CSO_B

Master SPI Output Chip Select Output. Active 
Low.

Connects to the SPI 
Flash PROM’s Slave 
Select input. If 
HSWAP/PUDC_B = 1, 
connect this signal to a 
4.7 kΩ pull-up resistor 
to 3.3V.

Drive CSO_B High 
after configuration to 
disable the SPI Flash 
and reclaim the 
MOSI, DIN, and 
CCLK pins. 
Optionally, re-use 
this pin and MOSI, 
DIN, and CCLK to 
continue 
communicating with 
SPI Flash.

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function (Cont’d)

Pin Name
Config. 
Mode(s)

FPGA 
Direction

Description During Configuration After Configuration
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Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
CSI_B

Spartan-3 
FPGA:

CS_B

BPI, Slave 
Parallel

Input Chip Select Input. Active 
Low.

Active-Low. User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

RDWR_B BPI, Slave 
Parallel

Input Read/Write Control. Active 
Low write enable. Read 
functionality typically only 
used after configuration, if 
bitstream option 
Persist:Yes.

Must be Low 
throughout 
configuration. Do not 
change logic level 
while CSI_B is Low

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
LDC0

BPI Output PROM Chip Enable Connect to parallel 
PROM chip-select 
input (CS#). FPGA 
drives this signal Low 
throughout 
configuration.

User I/O. If the 
FPGA does not access 
the PROM after 
configuration, drive 
this pin High to 
deselect the PROM. 
A[23:0], D[7:0], 
LDC[2:1], and HDC 
then become 
available as user I/O.

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
LDC1

BPI Output PROM Output Enable Connect to the parallel 
PROM output-enable 
input (OE#). The FPGA 
drives this signal Low 
throughout 
configuration.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
HDC

BPI Output PROM Write Enable Connect to parallel 
PROM write-enable 
input (WE#). FPGA 
drives this signal High 
throughout 
configuration.

User I/O

Spartan-3E
Spartan-3A

Spartan-3AN
Spartan-3A DSP

FPGA:
LDC2

BPI Output PROM Byte Mode This signal is not used 
for x8 PROMs. For 
PROMs with a x8/x16 
data width control, 
connect to PROM byte-
mode input (BYTE#). 

User I/O. Drive this 
pin High after 
configuration to use a 
x8/x16 PROM in x16 
mode.

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function (Cont’d)

Pin Name
Config. 
Mode(s)

FPGA 
Direction

Description During Configuration After Configuration
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Pin Behavior During Configuration
Table 2-16, Table 2-17, and Table 2-18 show how various pins on Spartan-3 generation 
FPGAs behave during the configuration process. The actual behavior depends on the 
settings applied to the M2, M1, and M0 (M[2:0]) mode select pins and the pin that controls 
the optional pull-up resistors, called HSWAP, PUDC_B, or HSWAP_EN depending on the 
specific Spartan-3 generation FPGA family. The M[2:0] mode select pins determine which 
of the I/O pins are active and borrowed during configuration and how they function. In 
JTAG configuration mode, no user-I/O pins are borrowed for configuration.

The Dedicated Pull-Up Resistor column indicates pins that always have a pull-up resistor 
enabled during configuration, regardless of the PUDC_B, HSWAP, or HSWAP_EN input. 
After configuration, the behavior of these pins is either defined by specific bitstream 
generator options or by the FPGA application itself.

Table 2-16, Table 2-17, and Table 2-18 show the FPGA pins that are either borrowed or 
dedicated during configuration. The specific pins are listed by FPGA configuration mode 
along the top. For each pin, the table also indicates the power rail that supplies the pin 
during configuration. A numeric value such as “2”, indicates that the associated pin is 
located in I/O Bank 2 and powered by the VCCO_2 supply inputs. Spartan-3E and 
Extended Spartan-3A family FPGAs have four I/O banks; the Spartan-3 FPGA family has 
eight I/O banks.

The pin names are color-coded using the same colors used in the package pinout tables and 
footprint diagrams found in the respective Spartan-3 generation data sheet. Black 
represents the dedicated JTAG pins; yellow represents the dedicated configuration pins; 
light blue represents the dual-purpose configuration pins that become user-I/O pins after 
configuration.

Spartan-3E 
FPGA:
A[23:0]

Spartan-3A
Spartan-3AN

Spartan-3A DSP
FPGA:

A[25:0]

BPI Output Parallel PROM Address 
outputs

Connect to PROM 
address inputs.

User I/O.

D[7:0] Master 
Parallel, 

BPI, Slave 
Parallel, 

SelectMAP

Input Data Input Data captured by 
FPGA 

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

Spartan-3/
Spartan-3E 

FPGA:
BUSY

BPI, Slave 
Parallel 

(SelectMAP)

Output FPGA Busy Indicator. Used 
primarily in Slave Parallel 
interfaces that operate at 
50 MHz and faster. Same 
function is on DOUT pin in 
the Extended Spartan-3A 
family.

Not used during BPI 
mode configuration 
but actively drives.

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

Table 2-15: Spartan-3 Generation Configuration Pins, Associated Modes, and Function (Cont’d)

Pin Name
Config. 
Mode(s)

FPGA 
Direction

Description During Configuration After Configuration
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Extended Spartan-3A Family FPGA
Table 2-16 shows the various Extended Spartan-3A family FPGA pins that are either 
borrowed or dedicated during configuration.

Table 2-16: Extended Spartan-3A Family FPGAs: Pin Behavior during Configuration

Pin Name
Dedicated 

Pull-Up 
Resistor

Master 
Serial 

SPI 
(Serial 
Flash)

Internal 
Master 

SPI

BPI 
(Parallel 
Flash)

JTAG
Slave 
Serial

Slave 
Parallel

Supply/
I/O Bank

IO* (user-I/O)

IP* (input-only)
–

See pinout 
table

TDI Yes TDI TDI TDI TDI TDI TDI TDI VCCAUX

TMS Yes TMS TMS TMS TMS TMS TMS TMS VCCAUX

TCK Yes TCK TCK TCK TCK TCK TCK TCK VCCAUX

TDO Yes TDO TDO TDO TDO TDO TDO TDO VCCAUX

PROG_B Yes PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE Yes DONE DONE DONE DONE DONE DONE DONE VCCAUX

PUDC_B Yes PUDC_B PUDC_B PUDC_B PUDC_B PUDC_B PUDC_B PUDC_B 0

M2 Yes 0 0 0 0 1 1 1 2

M1 Yes 0 0 1 1 0 1 1 2

M0 Yes 0 1 1 0 1 1 0 2

CCLK
–

CCLK
(OUTPUT)

CCLK
(OUTPUT)

CCLK
(OUTPUT)

CCLK
(INPUT)

CCLK 
(INPUT)

2

INIT_B Yes INIT_B INIT_B INIT_B INIT_B INIT_B INIT_B 2

CSO_B – CSO_B CSO_B CSO_B 2

DOUT – DOUT DOUT DOUT(5) DOUT DOUT(5) 2

MOSI/CSI_B – MOSI CSI_B CSI_B 2

D[7:1] – D[7:1] D[7:1] 2

D0/DIN – DIN DIN D0 DIN D0 2

RDWR_B – RDWR_B RDWR_B 2

VS[2:0] Yes VS[2:0] VS[2:0] 2

A[25:0] – A[25:0] 1

LDC2 – LDC2 1

LDC1 – LDC1 1

LDC0 – LDC0 1

HDC – HDC 1

Notes: 
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an 

optional internal pull-up resistor to their respective VCCO supply pin that is active during configuration if the PUDC_B input is Low. 
See “Pull-Up Resistors During Configuration,” page 62.

2. The Spartan-3E HSWAP pin and the Extended Spartan-3A family PUDC_B pin have identical behavior, just different names. See 
“Pull-Up Resistors During Configuration,” page 62.

3. The Internal Master SPI mode, M[2:0] = <0:1:1>, is only available on the Spartan-3AN FPGA family. VCCAUX must be 3.3V when 
using this mode.

4. CCLK is always an input pin in Slave configuration modes. For Master modes, CCLK must be treated as a bidirectional I/O pin for 
Spartan-3E FPGAs and is an output pin for Extended Spartan-3A family FPGAs.

5. The DOUT output is not labeled as BUSY and the BUSY function is not required on Extended Spartan-3A family FPGAs. However, 
the pin can still toggle during Slave Parallel configuration and therefore should not be tied to user functions during configuration. 
Unlike Spartan-3E FPGAs, Extended Spartan-3A family FPGAs do use the DOUT pin in BPI serial daisy-chains, which are only 
supported on Extended Spartan-3A family FPGAs.
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Spartan-3E FPGAs
Table 2-17 shows the various Spartan-3E FPGA pins that are either borrowed or dedicated 
during configuration.

Table 2-17: Spartan-3E FPGAs: Pin Behavior during Configuration

Pin Name
Dedicated 

Pull-Up 
Resistor

Master 
Serial 

SPI 
(Serial 
Flash)

BPI 
(Parallel 
Flash)

JTAG
Slave 
Serial

Slave 
Parallel

Supply/
I/O Bank

IO* (user-I/O)
IP* (input-only)

–
See pinout 

table

TDI Yes TDI TDI TDI TDI TDI TDI VCCAUX

TMS Yes TMS TMS TMS TMS TMS TMS VCCAUX

TCK Yes TCK TCK TCK TCK TCK TCK VCCAUX

TDO Yes TDO TDO TDO TDO TDO TDO VCCAUX

PROG_B Yes PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE Yes DONE DONE DONE DONE DONE DONE VCCAUX

HSWAP Yes HSWAP HSWAP HSWAP HSWAP HSWAP HSWAP 0

M2 – 0 0 0 1 1 1 2

M1 – 0 0 1 0 1 1 2

M0
– 0 1

0 = Up
1 = Down

1 1 0 2

CCLK
–

CCLK
(I/O)

CCLK
(I/O)

CCLK
(I/O)

CCLK
(INPUT)

CCLK 
(INPUT)

2

INIT_B Yes INIT_B INIT_B INIT_B INIT_B INIT_B 2

CSO_B – CSO_B CSO_B CSO_B 2

DOUT/BUSY – DOUT DOUT BUSY DOUT BUSY 2

MOSI/CSI_B – MOSI CSI_B CSI_B 2

D[7:1] – D[7:1] D[7:1] 2

D0/DIN – DIN DIN D0 DIN D0 2

RDWR_B – RDWR_B RDWR_B 2

VS[2:0] – VS[2:0] (Note 4) 2

A[23:17] – (Note 4) A[23:17] 2

A[16:0] – A[16:0] 1

LDC2 – LDC2 1

LDC1 – LDC1 1

LDC0 – LDC0 1

HDC – HDC 1

Notes: 
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an 

optional internal pull-up resistor to their respective VCCO supply pin that is active during configuration if the HSWAP input is Low. 
See “Pull-Up Resistors During Configuration,” page 62.

2. The Spartan-3E HSWAP pin and the Extended Spartan-3A family PUDC_B pin have identical behavior, just different names. See 
“Pull-Up Resistors During Configuration,” page 62.

3. CCLK is always an input pin in Slave configuration modes. For Master modes, CCLK must be treated as a bidirectional I/O pin for 
Spartan-3E FPGAs.

4. On Spartan-3E FPGAs, the VS[2:0] pins used in Master SPI mode are shared with the A[19:17] address pins used in BPI mode.
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Spartan-3 FPGAs
Table 2-18 shows the various Spartan-3 FPGA pins that are either borrowed or dedicated 
during configuration.

Default I/O Standard During Configuration
During configuration, which includes the time when the FPGA first powers up, after 
PROG_B is pulsed Low, or during configuration or re-configuration including MultiBoot, 
the FPGA’s I/O pins are unconfigured. However, the FPGA pins involved in the 
configuration process are predefined to the settings shown in Table 2-19.

Table 2-18: Pin Behavior during Configuration for Spartan-3 FPGA Family

Pin Name
Dedicated 

Pull-Up 
Resistor

Master 
Serial

Master 
Parallel

JTAG Slave Serial
Slave 

Parallel
Supply/
I/O Bank

IO* (user-I/O)
IP* (input-only)

–
See pinout 

table

TDI Yes TDI TDI TDI TDI TDI VCCAUX

TMS Yes TMS TMS TMS TMS TMS VCCAUX

TCK Yes TCK TCK TCK TCK TCK VCCAUX

TDO Yes TDO TDO TDO TDO TDO VCCAUX

PROG_B Yes PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE Yes DONE DONE DONE DONE DONE VCCAUX

HSWAP_EN Yes HSWAP_EN HSWAP_EN HSWAP_EN HSWAP_EN HSWAP_EN VCCAUX

M2 Yes 0 0 1 1 1 VCCAUX

M1 Yes 0 1 0 1 1 VCCAUX

M0 Yes 0 1 1 1 0 VCCAUX

CCLK
Yes

CCLK
(I/O)

CCLK
(I/O)

CCLK
(INPUT)

CCLK 
(INPUT)

VCCAUX

INIT_B Yes INIT_B INIT_B INIT_B INIT_B 4

CS_B – CS_B CS_B 5

DOUT/BUSY – DOUT BUSY DOUT BUSY 4

D[7:4] – D[7:4] D[7:4] 5

D[3:1] – D[3:1] D[3:1] 4

D0/DIN – DIN D0 DIN D0 4

RDWR_B – RDWR_B RDWR_B 5

Notes: 
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an 

optional internal pull-up resistor to their respective VCCO supply pin that is active during configuration if the HSWAP_EN input is 
Low.

2. CCLK is always an input pin in Slave configuration modes. For Master modes, CCLK must be treated as a bidirectional I/O pin.

Table 2-19: Default I/O Standard Setting During Configuration

Pin(s) I/O Standard
Output 
Drive

Slew Rate

All, including CCLK LVCMOS25 8 mA Slow
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By default, the I/O pins are set for LVCMOS25 operation or 2.5V low-voltage CMOS. The 
setting is the same for both the Dedicated and Dual-Purpose pins. However, the Dual-
Purpose pins can drive at different voltages, depending on the voltage applied to the 
relevant I/O bank.

The Dedicated configuration pins (see Table 2-17, page 71 and Table 2-18, page 72) are 
always powered by VCCAUX. On Spartan-3 and Spartan-3E FPGA families, VCCAUX is 
always 2.5V, as shown in Table 2-18. On Spartan-3A/3A DSP FPGAs, VCCAUX can be either 
2.5V or 3.3V. On Spartan-3AN FPGAs, VCCAUX is always 3.3V. See “VCCAUX Level”.

The Dual-Purpose configuration pin outputs operate at other voltages by appropriately 
setting the voltage on the associated VCCO power rail. For Spartan-3A/3A DSP (and for 
Spartan-3AN FPGAs in modes other than Internal Master SPI) and Spartan-3E FPGAs, the 
Dual-Purpose configuration pins are supplied by the VCCO_2 rail, plus VCCO_1 in BPI 
mode. In Spartan-3 FPGAs, the Dual-Purpose configuration pins are supplied by VCCO_4, 
plus VCCO_5 in any of the parallel configuration modes. In general, set the configuration 
voltage to either 2.5V or 3.3V. The change on the VCCO supply also changes the I/O drive 
characteristics. For example, with VCCO = 3.3V, the output current when driving High, 
IOH, increases to approximately 12 to 16 mA, while the current when driving Low, IOL, 
remains 8 mA. 

If required, VCCO may be set to 1.8V in the Spartan- 3 and Spartan-3E families. See 
“VCCAUX Level”. At VCCO = 1.8V, the output current when driving High, IOH, decreases 
slightly to approximately 6 to 8 mA. Again, the current when driving Low, IOL, remains 
8 mA. The output voltages will be determined by the VCCO level, LVCMOS18 for 1.8V, 
LVCMOS25 for 2.5V, and LVCMOS33 for 3.3V.

Lowering VCCO_2 After Configuration in Extended Spartan-3A Family
The Extended Spartan-3A family families have a VCCO2T threshold requirement of 2.0V 
minimum and therefore cannot have VCCO_2 at 1.8V during configuration; however 
VCCO2T does not apply after configuration and therefore VCCO_2 can be lowered to 1.8V 
or lower after DONE goes High.

Table 2-20: Supported Configuration Interface Voltages

FPGA Family

Dedicated Pins Dual-Purpose Pins

Supported VCCAUX 
Voltage Options

Dual-Purpose 
Configuration Pin 

Supply Rails

Supported 
Configuration Supply 

Voltage Options

Spartan-3A
Spartan-3A DSP 

FPGAs

2.5V

3.3V VCCO_2

(sometimes VCCO_1)

2.5V

3.3V
Spartan-3AN(1) 3.3V

Spartan-3E 
FPGAs

2.5V
VCCO_2

(sometimes VCCO_1)

2.5V

3.3V

Spartan-3 
FPGAs

2.5V
VCCO_4

(sometimes VCCO_5)

2.5V

3.3V

Notes: 
1. Spartan-3AN FPGAs in Internal Master SPI mode only require the 3.3V VCCAUX supply because there 

are no Dual-Purpose pins involved. In all other configuration modes, the Dual-Purpose pins are 
involved.
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This could be accomplished by using an adjustable regulator with a feedback loop to set 
the output voltage, using a resistor divider network to define the voltage values. One 
resistor would be connected to an I/O which is disabled before configuration (using 
PUDC_B High) and Low after configuration (driving it to GND in the design). In 
Figure 2-6, R1 in series with R2 would set the regulator output voltage at 2.0V or higher for 
power-on and during configuration. Resistor R3 is enabled after configuration, and the 
parallel resistance of R2 and R3 would replace R2 to set the regulator voltage at 1.8V or 
lower after configuration.
X-Ref Target - Figure 2-6

Figure 2-6: Using Resistor Divider Network to Meet VCCO_2 POR Threshold

Spartan-3A

I/O

CCO_2V

Regulator

Output

Feedback

R1

R2

R3
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Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins
Spartan-3E and Extended Spartan-3A family FPGAs are unlike previous Spartan FPGA 
families. Nearly all of the Spartan-3E/3A/3AN/3A DSP dual-purpose configuration pins 
are available as full-featured user I/O pins after successful configuration.

The HSWAP or PUDC_B pin, the mode select pins (M[2:0]), and the variant-select pins 
(VS[2:0]) must have valid and stable logic values at the start of configuration. VS[2:0] are 
only used in the Master SPI configuration mode. The levels on the M[2:0] pins and VS[2:0] 
pins are sampled when the INIT_B pin returns High. See Figure 2-7 for a timing example.

The HSWAP or PUDC_B pin defines whether FPGA user I/O pins have a pull-up resistor 
connected to their associated VCCO supply pin during configuration or not, as shown 
Table 2-20. HSWAP or PUDC_B must be valid at the start of configuration and remain 
constant throughout the configuration process.

The detailed schematics for each configuration mode indicate the required logic values for 
HSWAP or PUDC_B, M[2:0], and VS[2:0] but do not specify how the application provides 
the logic Low or High value. The HSWAP or PUDC_B, M[2:0], and VS[2:0] pins can be 
either dedicated or reused by the FPGA application.

Dedicating the HSWAP, PUDC_B, M[2:0], and VS[2:0] Pins
If the HSWAP or PUDC_B, M[2:0], and VS[2:0] pins are not required by the FPGA 
application after configuration, simply connect these pins directly to the VCCO or GND 
supply rail shown in the appropriate configuration schematic.

Optionally, use external pull-up or pull-down resistors to define the appropriate logic 
level. The external resistors provide the ability to temporarily change the logic level for 
debugging purposes. Some of these pins have dedicated pull-up resistors during 
configuration. See Table 2-14, page 65 for recommended resistor values.

Be sure to define the post-configuration behavior for these pins to avoid unnecessary 
current paths. For example, see “Defining M[2:0] after Configuration for Minimum Power 
Consumption,” page 51.

Reusing HSWAP, PUDC_B, M[2:0], and VS[2:0] After Configuration
To reuse the HSWAP or PUDC_B, M[2:0], and VS[2:0] pins after configuration, use pull-up 
or pull-down resistors to define the logic values shown in the appropriate configuration 
schematic. Some of these pins have dedicated pull-up resistors during configuration. See 
Table 2-14, page 65 for recommended resistor values.

Use the weakest external pull-up or pull-down resistor value acceptable in the application. 
The resistor must be strong enough to define a logic Low or High during configuration. 
However, when driving the HSWAP or PUDC_B, M[2:0], or VS[2:0] pins after 
configuration, an external output driver must be strong enough to overcome the pull-up or 
pull-down resistor value and generate the appropriate logic levels. For example, to 
overcome a 560 Ω pull-down resistor, a 3.3V FPGA I/O pin must use a 6 mA or stronger 
driver.

Spartan-3E HSWAP Considerations

For Spartan-3E FPGAs, the logic level on HSWAP dictates how to define the logic levels on 
M[2:0] and VS[2:0], as shown in Table 2-21, page 76. If the application requires HSWAP to 
be High, a dedicated internal pull-up to VCCO_0 is available, although an external 3.3 to 
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4.7 kΩ resistor is recommended, especially if VCCO_2 (configuration) might be applied 
before VCCO_0 (HSWAP). Note that initial Spartan-3E silicon (step 0) required that 
VCCINT be applied before VCCAUX when using a pull-up on HSWAP.

If the application requires HSWAP to be Low during configuration, then HSWAP is either 
connected to GND or pulled Low using an appropriately sized external pull-down resistor 
to GND. The pin itself has an internal pull-up resistor to VCCO_0, so the external pull-
down resistor must be strong enough to define a logic Low on HSWAP for the I/O 
standard used during configuration, as shown in Table 2-14, page 65.

Once HSWAP is defined, use Table 2-21 to define the logic values for M[2:0] and VS[2:0].

Dual-Purpose Pins Become User I/O
All dual-purpose I/O pins that are borrowed during configuration become full-function 
I/O pins after configuration successfully completes. Figure 2-7 shows stylized waveforms 
for some of the configuration control signals. On Spartan-3E and Extended Spartan-3A 
family FPGAs, the M[2:0] mode pins, the VS[2:0] pin in Master SPI mode, the CCLK pin, 
and the HSWAP or PUDC_B pin are borrowed during configuration. After configuration 
completes, the pins become available as user-I/O pins.

All dual-purpose I/O pins, except for CCLK, become available to the FPGA application 
immediately following the GTS cycle during the FPGA Startup sequence. The GTS cycle 
timing is controlled by the GTS_cycle bitstream option.

The CCLK configuration clock does not become a user-defined I/O until after the entire 
configuration sequence is complete.

See Chapter 12, “Sequence of Events” for more information.

Table 2-21: Pull-up or Pull-down Values for HSWAP, M[2:0], and VS[2:0]

HSWAP Value
I/O Pull-up Resistors 
during Configuration

Required Resistor Value to Define Logic Level on 
HSWAP, M[2:0], or VS[2:0]

High Low

0 Enabled Pulled High via an internal 
pull-up resistor to the associated 
VCCO supply. No external 
pull-up resistor is necessary.

Pulled Low using an appropriately 
sized pull-down resistor to GND, as 
shown in Table 2-14, page 65.

1 Disabled Pulled High using a 3.3 to 4.7 kΩ 
resistor to the associated VCCO 
supply.

Pulled Low using a 3.3 to 4.7 kΩ resistor 
to GND.
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VCCAUX Level
In the Spartan-3A and Spartan-3A DSP platforms, the VCCAUX level is programmable as 
either 2.5V (default) or 3.3V. The user specifies the value in the software through the 
CONFIG VCCAUX=2.5 or CONFIG VCCAUX=3.3 constraint. In the Spartan-3AN platform, 
the user must set CONFIG VCCAUX=3.3 (default) for using the In-System Flash. The 
Spartan-3 and Spartan-3E families have a fixed VCCAUX at 2.5V.

Figure 2-7: Stylized Configuration Waveforms Showing When Dual-Purpose Pins Become Active
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Chapter 3

Master Serial Mode

The Master Serial configuration mode leverages the purpose-designed Xilinx® Platform 
Flash PROMs to configure Spartan®-3 generation FPGAs. Master Serial mode uses the 
serial interface offered on XCFxxS serial PROMs and the serial interface option on XCFxxP 
serial/parallel PROMs. 

Xilinx Platform Flash PROMs offer the following system advantages.

• Simple interface. Fewest number of FPGA pins used during configuration.

• Low cost per configuration bit.

• Highest bandwidth between PROM and FPGA for any serial PROM, resulting in 
fastest configuration time.

• Small package footprint.

• In-system programmable and reprogrammable via an integrated JTAG interface.

• Fully supported by the Xilinx iMPACT programming software.

• Multiple I/O and JTAG voltage ranges for maximum system flexibility.

• Density migration within a common package footprint. See Table 1-3, page 37.

• Sold and supported by Xilinx, with the long product lifetime and reliability associated 
with Xilinx products.

In Master Serial mode (M[2:0] = <0:0:0>), the Spartan-3 generation FPGA configures itself 
from an attached Xilinx Platform Flash PROM, as illustrated in Figure 3-1, Figure 3-2, and 
Figure 3-3.

The figures show optional components in gray and designated “NO LOAD”. For example, 
the Bitstream Generator option ProgPin Pullup internally connects a pull-up resistor 
between the PROG_B pin and VCCAUX. An external 4.7 kΩ pull-up resistor to VCCAUX is 
still recommended. The external pull-up provides a known pull-up value, and can be 
stronger than the internal pull-up alone, which the data sheet specifies at up to 12 kΩ.

The FPGA supplies the CCLK output clock from its internal oscillator to the attached 
Platform Flash PROM. In response, the Platform Flash PROM supplies bit-serial data to the 
FPGA’s DIN input, and the FPGA accepts this data on each rising CCLK edge.

All the FPGA mode-select pins, M[2:0], must be Low when sampled, which occurs when 
the FPGA’s INIT_B output initially goes High.

The FPGA's DOUT pin is used in daisy-chain applications, described in “Daisy-Chained 
Configuration,” page 86. In a single-FPGA application, the FPGA’s DOUT pin is inactive, 
but pulled High via an internal resistor.

The Master Serial interface varies slightly between Spartan-3 generation FPGAs.

• Figure 3-1, page 80 illustrates the Master Serial configuration interface for Spartan-3E and 
Spartan-3A/3A DSP FPGAs when the FPGA’s VCCAUX supply is at 2.5V. Spartan-3E FPGAs 

http://www.xilinx.com/products/silicon_solutions/proms/pfp/
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always have VCCAUX =2.5V. Spartan-3A and Spartan-3A DSP FPGAs support both 
VCCAUX = 2.5V or 3.3V. Table 3-1, page 80 lists the FPGA/PROM connections.

• Figure 3-2, page 81 illustrates the Master Serial configuration interface for Extended Spartan-3A 
family FPGAs when VCCAUX = 3.3V. Spartan-3AN FPGAs always have VCCAUX=3.3V. Table 3-1, 
page 80 lists the FPGA/PROM connections. 

• Figure 3-3, page 82 illustrates the Master Serial configuration interface for Spartan-3 FPGAs.

Figure 3-1: Master Serial Mode Using Platform Flash PROM 
(Spartan-3E or Spartan-3A/3A DSP FPGA, VCCAUX = 2.5V)
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Table 3-1: Spartan-3E/Spartan-3A/3A DSP FPGA Connections 

FPGA Pin
Platform Flash 

PROM Pin
Comments

DIN D0

CCLK CLK Watch signal integrity on this trace. See “CCLK Design 
Considerations,” page 58.

INIT_B OE/RESET FPGA resets PROM during initialization, then enables the 
PROM data out during configuration.

DONE CE FPGA enables PROM during configuration. DONE output 
powered by FPGA VCCAUX supply.
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PROG_B CF  

VCCO_2 VCCO Spartan-3E FPGA: 1.8V, 2.5V, or 3.3V

Spartan-3A/3A DSP FPGA: 2.5V or 3.3V (not 1.8V due to 
VCCO2T, which does not apply after configuration)

VCCJ PROM JTAG output voltage. If 3.3V, then protect the FPGA 
JTAG inputs with current-limiting resistors (>68Ω)

Table 3-1: Spartan-3E/Spartan-3A/3A DSP FPGA Connections 

FPGA Pin
Platform Flash 

PROM Pin
Comments

Figure 3-2: Master Serial Mode Using Platform Flash PROM (Extended Spartan-3A Family FPGA, 
VCCAUX = 3.3V)

TMS

TDO

TCK

TDI

VCCINT

VCCAUX +3.3V

INIT_B

VCCO_2

CCLK
DIN

PROG _B DONE

GND

+1.2V

D0

CF

VCCINT

CLK

VCCO_0P VCCO_0

Spartan-3A/3AN (3.3V)

PROGRAM

XCFxxS = +3.3V
XCFxxP = +1.8V

CE

M2
M1

‘0’
‘0’

M0

Serial Master 
Mode

‘0’
OE /RESET

GND

TMS

TCK

TDI

TDO

VCCJ

VCCO

CEO

Platform Flash
XCFxx3

30
Ω

VCCAUX

4.
7k

Ω
4.

7k
Ω

DOUT

N
O

 L
O

A
D

N
O

 L
O

A
D

N
O

 L
O

A
D

PUDC_B

VREF

TMS

TCK

TDO

TDI

N .C.
N .C.

1

14

+3.3V

+3.3V

X
il

in
x 

C
a

b
le

 H
e

ad
e

r
(J

T
A

G
 In

te
rf

ac
e)

UG332_c3_15_052107= Dedicated internal pull-up resistor

+3.3V
+3.3V

+3.3V

Spartan-3A DSP (3.3V)

http://www.xilinx.com


82 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

Figure 3-3: Master Serial Mode Using Platform Flash PROM (Spartan-3 FPGA)
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Table 3-2: Spartan-3 FPGA Connections to Platform Flash PROM

FPGA Pin
Platform Flash 

PROM Pin
Comments

DIN D0

CCLK CLK Watch signal integrity on this trace. See “CCLK Design 
Considerations,” page 58. CCLK output powered by 
FPGA’s VCCAUX supply

INIT_B OE/RESET FPGA resets PROM during initialization, then enables the 
PROM’s data out during configuration.

DONE CE FPGA enables PROM during configuration. DONE output 
powered by FPGA’s VCCAUX supply.

PROG_B CF  

VCCO_4 VCCO 1.8V, 2.5V, or 3.3V

VCCJ PROM’s JTAG output voltage. If 3.3V, then protect the 
FPGA JTAG inputs with current-limiting resistors (>68Ω)
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Master Serial Mode Connections
Table 3-3 lists the various FPGA pins involved in Master Serial mode configuration.

Table 3-3: Master Serial Configuration Mode Connections

Pin Name
FPGA 

Direction
Description During Configuration

After 
Configuration

Spartan-3E FPGA:
HSWAP

Extended 
Spartan-3A

FPGA:

PUDC_B

Spartan-3 FPGA:
HSWAP_EN

Input

User I/O Pull-Up Control. When 
Low during configuration, enables 
pull-up resistors in all I/O pins to 
respective I/O bank VCCO input.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level 
throughout configuration.

Spartan-3:
Dedicated pin 
(don’t care after 
configuration)
Extended 
Spartan-3A:

User I/O

M[2:0] Input
Mode Select. Selects the FPGA 
configuration mode.

M2 = 0, M1 = 0, M0 = 0. 
Sampled when INIT_B goes 
High.

User I/O

DIN Input
Serial Data Input. Receives serial data from 

PROM’s D0 output.
User I/O

CCLK Output

Configuration Clock. Generated by 
FPGA internal oscillator. Frequency 
controlled by ConfigRate bitstream 
generator option. If CCLK PCB trace 
is long or has multiple connections, 
terminate this output to maintain 
signal integrity.

Drives PROM’s CLK clock 
input.

Spartan-3:
Dedicated pin.
Spartan-3E
Extended 
Spartan-3A:

User I/O. Drive 
High or Low if 
not used.

DOUT Output

Serial Data Output. Not used in single-FPGA 
designs; DOUT is pulled up, 
not actively driving. In a daisy-
chain configuration, this pin 
connects to DIN input of the 
next FPGA in the chain. See 
Figure 3-4, page 87.

User I/O

INIT_B
Open-drain 
bidirectional 

I/O

Initialization Indicator. Active Low. 
Goes Low at start of configuration 
during Initialization memory 
clearing process. Released at end of 
memory clearing, when mode select 
pins are sampled.

Connects to PROM’s 
OE/RESET input. FPGA clears 
PROM’s address counter at 
start of configuration, enables 
outputs during configuration. 
PROM also holds FPGA in 
Initialization state until PROM 
reaches Power-On Reset (POR) 
state. If CRC error detected 
during configuration, FPGA 
drives INIT_B Low.

User I/O. If 
unused in the 
application, 
drive INIT_B 
High to avoid a 
floating value. 
See INIT_B 
“After 
Configuration”.

P
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Voltage Compatibility

Platform Flash PROM
The Platform Flash PROM VCCINT supply must be either 3.3V for the serial XCFxxS 
Platform Flash PROMs or 1.8V for the serial/parallel XCFxxP PROMs.

FPGA

Spartan-3E and Spartan-3A/3A DSP FPGAs with VCCAUX at 2.5V

The Spartan-3E or Spartan-3A/3A DSP FPGA VCCO_2 supply input and the Platform 
Flash PROM VCCO supply input must be the same voltage. A 2.5V-only interface is easiest 
as all signals are the same voltage. A 3.3V interface is also supported but the FPGA 
PROG_B and DONE pins require special attention as they are powered by the FPGA 
VCCAUX supply, nominally 2.5V. For Spartan-3E FPGAs see application note XAPP453: The 
3.3V Configuration of Spartan-3 FPGAs, and for Spartan-3A/3A DSP FPGAs see application 
note XAPP459: Interfacing Large-Swing Signals for additional information.

Spartan-3 FPGAs

The Spartan-3 FPGA’s VCCO_4 supply input and the Platform Flash PROM VCCO supply 
input must be the same voltage. A 2.5V-only interface is easiest as all signals are the same 
voltage. A 3.3V interface is also supported but the FPGA PROG_B, DONE, and CCLK pins 
require special attention as they are powered by the FPGA VCCAUX supply, nominally 2.5V. 
See application note XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional 
information.

JTAG Interface
If the Platform Flash PROM is the last device in the chain, then the JTAG interface voltage 
is easily controlled by the PROM’s VCCJ supply. If the FPGA’s VCCAUX supply is 2.5V and 
the JTAG chain is also 2.5V, the interface is simple. To create a 3.3V JTAG interface, even 
when the FPGA’s VCCAUX supply is 2.5V, connect VCCJ to 3.3V and provide current-
limiting resistors on the FPGA’s TDI, TMS, and TCK JTAG inputs.

DONE
Open-drain 
bidirectional 

I/O

FPGA Configuration Done. Low 
during configuration. Goes High 
when FPGA successfully completes 
configuration. 

Connects to PROM’s chip-
enable (CE) input. Enables 
PROM during configuration. 
Disables PROM after 
configuration.

When High, 
indicates that 
the FPGA 
successfully 
configured.

PROG_B Input

Program FPGA. Active Low. When 
asserted Low for 500 ns or longer, 
forces the FPGA to restart its 
configuration process by clearing 
configuration memory and resetting 
the DONE and INIT_B pins once 
PROG_B returns High. 

Must be High during 
configuration to allow 
configuration to start. Connects 
to PROM’s CF pin, allowing 
JTAG PROM programming 
algorithm to reprogram the 
FPGA.

Drive PROG_B 
Low and release 
to reprogram 
FPGA.

Table 3-3: Master Serial Configuration Mode Connections (Cont’d)

Pin Name
FPGA 

Direction
Description During Configuration

After 
Configuration

http://www.xilinx.com
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For Spartan-3A/3A DSP FPGA, the VCCAUX supply can be either 2.5V or 3.3V. If VCCAUX 
is 3.3V, then a 3.3V JTAG interface is also easy. No current-limiting resistors are required.

See also “JTAG Cable Voltage Compatibility,” page 198.

Supported Platform Flash PROMs
Table 3-4 shows the smallest available Platform Flash PROM to program one Spartan-3 
generation FPGA. A multiple-FPGA daisy-chain application requires a Platform Flash 
PROM large enough to contain the sum of the various FPGA bitstream sizes.

There are two possible design solutions for FPGA designs that require 8 Mbit PROMs: use 
either a single 8 Mbit XCF08P parallel/serial PROM or two cascaded XCFxxS serial 

Table 3-4: Number of Bits to Program a Spartan-3 Generation FPGA and Smallest 
Platform Flash PROM

Family FPGA
Number of

Configuration Bits
Smallest Possible

Platform Flash PROM

Spartan-3A

(Spartan-3AN)

XC3S50A 437,312 XCF01S

XC3S200A 1,196,128 XCF02S

XC3S400A 1,886,560 XCF02S

XC3S700A 2,732,640 XCF04S

XC3S1400A 4,755,296
XCF08P

or XCF04S + XCF02S

Spartan-3A DSP
XC3SD1800A 8,197,280

XCF08P
or two XCF04S PROMs

XC3SD3400A 11,718,304 XCF16P

Spartan-3E

XC3S100E 581,344 XCF01S

XC3S250E 1,353,728 XCF02S

XC3S500E 2,270,208 XCF04S

XC3S1200E 3,841,184 XCF04S

XC3S1600E 5,969,696
XCF08P

or XCF04S + XCF02S

Spartan-3

XC3S50 439,264 XCF01S

XC3S200 1,047,616 XCF01S

XC3S400 1,699,136 XCF02S

XC3S1000 3,223,488 XCF04S

XC3S1500 5,214,784
XCF08P

or XCF04S + XCF02S

XC3S2000 7,673,024
XCF08P

or 2 x XCF04S

XC3S4000 11,316,864 XCF16P

XC3S5000 13,271,936 XCF16P
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86 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 3: Master Serial Mode
R

PROMs as listed in Table 3-4. The two XCFxxS PROMs have a 3.3V VCCINT supply while 
the XCF08P requires a 1.8V VCCINT supply. If the board does not already have a 1.8V 
supply available, the two cascaded XCFxxS PROM solution is recommended.

CCLK Frequency
In Master Serial mode, the FPGA’s internal oscillator generates the configuration clock 
frequency. The FPGA provides this clock on its CCLK output pin, driving the PROM’s CLK 
input pin. The FPGA starts configuration at its lowest frequency and increases its 
frequency for the remainder of the configuration process if so specified in the 
configuration bitstream. The maximum frequency is specified using the ConfigRate 
bitstream generator option. Table 3-5 shows the maximum ConfigRate settings, 
approximately equal to the frequency measured in MHz, for various Platform Flash 
PROMs and I/O voltages. These values are determined using the minimum CCLK period 
from the appropriate Spartan-3E or Extended Spartan-3A family data sheet. The maximum 
ConfigRate for the serial XCFxxS PROMs is reduced at 1.8V. Extended Spartan-3A family 
FPGAs do not support a 1.8V configuration interface due to their higher VCCO_2 Power-
On Reset voltage threshold. See “Power-On Reset (POR),” page 240.

Daisy-Chained Configuration
If the application requires multiple FPGAs, each with different configurations, then 
configure the FPGAs using a daisy chain, as shown in Figure 3-4, page 87. Use Master 
Serial mode (M[2:0] = <0:0:0>) for the FPGA connected to the Platform Flash PROM and 
Slave Serial mode (M[2:0] = <1:1:1>) for all other FPGAs in the daisy chain. After the 
master FPGA—the FPGA on the left in the diagram—finishes loading its configuration 
data from the Platform Flash, the master device supplies data using its DOUT output pin 
to the next device in the daisy chain, on the falling CCLK edge.

Also, to successfully configure a daisy chain, the GTS_cycle bitstream option must be set to 
a Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the 
software default setting. Optionally, set GTS_cycle:Done. 

Ganged or Broadside Configuration
“Daisy-Chained Configuration” is designed to load multiple FPGAs, each with a different 
design and typically of different array size. However, some applications include multiple, 
identical FPGAs, all programmed with the same bitstream. Instead of daisy chaining the 
FPGAs and storing multiple copies of the same bitstream, “Ganged or Broadside 

Table 3-5: Maximum ConfigRate Settings Using Platform Flash (Serial Mode, 
Commercial Range)

Platform Flash Part 
Number

I/O Voltage 
(VCCO_2, VCCO)

 Spartan-3E 
ConfigRate Setting

 Extended Spartan-3A 
Family ConfigRate 

Setting

XCF01S
XCF02S
XCF04S

3.3V or 2.5V 25 33

1.8V 12 N/A

XCF08P
XCF16P
XCF32P

3.3V or 2.5V
25

44

1.8V N/A

http://www.xilinx.com
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Configuration” programs multiple, identical FPGAs with the same bitstream, as shown in 
Figure 3-5, page 87.

Figure 3-4: Multi-FPGA Daisy-Chain Configuration Using Xilinx Platform Flash PROM
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Figure 3-5: Multiple, Identical FPGAs Programmed with the Same Bitstream
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JTAG Interface
Spartan-3 generation FPGAs and the Platform Flash PROMs both have a four-wire IEEE 
1149.1/1532 JTAG port. Both the FPGA and the PROM share the JTAG TCK clock input 
and the TMS mode select input. The devices may connect in either order on the JTAG chain 
with the TDO output of one device feeding the TDI input of the following device in the 
chain. The TDO output of the last device in the JTAG chain drives the JTAG connector.

The JTAG interface on the FPGA is powered by the VCCAUX supply. Consequently, the 
PROM’s VCCJ supply input must also be 2.5V. To create a 3.3V JTAG interface, refer to 
XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional information.

Storing Additional User Data in Platform Flash
Typically, there is some additional space leftover in the Platform Flash after storing the 
FPGA bitstream. If desired, the application can store additional data in the Platform Flash 
PROM and make it available to the FPGA after configuration.

The FPGA application does not have easy write-access to the PROM but read-access is 
relatively simple, as described in the referenced application notes below. For applications 
that also require easy write-access, consider using the Master SPI configuration interface, 
described in Chapter 4, “Master SPI Mode”.

Use the available space in the Platform Flash PROM, or even the next larger PROM size, to 
hold additional nonvolatile application data such as MicroBlaze® processor code, or other 
user data such as serial numbers and Ethernet MAC IDs. Using a MicroBlaze application as 
an example, the FPGA configures from the Platform Flash PROM. Then using FPGA logic 
after configuration, the FPGA copies MicroBlaze code from Platform Flash into external 
DDR SDRAM for code execution, providing simple and cost-effective code shadowing.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
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A few simple modifications are required to the standard interface. As shown in 
Figure 3-6a, the FPGA uses its DONE output to enable the Platform Flash PROM CE input. 
However, once configured, the FPGA cannot re-enable the PROM because the DONE is a 
dedicated pin and the FPGA application cannot control it.

The simplest solution, shown in Figure 3-6b, is to connect the PROM’s CE input to ground. 
The PROM consumes slight more power if constantly enabled, but then the FPGA has 
direct access. On Spartan-3 FPGAs, the CCLK pin is a dedicated pin. To control the PROM, 
use an FPGA I/O in parallel with CCLK. Also be sure to set the CclkPin:Pullnone 
bitstream option.

Figure 3-6c shown an alternative solution. In this case, connect the PROM’s CE input to an 
FPGA I/O pin. The FPGA pin has a sufficiently large pull-down resistor to guarantee that 
CE is Low during configuration. The exact size of the pull-down resistor depends on 
whether pull-up resistors are enabled during configuration and the I/O standard used in 
the application. See Table 2-15, page 66 for pull-down resistor values. After configuration, 
the FPGA can selective enable the PROM by driving the associated I/O pin High or Low.

See the following application notes for specific details on how to implement such an 
interface.

Figure 3-6: Various Methods to Use Platform Flash PROM after Configuration
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• XAPP482: MicroBlaze Platform Flash/PROM Boot Loader and User Data Storage 
http://www.xilinx.com/support/documentation/application_notes/xapp482.pdf

• XAPP694: Reading User Data from Configuration PROMs
http://www.xilinx.com/support/documentation/application_notes/xapp694.pdf

Generating the Bitstream for a Master Serial Configuration
The create the FPGA bitstream for a Master Serial mode configuration, follow the steps 
outlined in “Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an 
FPGA configured in Master SPI mode, set the following bitstream generator options.

ConfigRate: CCLK Frequency
Set the ConfigRate option as described in “CCLK Frequency,” page 86. Using the ISE® 
software Project Navigator, the Configuration Rate frequency is set in Step 7 in Figure 1-7, 
page 44.

-g ConfigRate:25

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep 
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA 
to actively drive the DONE pin after successfully completing the configuration process. 
Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in 
Figure 1-8, page 45.

-g DriveDone:Yes

GTS_cycle: Global Three-State Release Timing for Daisy Chains
If creating a multi-FPGA daisy chain, set the GTS_cycle option to be later than the 
DONE_cycle setting, which is the default setting for both. Alternatively, set 
GTS_cycle:Done. From ISE Project Navigator, the GTS_cycle setting is the Enable Outputs 
(Output Events) option, shown as Step 14 in Figure 1-8, page 45.

Preparing a Platform Flash PROM File 
This section provides guidelines to create PROM files for Platform Flash PROM memories.

The Xilinx software tools, “iMPACT” or PROMGen, generate PROM files from the FPGA 
bitstream or bitstreams.

iMPACT
The following steps graphically describe how to create a PROM file using iMPACT from 
within the ISE Project Navigator.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp482.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp694.pdf
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1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG 
File from within the Process pane, as shown in Figure 3-7.

2. As shown in Figure 3-8, select Prepare a PROM File.

3. Click Next.

Figure 3-7: Double-click Generate PROM, ACE or JTAG File

Figure 3-8: Prepare a PROM File
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4. As shown in Figure 3-9, format the FPGA bitstream or bitstreams for a Xilinx PROM.

5. Select a PROM File Format.

6. Enter a PROM File Name.

7. Click Next.

8. As shown in Figure 3-10, select the xcf (Platform Flash PROM) family from the drop-
list.

Figure 3-9: Set Options for Xilinx Platform Flash PROM
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9. Select the desired Platform Flash part number. The example in Figure 3-10 shows an 
XCF04 PROM, which stores up to 4 Mbits, or 524,288 bytes.

10. Click Add. This example assumes that the FPGA is connected to a single Platform 
Flash PROM. However, multiple Platform Flash PROMs can also be cascaded to create 
a larger memory. If the application cascaded multiple PROMs, then click the Add 
button to include additional PROMs.

11. For a design that uses a single Platform Flash PROM, the PROM also is located in 
position 0. If the application used multiple, cascaded PROMs, each PROM part name 
and position would be listed.

12. Click Next.

13. As shown in Figure 3-11, review that the settings are correct to format the Platform 
Flash PROM. Click Finish to confirm the settings or Back to change the settings.

Figure 3-10: Select Platform Flash PROM
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14. As shown in Figure 3-12, click OK to start adding bitstream files.

15. Locate and select the desired FPGA bitstream.

16. Click Open.

Figure 3-11: Review PROM Formatting Settings

Figure 3-12: Add FPGA Configuration Bitstream File(s)
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17. Click No. This example assumes that the Platform Flash PROM holds only a single 
FPGA bitstream. If creating a multi-FPGA configuration daisy chain, click Yes and 
select additional FPGA bitstreams.

18. As shown in Figure 3-13, the iMPACT software graphically displays the Platform Flash 
PROM and associated FPGA bitstream(s).

19. Click Generate File.

20. The iMPACT software indicates when the PROM file is successfully created.

Platform Flash In-System Programming via JTAG using iMPACT
Both the FPGA and the Platform Flash PROM are in-system programmable via the JTAG 
chain. Download support for prototyping purposes is provided by the Xilinx iMPACT 
programming software and the associated Xilinx Parallel Cable IV, or Platform Cable 
USB II programming cables.

Prepare Board for Programming
Before attempting to program the Platform Flash PROM, complete the following steps.

1. Ensure that the board is powered.

2. Ensure that the programming cable is properly connected both the board and to the 
computer or workstation.

Programming via iMPACT
The following steps describe how to program a Platform Flash PROM using the iMPACT 
software and a Xilinx programming cable.

Figure 3-13: Generate PROM File
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1. Click Configure devices using Boundary-Scan (JTAG) from within iMPACT, as 
shown in Figure 3-14. If the Automatically connect... option is selected, iMPACT will 
query the devices in the JTAG chain and automatically detect the chain topology.

2. Click Finish.

3. As shown in Figure 3-15, the iMPACT software automatically detects the JTAG chain, 
if so enabled. This example application is similar to that shown in Figure 3-1. The 
FPGA is an XC3S700A, followed in the chain by an XCF04S Platform Flash PROM.

4. In this example, the XC3S700A precedes the XCF04S Platform Flash PROM in the 
chain. The FPGA does not need to be programmed in order to program the Platform 
Flash PROM. The iMPACT software prompts for the FPGA bitstream, as shown in 
Figure 3-16. Click Bypass to skip programming the FPGA.

Figure 3-14: Program Platform Flash PROM using JTAG

Figure 3-15: iMPACT Automatically Detects JTAG Chain
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5. As shown in Figure 3-17, select the PROM data file to be programmed to the Platform 
Flash PROM.

6. Click Open.

7. As shown in Figure 3-18, the iMPACT software updates the screen image, showing the 
files to be loaded to each device in the JTAG chain. To program the Platform Flash 
PROM, first click to highlight the XCF04S PROM.

Figure 3-16: Bypass Programming the FPGA

Figure 3-17: Select the Platform Flash Programming File
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8. Double-click Program.

9. Click Programming Properties, as shown in Figure 3-19.

10. Check Verify. Unchecking Verify will reduce programming but iMPACT can only 
guarantee correct programming on a verified PROM.

Figure 3-18: Program the Platform Flash PROM
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Figure 3-19: PROM Programming Options
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11. Check Erase Before Programming. Required for reprogramming. Unchecking the 
Erase option reduces programming time for a blank device.

12. Check Load FPGA to force the FPGA to automatically reconfigure with the new 
PROM data after PROM programming is complete.

13. Click OK.

14. The iMPACT software indicates successful programming, as shown in Figure 3-18.

Production Programmers
The Xilinx Platform Flash PROMs are supported by a variety of third-party production 
programmers. These programmers are the best option for high-volume applications and 
many offer gang-programming options.

Table 3-6 provides links to vendors that provide Platform Flash programming support. 
The links indicate the specific programmer model numbers, software versions, and any 
programming adapters required.

Additional Information
• DS123: Platform Flash In-System Programmable Configuration PROMs

www.xilinx.com/support/documentation/data_sheets/ds123.pdf

Table 3-6: Xilinx Platform Flash Production Programmers

Platform Flash 
Family

Part 
Numbers

Production Programmers

XCFxxS

XCF01S

XCF02S

XCF04S

www.xilinx.com/support/programr/dev_sup.htm#XCF00SP

XCFxxP

XCF08P

XCF16P

XCF32P

www.xilinx.com/support/programr/dev_sup.htm#XCF00SP

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds123.pdf
http://www.xilinx.com/support/programr/dev_sup.htm#XCF00SP
http://www.xilinx.com/support/programr/dev_sup.htm#XCF00SP
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Chapter 4

Master SPI Mode

The SPI serial Flash configuration mode is ideal for applications with the following 
attributes.

• SPI Flash PROMs are already being used in the system.

• The FPGA application needs to store data in nonvolatile memory or to access data 
from randomly-accessible, byte-addressable, nonvolatile memory.

• High-volume “consumer” applications with a production run of about a few years or 
less. For embedded applications with a five year or longer production lifetime, also 
consider Master Serial mode using Xilinx® Platform Flash, which has a longer, more 
stable supply lifetime than commodity Flash.

In Master SPI mode (M[2:0] = <0:0:1>), the Spartan®-3E or Extended Spartan-3A family 
FPGA configures itself from an attached industry-standard SPI serial Flash PROM, as 
illustrated in Figure 4-1 and Figure 4-2. The figure shows optional components in gray and 
designated “NO LOAD”. The FPGA supplies the CCLK output clock from its internal 
oscillator and drives the clock input of the attached SPI Flash PROM.

More information on configuration from SPI Flash PROMs can be found in the following 
application note.

• XAPP951: Configuring Xilinx FPGAs with SPI Serial Flash
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp951.pdf
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Although SPI is a fairly standard and ubiquitous four-wire interface, various available SPI 
Flash PROMs use different command protocols. The FPGA’s variant select pins, VS[2:0], 
define how the FPGA communicates with the SPI Flash, including which SPI Flash 
command the FPGA issues to start the read operation and the number of dummy bytes 
inserted before the FPGA expects to receive valid data from the SPI Flash. Table 4-2 shows 
the available SPI Flash PROMs tested or expected to operate with Spartan-3E/3A FPGAs. 
Other compatible devices might work but have not been hardware verified by Xilinx. All 
other VS[2:0] values are reserved for future use. Consult the data sheet for the desired SPI 
Flash device to determine its suitability. 

Figure 4-1 shows the general connection diagram for SPI Flash PROMs that support the 
0x0B FAST READ commands, which are most modern 25-series PROMs. The example 
shown is an STMicro (Numonyx) M25Pxx PROM.

Note: Grayed out pull-up resistor on CSO_B is only necessary when HSWAP/PUDC_B is High (I/O Pull-Ups Not Enabled)

Figure 4-1: SPI Flash Configuration Interface for M25P-compatible Devices
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Figure 4-2 shows the connection diagram for Atmel DataFlash serial PROMs, which also 
use an SPI-based protocol. Xilinx recommends using ‘C’- or ‘D’-series DataFlash devices.

Figure 4-6, page 119 demonstrates how to configure multiple FPGAs with different 
configurations, all stored in a single SPI Flash. The diagram uses standard SPI Flash 
memories but the same general technique applies for Atmel DataFlash.

Note: Grayed out pull-up resistor on CSO_B is only necessary when HSWAP/PUDC_B is High (I/O Pull-Ups Not Enabled)

Figure 4-2: SPI Flash Configuration Interface for Atmel DataFlash Devices
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Master SPI Mode Differences between Spartan-3 Generation FPGA 
Families

The Master SPI configuration mode is available using either the Extended Spartan-3A or 
Spartan-3E FPGA families. It is not provided on the Spartan-3 FPGA family, as 
summarized in Table 4-1.

Choosing a Compatible SPI Serial Flash
The Spartan-3E and Extended Spartan-3A family FPGAs are designed to support a wide 
range of SPI serial Flash memory devices. Table 4-2, page 105 lists the Xilinx-tested PROMs 
that have in-system programming support using the iMPACT software. Many other SPI 
Flash PROMs are designed to be form, fit, and functionally equivalent and are listed in 
Table 4-5, page 107. The Xilinx ISE® software generates compatible programming files but 
Xilinx has not tested these PROMs for complete compatibility. Similarly, the PROMs listed 
in Table 4-5, page 107 are not supported by the iMPACT in-system programming software.

The criteria to select an SPI Flash PROM are listed below.

• Ideally, the end application should use a Xilinx-tested SPI PROM, listed in Table 4-2. 
Table 4-3, page 105 lists the specific SPI Flash PROM part numbers tested and 
supported within iMPACT for in-system programming using Xilinx programming 
cables.

Table 4-1: Master SPI Mode Support within Spartan-3 Generation FPGAs

Spartan-3 
FPGA

Spartan-3E 
FPGA

Spartan-3A/3AN
Spartan-3A DSP 

FPGA

Supports multi-FPGA daisy-chain 
configurations

Master SPI 
mode is not 
available on 

Spartan-3 
FPGAs

Step 1 only Yes

Supports MultiBoot configuration No Yes

Watchdog Timer retry No Yes

CCLK directionality during Master 
SPI mode I/O

Output only for 
improved signal 

integrity

M[2:0] and VS[2:0] pins have 
dedicated internal pull-up resistors 
during configuration

No

Optional, 
controlled by 

HSWAP

Yes

http://www.xilinx.com
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• The specific SPI serial memory must support a compatible read command offered by 
the FPGA. The specific command set is selected by defining the FPGA’s VS[2:0] pins 
before configuration. Table 4-4 lists the commands supported on Spartan-3E and 
Extended Spartan-3A family FPGAs. The command setting defines which SPI Flash 
read command that the FPGA issues at the start of configuration, followed by a 24-bit 
address starting at 0, followed by the number of dummy bits required for the specific 
command.

Table 4-2: SPI Flash Memory Devices Officially Supported by Xilinx and Programmed Using iMPACT

SPI Flash Xilinx 
iMPACT
Support

Unique 
ID

Read Command

Density (bits)
Fast 
Read

(0x0B)

Read
(0x03)

Read 
Array
(0xE8)

FPGA VS[2:0] Setting

Vendor Family 1:1:1 1:0:1 1:1:0 512K 1M 2M 4M 8M 16M 32M 64M 128M

STMicro 
(Numonyx)

M25P ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

M25PE ◆ ◆ ◆ ◆ ◆ ◆ ◆

M45PE ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Atmel

AT45DB 
D-series

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

AT45DB 
B-series

◆ ◆ ◆ ◆ ◆ ◆

Notes: 
1. Xilinx iMPACT Support indicates that Xilinx has physically tested compatibility for these SPI Flash memory devices and provides 

programming support in the iMPACT programming utility using Xilinx approved JTAG cables. The iMPACT software generates 
programming information that is compatible with all the devices listed.

2. Unique ID indicates that these SPI Flash memory device have factory-programmed unique identifier bits, useful for protecting 
FPGA applications or IP cores.

Table 4-3: SPI Serial Flash PROMs Supported by iMPACT

Vendor STMicro (Numonyx) Atmel

Status Recommended Supported Recommended Supported

Density (bits) M25Pxx M25PExx M45PExx AT45DBxxxD AT45DBxxxB

512K M25P05A

1M M25P10A M25PE10 M45PE10 AT45DB011D AT45DB011B

2M M25P20 M25PE20 M45PE20 AT45DB021D AT45DB021B

4M M25P40 M25PE40 M45PE40 AT45DB041D AT45DB041B

8M M25P80 M25PE80 M45PE80 AT45DB081D AT45DB081B

16M M25P16 M45PE16 AT45DB161D AT45DB161B

32M M25P32
AT45DB321D

AT45DB321C
AT45DB321B

64M M25P64 AT45DB642D

128M M25P128

http://www.xilinx.com
http://www.atmel.com/dyn/products/product_card.asp?family_id=616&family_name=DataFlash%AE&part_id=2471
http://www.atmel.com/dyn/products/product_card.asp?family_id=616&family_name=DataFlash%AE&part_id=2472
http://www.numonyx.com/Documents/Datasheets/M25P128.pdf
http://www.numonyx.com/Documents/Datasheets/M45PE10.pdf
http://www.numonyx.com/Documents/Datasheets/M45PE20.pdf
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/M25P.aspx
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/NumonySerialFlashM25M45.aspx
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/NumonySerialFlashM25M45.aspx
http://www.atmel.com/products/DataFlash/
http://www.atmel.com/products/DataFlash/
http://www.numonyx.com/Documents/Datasheets/M45PE16.pdf
http://www.numonyx.com
http://www.numonyx.com/Documents/Datasheets/M45PE40.pdf
http://www.numonyx.com/Documents/Datasheets/M45PE80.pdf
http://www.atmel.com
http://www.numonyx.com/Documents/Datasheets/M25P05A.PDF
http://www.numonyx.com/Documents/Datasheets/M25P10A.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE20_10.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3937
http://www.atmel.com/dyn/products/product_card.asp?part_id=2467
http://www.numonyx.com/Documents/Datasheets/M25P20.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE20_10.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3936
http://www.atmel.com/dyn/products/product_card.asp?part_id=2468
http://www.numonyx.com/Documents/Datasheets/M25P40.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE40.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3806
http://www.atmel.com/dyn/products/product_card.asp?part_id=2469
http://www.numonyx.com/Documents/Datasheets/M25P80.pdf
http://www.numonyx.com/Documents/Datasheets/M25PE80.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3819
http://www.atmel.com/dyn/products/product_card.asp?part_id=2470
http://www.numonyx.com/Documents/Datasheets/M25P16.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3772
http://www.numonyx.com/Documents/Datasheets/M25P32.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3818
http://www.atmel.com/dyn/products/product_card.asp?part_id=3504
http://www.numonyx.com/Documents/Datasheets/M25P64.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=3777
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♦ The Fast Read command (command code 0x0B) is supported on modern 25-
series SPI serial Flash devices. Set VS[2:0] <1:1:1> to use this command. SPI Flash 
PROMs that support the Fast Read command also support the Read command.

♦ The Read command (command code 0x03) is a legacy command set, offered on 
all 25-series SPI serial Flash devices. Set VS[2:0] <1:0:1> to use this command.

♦ The Read Array command (command code 0xE8) is offered on all Atmel AT45-
series DataFlash PROMs. Set VS[2:0] <1:1:0> to use this command.

♦ Some recent SPI Flash PROMs, like the Atmel AT45DB D-series PROMs support 
all three read commands.

• The specific SPI serial memory must be large enough to contain one or more FPGA 
bitstreams plus any other nonvolatile memory requirements to support the FPGA 
application after configuration.

♦ The size of an individual, uncompressed FPGA bitstream is provided in Table 4-6, 
page 108, although the size requirements might be reduced by using “Bitstream 
Format,” page 39.

♦ If using MultiBoot on an Extended Spartan-3A family FPGA, add the size of each 
MultiBoot configuration image. Essentially, it is the same as an individual FPGA 
image, but MultiBoot allows multiple selectable images within a single FPGA.

♦ Using a daisy-chained configuration scheme, a single SPI Flash PROM can store 
multiple FPGA bitstreams. Add the bitstream sizes for each FPGA in the daisy 
chain.

♦ If using the SPI PROM to store MicroBlaze™ code or other nonvolatile data for 
the FPGA application after configuration, add the sizes of each of these images.

♦ Add any overhead requirements to align the data to page or sector boundaries as 
required by the selected Flash PROM device.

• For possible future migration to a larger FPGA or to allow possible upward migration 
for additional data, choose a SPI PROM family that offers larger, compatible densities.

• For Spartan-3E FPGA applications that require anti-cloning protection, choose an SPI 
PROM that provides a unique identifier (ID). See “Spartan-3E FPGA: Leveraging 
Security Features in Select Commodity Flash PROMs,” page 299. Extended Spartan-
3A family FPGAs provide similar protection features using an SPI PROM. See 
“Extended Spartan-3A Family FPGA: Imprinting or Watermarking the Configuration 
PROM with Device DNA,” page 298.

• The Xilinx iMPACT software offers direct, in-system programming using Xilinx 
programming cables, starting with ISE 8.2i. However, the current software version 
only supports the STMicro (Numonyx) and Atmel devices indicated in Table 4-2, 
page 105. Many 25-series PROMs are directly compatible with the STMicro 
(Numonyx) M25Pxx family and could be substituted in production.

Table 4-4: SPI Read Commands Supported by Spartan-3 Generation FPGAs

VS[2:0] Pins
Read 

Command

Hexadecimal 
Command 

Code
Address Bits Dummy Bits

VS2 VS1 VS0

1 1 1 Fast Read 0x0B

24 bits, all zeros

8 bits, all zeros

1 0 1 Read 0x03 None

1 1 0 Read Array 0xE8 32 bits, all zeros

Others Reserved

http://www.xilinx.com
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SPI Flash PROM Density Requirements
Table 4-6 shows the smallest usable SPI Flash PROM to program a single Extended 
Spartan-3A family or Spartan-3E FPGA. Commercially available SPI Flash PROMs range 
in density from 1 Mbit to 128  Mbits. A multiple-FPGA daisy-chained application requires 
a SPI Flash PROM large enough to contain the sum of the FPGA file sizes. An application 
can also use a larger-density SPI Flash PROM to hold additional data beyond just FPGA 
configuration data. For example, the SPI Flash PROM can also store application code for a 

Table 4-5: Other SPI Flash Memory Devices With Data Sheet Compatibility (Unverified by Xilinx, 
Unsupported in iMPACT)

SPI Flash Xilinx 
iMPACT
Support

Unique 
ID

Read Command

Density (bits)
Fast 
Read

(0x0B)

Read
(0x03)

Read 
Array
(0xE8)

FPGA VS[2:0] Setting

Vendor Family 1:1:1 1:0:1 1:1:0 512K 1M 2M 4M 8M 16M 32M 64M 128M

Atmel
AT26 ◆ ◆ ◆ ◆ ◆ ◆

AT25 ◆ ◆ ◆ ◆ ◆ ◆

Spansion 
(AMD, 
Fujitsu)

S25FL ◆ ◆ ◆ ◆ ◆ ◆

Winbond 
(NexFlash)

NX25P

W25P
◆ ◆ ◆ ◆ ◆ ◆ ◆

W25X ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Intel 
(Numonyx)

S33 ◆ ◆ ◆ ◆ ◆ ◆

SST
SST25L ◆ ◆ ◆ ◆

SST25V ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Macronix MX25 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Chingis 
(PMC)

Pm25 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

AMIC A25L ◆ ◆ ◆ ◆ ◆

Eon EN25 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

Notes: 
1. Compatibility based on publicly available data sheets.
2. Unique ID indicates that these SPI Flash memory device have factory-programmed unique identifier bits, useful for protecting 

FPGA applications or IP cores.

http://www.xilinx.com
http://www.atmel.com/products/SFlash/
http://www.atmel.com/products/SFlash/
http://www.spansion.com/flash_memory_products/mirrorbit.html
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.numonyx.com/Documents/Datasheets/314822_S33_Discrete_DS.pdf
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/B9F4CC53671F91C148256F55004206F9/?OpenDocument
http://www.chingistek.com/products/spi.cfm
http://www.amictechnology.com/
http://www.eonsdi.com/essl2-1.htm
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MicroBlaze™ RISC processor core integrated in the Spartan-3A or Spartan-3E FPGA. See 
“SPI Flash Interface after Configuration”.

FPGA Connections to the SPI PROM
Table 4-7 shows the connections between the SPI Flash PROM and the FPGA’s SPI 
configuration interface. Each SPI Flash PROM vendor uses slightly different signal 
naming.

Table 4-8, page 110 provides a complete list of the FPGA pins involved in the Master SPI 
configuration mode.

Table 4-6: Number of Bits to Program an Extended Spartan-3A family or Spartan-
3E FPGA and Smallest SPI Flash PROM

Family FPGA
Number of Configuration Bits

(Uncompressed)
Smallest Usable 
SPI Flash PROM

Spartan-3A/3AN

XC3S50A/AN 437,312 512 Kbit

XC3S200A/AN 1,196,128 2 Mbit

XC3S400A/AN 1,886,560 2 Mbit

XC3S700A/AN 2,732,640 4 Mbit

XC3S1400A/AN 4,755,296 8 Mbit

Spartan-3A DSP
XC3SD1800A 8,197,280 8 Mbit

XC3SD3400A 11,718,304 16 Mbit

Spartan-3E

XC3S100E 581,344 1 Mbit

XC3S250E 1,353,728 2 Mbit

XC3S500E 2,270,208 4 Mbit

XC3S1200E 3,841,184 4 Mbit

XC3S1600E 5,969,696 8 Mbit

Table 4-7: Example SPI Flash PROM Connections and Pin Naming

SPI Flash Pin FPGA Connection
STMicro 

(Numonyx)
Winbond/
NexFlash

Silicon 
Storage 

Technology

Atmel
DataFlash

Slave Data Input MOSI D DI SI SI

Slave Data Output DIN Q DO SO SO

Slave Select CSO_B S CS CE# CS

Slave Clock CCLK C CLK SCK SCK

Write Protect Not required for FPGA configuration. Must 
be High to program SPI Flash. Optional 
connection to FPGA user I/O after 
configuration.

W WP WP# WP
W

http://www.xilinx.com/microblaze
http://www.xilinx.com
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The mode select pins, M[2:0], and the variant select pins, VS[2:0] are sampled when the 
FPGA’s INIT_B output goes High and must be at defined logic levels during this time. 
After configuration, when the FPGA’s DONE output goes High, these pins are all available 
as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP or PUDC_B pin must be defined. Set Low to enable pull-
up resistors on all user-I/O pins during configuration or High to disable the pull-up 
resistors. The HSWAP or PUDC_B control must remain at a constant logic level throughout 
FPGA configuration. After configuration, when the FPGA’s DONE output goes High, the 
HSWAP or PUDC_B pin is available as full-featured user-I/O pin and is powered by the 
VCCO_0 supply.

The FPGA's DOUT pin is used in daisy-chain applications, described in “Daisy-Chained 
Configuration,” page 119. In a single-FPGA application, the FPGA’s DOUT pin is in-active, 
but pulled High via an internal resistor.

 The SPI Flash PROM’s Write Protect and Hold controls are not used by the FPGA 
during configuration, although the Hold pin must be High during the configuration 
process. The PROM’s Write Protect input must be High in order to write or program the 
Flash memory.

Hold

(see Figure 4-1)

Not required for FPGA configuration but 
must be High during configuration and 
programming. Optional connection to 
FPGA user I/O after configuration. Not 
applicable to Atmel DataFlash.

HOLD HOLD HOLD# N/A

Reset

(see Figure 4-2)

Only applicable to Atmel DataFlash. Not 
required for FPGA configuration but must 
be High during configuration and 
programming. Optional connection to 
FPGA user I/O after configuration. Do not 
connect to FPGA’s PROG_B as this 
potentially prevents direct programming of 
the DataFlash. 

N/A N/A N/A RESET

Ready/Busy

(see Figure 4-2)

Only applicable to Atmel DataFlash and 
only available on certain packages. Not 
required for FPGA configuration. Output 
from DataFlash PROM. Optional 
connection to FPGA user I/O after 
configuration.

N/A N/A N/A RDY/BUS
Y

Table 4-7: Example SPI Flash PROM Connections and Pin Naming (Cont’d)

SPI Flash Pin FPGA Connection
STMicro 

(Numonyx)
Winbond/
NexFlash

Silicon 
Storage 

Technology

Atmel
DataFlash

P

W

http://www.xilinx.com
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Table 4-8: Serial Peripheral Interface (SPI) Connections

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

HSWAP 

PUDC_B

Input User I/O Pull-Up Control. When 
Low during configuration, enables 
pull-up resistors in all I/O pins to 
respective I/O bank VCCO input. See 
“Pull-Up Resistors During 
Configuration,” page 62.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level 
throughout configuration.

User I/O

M[2:0] Input Mode Select. Selects the FPGA 
configuration mode. Extended 
Spartan-3A family FPGAs have 
dedicated internal pull-up resistors 
on these pins. See “Choose a 
Configuration Mode: M[2:0],” 
page 50.

M2 = 0, M1 = 0, M0 = 1. 
Sampled when INIT_B goes 
High. Extended Spartan-3A 
family FPGAs have internal 
pull-up resistors to VCCO_2.

User I/O

VS[2:0] Input Variant Select. Instructs the FPGA 
how to communicate with the 
attached SPI Flash PROM. Extended 
Spartan-3A family FPGAs have 
dedicated internal pull-up resistors 
on these pins.

Must be at the logic levels 
shown in Table 4-2. Sampled 
when INIT_B goes High. 
Extended Spartan-3A family 
FPGAs have internal pull-up 
resistors to VCCO_2.

User I/O

MOSI Output Master SPI Serial Data Output. 
Connect to the SPI Flash PROM’s 
Slave Data Input pin.

FPGA sends SPI Flash 
memory read commands and 
starting address to the 
PROM’s serial data input.

User I/O

DIN Input Master SPI Serial Data Input. 
Connect to the SPI Flash PROM’s 
Slave Data Output pin.

FPGA receives serial data 
from PROM’s serial data 
output.

User I/O

CSO_B Output Master SPI Chip Select Output. 
Active Low. Connect to the SPI Flash 
PROM’s Slave Select input. 

If HSWAP or PUDC_B = 1, 
connect this signal to a 4.7 kΩ 
pull-up resistor to 3.3V.

Drive CSO_B High after 
configuration to disable 
the SPI Flash and reclaim 
the MOSI, DIN, and 
CCLK pins. Optionally, 
re-use this pin and MOSI, 
DIN, and CCLK to 
continue communicating 
with SPI Flash. See “SPI 
Flash Interface after 
Configuration,” 
page 116.

P

http://www.xilinx.com
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CCLK Output Configuration Clock. Generated by 
FPGA internal oscillator. Connect to 
the SPI Flash PROM’s Slave Clock 
input. Frequency controlled by 
ConfigRate bitstream generator 
option. If CCLK PCB trace is long or 
has multiple connections, terminate 
this output to maintain signal 
integrity. See “Configuration Clock: 
CCLK,” page 56.

Drives PROM’s clock input. User I/O. Drive High or 
Low if not used.
Avoid excessive loading 
on CCLK to maintain best 
signal integrity for 
configuration.

DOUT Output Serial Data Output. Used in multi-
FPGA daisy-chain configurations.

Not used in single-FPGA 
designs; DOUT is pulled up, 
not actively driving. In a 
daisy-chain configuration, 
this pin connects to DIN 
input of the next FPGA in the 
chain.

User I/O

INIT_B Open-
drain 

bidirectional 
I/O

Initialization Indicator. Active Low. 
Goes Low at start of configuration 
during Initialization memory 
clearing process. Released at end of 
memory clearing, when mode select 
pins are sampled. See “Initializing 
Configuration Memory, 
Configuration Error: INIT_B,” 
page 61.

Active during configuration. 
If SPI Flash PROM requires 
more than 2 ms to awake after 
powering on, hold INIT_B 
Low until PROM is ready. See 
“Power-On Precautions if 
System 3.3V Supply is Last in 
Sequence,” page 112.
If CRC error detected during 
configuration, FPGA drives 
INIT_B Low. See “CRC 
Checking during 
Configuration,” page 309.

User I/O. If unused in the 
application, drive INIT_B 
High to avoid a floating 
value. See INIT_B “After 
Configuration”.

DONE Open-
drain 

bidirectional 
I/O

FPGA Configuration Done. Low 
during configuration. Goes High 
when FPGA successfully completes 
configuration. See “DONE Pin,” 
page 52.

Low indicates that the FPGA 
is not yet configured.

Pulled High via external 
pull-up. When High, 
indicates that the FPGA 
successfully configured.

PROG_B Input Program FPGA. Active Low. When 
asserted Low for 500 ns or longer, 
forces the FPGA to restart its 
configuration process by clearing 
configuration memory and resetting 
the DONE and INIT_B pins once 
PROG_B returns High.

Must be High to allow 
configuration to start.

Drive PROG_B Low and 
release to reprogram 
FPGA. Hold PROG_B to 
force FPGA I/O pins into 
Hi-Z, allowing direct 
programming access to 
SPI Flash PROM pins.

VCCO_2 Voltage 
supply 
input

Voltage Supply Input to I/O 
Bank 2. Supplies interface pins to 
SPI Flash PROM.

3.3V. Ensure that either the 
VCCO_2 supply ramps 
faster than VCCINT or 
VCCAUX or that the PROM 
wakes-up sufficiently fast. 
See “Power-On Precautions 
if System 3.3V Supply is 
Last in Sequence,” page 112.

3.3V

Table 4-8: Serial Peripheral Interface (SPI) Connections (Cont’d)

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

http://www.xilinx.com
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Voltage Compatibility
Available SPI Flash PROMs use a single 3.3V supply voltage. All of the FPGA’s SPI Flash 
interface signals are within I/O Bank 2. Consequently, the FPGA’s VCCO_2 supply voltage 
must also be 3.3V to match the SPI Flash PROM.

Also, see “Power-On Precautions if System 3.3V Supply is Last in Sequence,” page 112.

See also “JTAG Cable Voltage Compatibility,” page 198.

Power-On Precautions if System 3.3V Supply is Last in Sequence
Spartan-3E and Extended Spartan-3A family FPGAs have a built-in power-on reset (POR) 
circuit. The FPGA waits for its three power supplies — VCCINT, VCCAUX, and VCCO to I/O 
Bank 2 (VCCO_2) — to reach their respective power-on thresholds before beginning the 
configuration process. See “Power-On Reset (POR),” page 240 for more information.

The SPI Flash PROM is powered by the same voltage supply feeding the FPGA's VCCO_2 
voltage input, typically 3.3V. SPI Flash PROMs specify that they cannot be accessed until 
their VCC supply reaches its minimum data sheet voltage, followed by an additional delay. 
For some devices, this additional delay is as little as 10 µs as shown in Table 4-9. For other 
vendors, this delay is as much as 20 ms.

In many systems, the 3.3V supply feeding the FPGA's VCCO_2 input is valid before the 
FPGA's other VCCINT and VCCAUX supplies, and consequently, there is no issue. However, 
if the 3.3V supply feeding the FPGA's VCCO_2 supply is last in the sequence, a potential 
race occurs between the FPGA and the SPI Flash PROM, as shown in Figure 4-3.

Table 4-9: Example Minimum Power-On to Select Times for Various SPI Flash PROMs

Vendor
SPI Flash PROM 

Part Number
Data Sheet Minimum Time from VCC min to Select = Low

Symbol Value Units

STMicro (Numonyx) M25Pxx TVSL 10 μs

Spansion S25FLxxxA tPU 10 ms

NexFlash NX25xx TVSL 10 μs

Macronix MX25Lxxxx tVSL 10 μs

Silicon Storage Technology SST25LFxx TPU-READ 10 μs

Programmable 
Microelectronics 
Corporation

Pm25LVxxx TVCS 50 μs

Atmel Corporation AT45DBxxxD tVCSL 50 μs

AT45DBxxxB — 20 ms

Notes: 
1. Memory vendors are continuously improving their products and specifications. Please check with the memory vendor’s data 

sheets for up-to-date values.

http://www.xilinx.com
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If the FPGA's VCCINT and VCCAUX supplies are already powered and valid, then the FPGA 
waits for VCCO_2 to reach its minimum threshold voltage before starting configuration. 
This threshold voltage is labeled as VCCO2T in the Spartan-3E or Extended Spartan-3A 
family data sheet. The range of values is listed in Table 4-10 and are substantially lower 
than the SPI Flash PROM's minimum voltage. Once all three FPGA supplies reach their 
respective Power-On Reset (POR) thresholds, the FPGA starts the configuration process 
and begins initializing its internal configuration memory. After initialization completes, 
the FPGA deasserts INIT_B, selects the SPI Flash PROM, and starts sending the 
appropriate read command. The SPI Flash PROM must be ready for read operations at this 
time. The FPGA typically delays configuration long enough for the configuration source to 
be ready. If the configuration source is not ready when the FPGA begins configuration, the 
Configuration Watchdog Timer will allow the FPGA to automatically re-attempt 
configuration.

There are a few potential solutions if the 3.3V supply is last in the sequence and does not 
ramp fast enough, or if the SPI Flash PROM cannot be ready when required by the FPGA.

• Change the power sequence order so that the 3.3V VCCO_2 is powered and valid 
before the FPGA’s VCCINT or VCCAUX supply.

• Choose a different SPI Flash PROM family or vendor, one with a faster power-on 
timing specification. For example, while the Atmel AT45DBxxxB family has 20 ms 
power-on requirement, the compatible AT45DBxxxD family requires just 30 μs.

• Delay the FPGA configuration process by holding either the FPGA's PROG_B input or 
INIT_B input Low. Release the FPGA when the SPI Flash PROM is ready. For 
example, a simple R-C delay circuit attached to the INIT_B pin forces the FPGA to 
wait for a preselected amount of time. Alternately, a Power Good signal from the 3.3V 
supply or a system reset signal accomplishes the same purpose. Use an open-drain or 
open-collector output when driving PROG_B or INIT_B.

Figure 4-3: SPI Flash PROM/FPGA Power-On Timing if 3.3V Supply is Last in 
Power-On Sequence
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Extended Spartan-3A Family and Configuration Watchdog Timer
Extended Spartan-3A family FPGAs include a configuration watchdog timer (CWDT) 
which makes SPI Flash configuration more robust, even when the 3.3V supply is applied 
last.

In Master SPI mode, the CWDT ensures that the FPGA reads a valid synchronization word 
from the SPI Flash PROM within the first 216-1 cycles of CCLK. The synchronization word 
is part of the FPGA configuration bitstream. If the FPGA does not find the synchronization 
word, the CWDT forces the FPGA to automatically resend the SPI Flash read command 
and to retry the configuration process. The CWDT retries to successfully configure from 
SPI Flash three times before failing. If the FPGA fails to configure, it then drives the INIT_B 
pin Low, indicating a failure.

CCLK Frequency
In SPI Flash mode, the FPGA’s internal oscillator generates the configuration clock 
frequency. The FPGA provides this clock on its CCLK output pin, driving the PROM’s 
Slave Clock input pin. The FPGA begins configuring using its lowest frequency setting. If 
so specified in the configuration bitstream, the FPGA increases the CCLK frequency to the 
specified setting for the remainder of the configuration process. The maximum frequency 
is specified using the ConfigRate bitstream generator option. The maximum frequency 
supported by the FPGA configuration logic depends on the timing for the SPI Flash device. 
Without examining the timing for a specific SPI Flash PROM, use ConfigRate = 12 or 
lower. SPI Flash PROMs that support the FAST READ command support higher data rates. 
Some such PROMs support up to ConfigRate = 25 and beyond but require careful data 
sheet analysis. See “Serial Peripheral Interface (SPI) Configuration Timing,” page 138 for 
more detailed timing analysis.

Table 4-11 lists the various ConfigRate setting options and the corresponding clock-to-
output requirement, TV, for the SPI Flash PROM. The TV value is determined according to 
the equation in Table 4-16, page 141. Extended Spartan-3A family FPGAs have more 
ConfigRate settings than Spartan-3E FPGAs, hence the shaded cells under the Spartan-3E 
column. Unless a ConfigRate setting is specified when generating the bitstream, the 
Spartan-3E FPGA uses the default, slowest setting of ConfigRate = 1, which lengthens the 
overall configuration time. The Extended Spartan-3A family FPGAs use a default setting of 
ConfigRate = 6.

Table 4-10: Spartan-3E and Extended Spartan-3A Family DSP Power-On Reset 
Timing and Thresholds

Symbol Description Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Units

VCCO2T

VCCO_2 voltage at which Power-On 
Reset (POR) circuit is released, 
assuming VCCINT and VCCAUX 
supplies are already applied and valid.

0.4 to 1.0 0.8 to 2.0 V

TPOR

The time from when the FPGA’s 
Power-On Reset (POR) circuit is 
released to the rising transition of the 
INIT_B pin

Up to 7 Up to 18 ms

http://www.xilinx.com
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Table 4-11: FPGA ConfigRate Setting and Corresponding SPI Flash PROM Clock-
to-Output Requirements (TV)

ConfigRate Bitstream 
Setting

SPI Flash Maximum TV Specification

UnitsSpartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Commercial Industrial Commercial Industrial

1

(Spartan-3E default)
< 265 < 224 < 588 < 553

ns

3 <127 < 106 < 189 < 178

6
(Extended Spartan-3A 

family default)
< 58 < 47 < 91.3 < 85.6

12 < 23.5 < 18.3 < 41.9 < 39

13 < 37.1 < 34.8

17 < 27.2 < 25.3

22 < 18.6 < 17.2

25 < 6.1 < 3.5 < 15.3 < 14.4

27 < 13.9 < 13

33 < 10.1 < 9.2

44 < 5.3 < 4.9

http://www.xilinx.com
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SPI Flash Interface after Configuration
After the FPGA successfully completes configuration, all of the pins connected to the SPI 
Flash PROM are available as user-I/O pins.

If Not Using SPI Flash after Configuration
If not using the SPI Flash PROM after configuration, drive CSO_B High to disable the 
PROM, as shown in Figure 4-4. The MOSI, DIN, and CCLK pins are then available as 
general-purpose I/O pins in the FPGA application, although avoid additional loading on 
CCLK if possible to maintain best signal integrity.

De-selecting CSO_B also places the SPI PROM in the lower-power Standby mode. See 
“Deassert CSO_B to Enter Standby Mode,” page 142.

Figure 4-4: If Not Using SPI after Configuration, Drive CSO_B Pin High
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If Using SPI Flash Interface after Configuration
Because all the interface pins are user I/O after configuration, the FPGA application can 
continue to use the SPI Flash interface pins to communicate with the SPI Flash PROM, as 
shown in Figure 4-5. SPI Flash PROMs offer random-accessible, byte-addressable, 
read/write, nonvolatile storage to the FPGA application.

Caution! Allow the FPGA configuration logic to use the CCLK pin to complete configuration 
and startup before using it to control the SPI Flash interface. Although most dual-purpose pins 
become I/O at the GTS cycle, CCLK must wait until the End of Startup (EOS). Delay access by 
a couple clock cycles after configuration to avoid conflicts. See “Startup” in Chapter 12.

SPI Master Interface using FPGA Logic

The FPGA does not contain a dedicated SPI interface, except for configuration. 
Consequently, to access the SPI Flash or other SPI devices after configuration, the FPGA 
application must contain an SPI bus master interface. Xilinx provides SPI interface cores, as 
described below.

• For an application that already includes a MicroBlaze processor core, the Xilinx 
Embedded Development Kit (EDK) includes an SPI interface that connects to the 
MicroBlaze OPB bus. Depending on the options used, the SPI interface core uses 
between 147 to 203 slices.

♦ OPB Serial Peripheral Interface Product Specification
http://www.xilinx.com/support/documentation/ip_documentation/opb_spi.pdf

• For general applications, the 8-bit PicoBlaze™ processor core offers an easy-to-use 
solution that requires approximately 100 slices and a block RAM. Example design 
solutions are available for the Spartan-3E FPGA Starter Kit board.

♦ PicoBlaze STMicro SPI Flash Programmer
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_spi_flash_programmer

♦ PicoBlaze SPI-based D/A Converter Controller
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_dac_control

Figure 4-5: Using the SPI Flash Interface After Configuration
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Accessing SPI Flash PROM

SPI Flash PROMs are available in densities ranging from 1 Mbit up to 128 Mbits. However, 
a single Spartan-3A/3E FPGA requires less than 6 Mbits. A Spartan-3A DSP FPGA 
requires a little more than 11 Mbits. If desired, use a larger SPI Flash PROM to contain 
additional nonvolatile application data, such as MicroBlaze processor code, or other user 
data such as serial numbers and Ethernet MAC IDs. In the example shown in Figure 4-5, 
the FPGA configures from SPI Flash PROM. Then using FPGA logic after configuration, 
the FPGA copies MicroBlaze code from SPI Flash into external DDR SDRAM for code 
execution. Similarly, the FPGA application can store nonvolatile application data within 
the SPI Flash PROM.

The FPGA configuration image, or initial configuration image for an Extended Spartan-3A 
family MultiBoot application, is always stored at starting address 0. Store any additional 
data beginning in the next available SPI Flash PROM sector or page. Do not mix 
configuration data and user data in the same sector or page.

After configuration, the FPGA application can exploit any special features of the attached 
SPI serial Flash PROM. For example, the Atmel AT45DB-series PROMs support a slightly-
modified serial interface called Rapid-S. The FPGA cannot configure using this mode but 
after configuration, the FPGA application can use Rapid-S to increase overall data 
throughput. Similarly, the NexFlash/Winbond W25X-series PROMs support a feature 
called Dual-Output SPI that transmits two data bits per clock cycle but requires a special 
read command. The FPGA does not support this command for configuration, but the 
FPGA application can issue the command after configuration.

Accessing other SPI-compatible Peripherals

Similarly, the SPI bus can be expanded to additional SPI peripherals. Because SPI is a 
common industry-standard interface, various SPI-based peripherals are available, such as 
analog-to-digital (A/D) converters, digital-to-analog (D/A) converters, CAN controllers, 
and temperature sensors. 

The MOSI, DIN, and CCLK pins are common to all SPI peripherals. Connect the select 
input on each additional SPI peripheral to one of the FPGA user I/O pins. If HSWAP or 
PUDC_B = 0 during configuration, the FPGA holds the select line High. If HSWAP or 
PUDC_B = 1, connect the select line to +3.3V via an external 4.7 kΩ pull-up resistor to avoid 
spurious read or write operations. After configuration, drive the select line Low to select 
the desired SPI peripheral.

During the configuration process, CCLK is controlled by the FPGA and limited to the 
frequencies generated by the FPGA. After configuration, the FPGA application can use 
other clock signals to drive the CCLK pin and can further optimize SPI-based 
communication.

Caution! Avoid excessive loading on the CCLK pin. Excessive loading will degrade the signal 
integrity on this crucial signal. Use the recommended design practices described in “CCLK 
Design Considerations,” page 58.

Refer to the individual SPI peripheral data sheet for specific interface and communication 
protocol requirements. 

Caution! Although many devices claim to have an SPI interface, the timing and even signal 
polarity vary between devices and between vendors. Check the data sheet for the specific device 
to determine compatibility.

http://www.xilinx.com
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Daisy-Chained Configuration
If the application requires multiple FPGAs with different configurations, then configure 
the FPGAs using a daisy chain, as shown in Figure 4-6, page 119. Use SPI Flash mode 
(M[2:0] = <0:0:1>) for the FPGA connected to the SPI PROM and Slave Serial mode 
(M[2:0] = <1:1:1>) for all other FPGAs in the daisy chain. After the master FPGA—the 
FPGA on the left in the diagram—finishes loading its configuration data from the SPI Flash 
PROM, the master FPGA supplies data to the next FPGA in the daisy chain via the DOUT 
output pin, clocked on the falling CCLK edge.

Also, to successfully configure a daisy chain, the GTS_cycle bitstream option must be set to 
a Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the 
software default setting. Optionally, set GTS_cycle:Done. 

The 0-ohm resistors at the output of each FPGA’s INIT_B and DONE pin is recommended 
for debugging purposes. Should there be a configuration error, the FPGAs can be 
individually isolated. The jumper on the master FPGA’s DONE pin is recommended for 
future in-system programming support as well as for debugging purposes.

The pull-up resistors shown in gray are optional, but should be provided in the board 
design. The resistors themselves do not need to be stuffed during board manufacturing. As 
described in Table 2-13, page 65, the dedicated pull-up resistors on Spartan-3 generation 
FPGAs are sufficiently strong to pull-up the corresponding signal pin. The Thevenin 
termination resistors on CCLK are also optional, but also recommended in the board 
design.

Caution! SPI mode daisy chains are supported for Spartan-3E FPGAs only in Stepping 1 
silicon versions. SPI mode daisy chains are supported on all Spartan-3E Automotive grade 
devices, which are all based on Stepping 1 silicon, and all Extended Spartan-3A family FPGA 
versions.

Figure 4-6: Daisy Chaining from SPI Flash Mode
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Ganged or Broadside Configuration
“Daisy-Chained Configuration” is designed to load multiple FPGAs, each with a different 
design and typically of different array size. However, some applications include multiple, 
identical FPGAs, all programmed with the same bitstream. Instead of daisy chaining the 
FPGAs and storing multiple copies of the same bitstream, “Ganged or Broadside 
Configuration” supports programming multiple, identical FPGAs with the same 
bitstream.

Programming Support
In production applications, the SPI Flash PROM is usually preprogrammed before it is 
mounted on the printed circuit board. The Xilinx ISE development software produces 
industry-standard programming files that can be used with third-party gang 
programmers. Consult your specific SPI Flash vendor for recommended production 
programming solutions.

There are multiple programming methods for the attached SPI memory as described 
below. 

Starting with ISE 9.1i, Service Pack 2 and later, the iMPACT programming software 
supports two different methods to program an attached SPI Flash PROM, as summarized 
in Table 4-12.

Using the Direct Programming Method, the programming cable communicates directly to 
the SPI Flash PROM. The FPGA is not involved in the programming process and the FPGA 

Figure 4-7: Multiple, Identical FPGAs Programmed with the Same Bitstream
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I/O pins that connect to the PROM must be in their high-impedance state (Hi-Z) during 
programming. Hold the FPGA’s PROG_B input Low to place the I/Os in Hi-Z; the FPGA’s 
DONE pin remains Low.

Using the Indirect Programming Method, the programming cable connects to the FPGA’s 
JTAG port. The iMPACT software first programs the FPGA with a special design that 
performs the actual SPI PROM programming and uses the JTAG interface as a serial 
communications port. During the process, the FPGA’s DONE output is High because the 
FPGA is configured with the programming application. All pins that are not connected to 
the SPI Flash PROM or the JTAG interface have an internal pull-up resistor to the VCCO 
voltage supply associated with the pin.

For the Spartan-3AN family, iMPACT supports programming of the internal Flash and 
does not support indirect programming of external Flash.

Third-Party Programmer (Off-board Programming) 
Off-board programming, before board assembly, using a third party programmer is likely 
the preferred method for high-volume production. Most Xilinx distributors offer 
programming services or can arrange for such services. Check the PROM vendor’s web 
site for a list of approved and qualified third-party device programmers. See “Preparing an 
SPI PROM File,” page 126 to properly format the programming file. 

Table 4-12: Summary of SPI Flash PROM Programming Options

Direct Method Indirect Method

Detailed Instructions
“Direct SPI Programming 
using iMPACT,” page 131

“Indirect SPI Programming 
using iMPACT,” page 134

ISE Version Required ISE 9.1i or later

ISE 9.1i, Service Pack 2 or 
later for Spartan-3A/3A DSP 

FPGAs; ISE 10.1 for 
Spartan-3E FPGAs

Interface/Cable Connection Directly to SPI PROM FPGA’s JTAG Port

DONE Pin Status during 
Programming

Low
High

(FPGA is configured with 
special programming design)

Required PROG_B Control PROG_B = Low N/A

Status of non-SPI Pins 
during Programming

High-impedance because 
PROG_B = Low

Pulled High using internal 
pull-up resistor to associated 

VCCO supply input

http://www.xilinx.com
http://www.xilinx.com/company/sales/ww_disti.htm
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Direct, SPI In-System Programming 
For systems requiring in-system programming support, there are different options for 
production and prototyping phases. For production programming, some third party 
PROM programmers utilize a socket adapter with attached wires to program the SPI flash 
memory in-system. For prototype programming, the Xilinx iMPACT software provides 
direct, in-system programming support for limited set of STMicro (Numonyx) and Atmel 
SPI Flash memories.

Requirements for iMPACT Direct Programming Support

The following are required to successfully perform in-system programing on the attached 
SPI serial Flash PROM.

• A Xilinx programming cable

♦ Platform Cable USB II
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

♦ Parallel Cable IV
http://www.xilinx.com/products/devkits/HW-PC4.htm

• A compatible cable connector on-board

• Properly installed Xilinx ISE 8.2i software (or later)

Programmable Cable Connections

All modern Xilinx programming cables use a standard 14-pin ribbon cable and associated 
socket. The socket connections appear in Figure 4-1, page 102 and Figure 4-2, page 103, 
along with a detail pinout table in Table 4-13. The mechanical dimensions are provided in 
Figure 9-6, page 208 and vendor part numbers provided in Table 9-7, page 208.

As shown in Table 4-13, one side of the socket connects entirely to GND for better signal 
integrity. The other side of the cable includes the VREF voltage connection and the four SPI 
Flash control signals. When used for SPI programming, the programming cable behaves as 
an SPI Master, controlling all transactions on the SPI bus.

http://www.xilinx.com
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm
http://www.xilinx.com/products/devkits/HW-PC4.htm
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The specified surface-mount cable connector requires only 0.162 square inches of board 
space. The Xilinx iMPACT programming solution is only qualified for system prototyping 
so the socket can be removed from the production bill of materials to save cost.

Alternatively, the Xilinx programming cables optionally support “flying leads” that push 
on to standard 0.1-inch stake pins. However the ribbon cable and associated socket have 
superior signal integrity and provide fast programming speeds. Also ensure that the 
programming cable leads are connected correctly. The SPI programming capability is new 
for the Xilinx programming cables and existing cables may have different signal labels, as 
indicated in Table 4-13.

Forcing FPGA SPI Bus Pins to High-impedance During Programming

Because the programming cable acts as an SPI bus Master, the FPGA’s SPI pins must be 
floating, or high-impedance (Hi-Z). This requirement also applies for third party 
programmers that directly program the SPI Flash PROM. Ensure that the FPGA MOSI, 
DIN, CSO_B, and CCLK pins are all high impedance (floating, Hi-Z), allowing the 
programmer to have full and direct control over the SPI PROM. There are three different 
methods to place the FPGA SPI signals in high-impedance, listed below.

Table 4-13: Xilinx Download Header Signal Description for In-System SPI Flash PROM Programming

Signal
Socket Pin
(top view)

Direction Signal Connections to SPI PROM, System
“Flying Lead” 

Label/
Wire Color(1)

GND 1 2
VREF: Connect to 3.3V (VCCO_2), which is common to the 
FPGA and SPI PROM. The voltage reference must be 
regulated and must not have a current limiting series resistor.

VREF

(red)

GND 3 4
SPI Slave Select: Connect to the SPI PROM’s Slave Select 
input.

TMS/PROG

(green)

GND 5 6
SPI Clock: Connect to the SPI PROM’s Slave Clock input. TCK/CCLK

(yellow)

GND 7 8
SPI Master Input/Slave Output: Connect to the SPI PROM’s 
Slave Data Output.

TDO/DONE

(magenta)

GND 9 10
SPI Master Output /Slave Input: Connect to the SPI PROM’s 
Slave Data Input.

TDI/DIN

(white)

GND 11 12 –
Reserved. Do not connect.

–

GND 13 14
D.N.C. Do not connect. Although the cable leads label this as 
INIT, do not connect it to the FPGA’s INIT_B pin.

–/INIT

(gray)

Notes: 
1. The “Flying Lead” adapter is only required if using stake pins instead of the recommended 14-pin socket.

http://www.xilinx.com
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If using Option 1 or Option 2, be aware that pull-up resistors to VCCO_2 are enabled on the 
FPGA’s SPI pins if the FPGA's HSWAP or PUDC_B pin is Low. Using Option 3, the FPGA’s 
SPI pins are fully controlled by the FPGA application.

Direct, In-system SPI Programming Using FPGA as Intermediary
This method is typically used to update the SPI serial Flash, using the FPGA as the actual 
programmer. The advantage is that the FPGA’s flexibility allows the FPGA to connect to 
practically any digital interface to receive the programming data. The FPGA-based 
“programmer” can be included as part of the application or, alternatively, downloaded 
temporarily into the FPGA using the FPGA’s JTAG interface.

The Spartan-3E FPGA Starter Kit includes a design example that programs the attached 
STMicro (Numonyx) M25P16 SPI Flash using an RS-232 connection to a PC or workstation.

• PicoBlaze RS-232 to STMicro SPI Flash Programmer
www.xilinx.com/products/boards/s3estarter/reference_designs.htm
#picoblaze_spi_flash_programmer

The Spartan-3A FPGA Starter Kit includes a design example that programs the attached 
Atmel AT45DB161D DataFlash PROM using an RS-232 connection to a PC or workstation.

• PicoBlaze RS-232 to Atmel DataFlash Programmer
www.xilinx.com/products/boards/s3astarter/reference_designs.htm
#atmel_spi_flash_programmer

Indirect, In-System SPI Programming Using FPGA JTAG Chain
The FPGA has JTAG test capabilities which include the standard PRELOAD and EXTEST 
commands. When using these commands, it is possible to drive and sample the pins of the 
FPGA with the JTAG chain and thereby stimulate the pins of the SPI memory via the 
associated FPGA pins and the traces routed on the PCB. This method, shown in Figure 4-8, 
is supported by many third-party JTAG tool vendors. However, this method is often much 
slower than the “Direct, SPI In-System Programming” technique.

Option 1 Hold the FPGA's PROG_B pin Low throughout the programming process. The 
FPGA is unconfigured during the programming process and automatically 
loads the new SPI Flash PROM image when PROG_B is released High.

Option 2 Change the FPGA's mode pins to JTAG mode (M[2:0] = <1:0:1>) and pulse the 
FPGA’s PROG_B pin. Do not perform any JTAG operations. All FPGA I/O pins 
are forced to their high-impedance state. The FPGA is unconfigured during the 
programming process. The FPGA’s M[2:0] pins must be returned to the SPI 
Flash setting and PROG_B pin must be pulsed Low before the FPGA reloads the 
new SPI Flash PROM image.

Option 3 Within a functioning FPGA application, use an internal control signal that 
three-states the MOSI, DIN, CCLK, and CSO_B pins. The FPGA remains 
configured with the current configuration. Pulse the PROG_B pin Low or, 
on Extended Spartan-3A family FPGAs, issue a MultiBoot reconfiguration 
operation with a start address of zero.

http://www.xilinx.com
www.xilinx.com/products/boards/s3astarter/reference_designs.htm#atmel_spi_flash_programmer
http://www.xilinx.com/s3astarter
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_spi_flash_programmer
http://www.xilinx.com/s3estarter
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The advantage to this approach is that it requires minimal wiring for in-system 
programming and that the SPI Flash PROM can be programmed during other JTAG-based 
board test operations.

For easier development, Xilinx recommends including the JTAG programming cable 
socket shown in Figure 4-1, page 102 and Figure 4-2, page 103. The FPGA configuration 
can be downloaded directly into the FPGA for development purposes without requiring 
that the SPI Flash PROM be programmed.

For more information on the JTAG interface, see Chapter 9, “JTAG Configuration Mode 
and Boundary-Scan,”especially “Programming Cables and Headers,” page 207.

Generating the Bitstream for a Master SPI Configuration
To create the FPGA bitstream for a Master SPI configuration, follow the steps outlined in 
“Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an FPGA 
configured in Master SPI mode, set the following bitstream generator options.

ConfigRate: CCLK Frequency
Set the ConfigRate option as described in “CCLK Frequency,” page 114. Using ISE Project 
Navigator, the Configuration Rate frequency is set in Step 7 in Figure 1-7, page 44.

-g ConfigRate:12

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep 
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA 
to actively drive the DONE pin after successfully completing the configuration process. 

Figure 4-8: Using FPGA’s JTAG Test Chain to Program Attached SPI Flash
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Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in 
Figure 1-8, page 45.

-g DriveDone:Yes

DONE_cycle: Daisy Chains with Spartan-3E Master
If a Spartan-3E FPGA is the Master FPGA in an SPI-based daisy chain, ensure that 
DONE_cycle is set for cycle 5 or earlier. From ISE Project Navigator, the DONE_cycle 
setting is the Done (Output Events) option, shown as Step 14 in Figure 1-8, page 45.

-g DONE_cycle:4

GTS_cycle: Global Three-State Release Timing for Daisy Chains
If creating a multi-FPGA daisy chain, set the GTS_cycle option to be later than the 
DONE_cycle setting, which is the default setting for both. Alternatively, set 
GTS_cycle:Done. From ISE Project Navigator, the GTS_cycle setting is the Enable Outputs 
(Output Events) option, shown as Step 14 in Figure 1-8, page 45.

Preparing an SPI PROM File 
This section provides guidelines to create PROM files for SPI Flash memories.

The Xilinx software tools, “iMPACT” or “PROMGen”, generate SPI-formatted PROM files 
from the FPGA bitstream or bitstreams. SPI Flash memory devices serially output data 
bytes with the most-significant bit (MSB) first while Xilinx PROMs output data least-
significant bit (lsb) first. Consequently, a PROM file formatted for an SPI Flash memory 
device is bit-reversed within each byte, directly opposite from the bit ordering for a 
standard Xilinx PROM file. When using PROMGen, the -spi option is required for proper 
formatting. 

iMPACT
The following steps graphically describe how to create an SPI-formatted PROM file using 
iMPACT from within the ISE Project Navigator. To create a Spartan-3A/3A DSP MultiBoot 
image for an SPI Flash memory, see “Generating an Extended Spartan-3A Family 
MultiBoot PROM Image using iMPACT,” page 278.

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG 
File from within the Process pane, as shown in Figure 4-9.

Figure 4-9: Double-click Generate PROM, ACE or JTAG File
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2. As shown in Figure 4-10, select Prepare a PROM File.

3. Click Next.

4. As shown in Figure 4-11, format the FPGA bitstream or bitstreams for a 3rd-Party SPI 
PROM. This option automatically invokes the -spi option for generating the PROM 
file.

Figure 4-10: Prepare a PROM File
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5. Select a PROM File Format.

6. Enter a PROM File Name.

7. Click Next.

8. As shown in Figure 4-12, select the SPI PROM Density of the targeted device, 
measured in bits.

9. Click Next.

10. As shown in Figure 4-13, review that the settings are correct to format the SPI PROM. 
Click Finish to confirm the settings or Back to change the settings.

Figure 4-11: Set Options for a 3rd-Party SPI PROM

Figure 4-12: Select SPI PROM Density
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11. As shown in Figure 4-14, click OK to start adding FPGA configuration bitstreams to 
the PROM image.

12. Locate and select the desired FPGA bitstream.

13. Click Open.

14. As shown in Figure 4-15, the iMPACT software graphically displays the SPI PROM 
and associated FPGA bitstream(s).

Figure 4-13: Review PROM Formatting Settings

Figure 4-14: Add FPGA Configuration Bitstream File(s)
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15. Click Generate File.

16. The iMPACT software indicates when the PROM file is successfully created.

PROMGen
PROMGen is a command-line utility that provides an alternate means to create an SPI 
PROM programming file. PROMGen can be invoked from within a command window or 
from within a script file.

Table 4-14 shows the relevant options for SPI Flash PROM formatting.

The example PROMGen command, provided below, generates an SPI-formatted PROM 
file with the following characteristics.

• Formatted for an SPI Flash PROM by specifying the -spi option.

Figure 4-15: Generate PROM File
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Table 4-14: PROM Generator Command Options

PROMGen Option Description 

-spi 
REQUIRED FOR SPI FLASH PROMs! Specifies the correct bit 
ordering required to configure from an SPI Flash memory device. 

-p <format> 
PROM output file format. Specifies the file format required by the SPI 
programming software. Refer to the third party programmer 
documentation for details. 

-s <size> 
Specifies the PROM size in kilobytes. The PROM size must be a power 
of 2, and the default setting is 64 kilobytes. 

-u <address> 
Loads the .bit file from the specified starting address in an upward 
direction. This option must be specified immediately before the input 
bitstream file. 

http://www.xilinx.com
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• Formatted using the Intel MCS format by specifying the -p mcs option. The output 
filename is specified by the -o <promdata>.mcs option, where <promdata> is a 
user-specified file name.

• Formatted for a 16Mbit SPI PROM by specifying the -s 2048 option. PROMGen 
specifies sizes in Kbytes.

• The specified FPGA bitstream is loaded in the upward direction, starting at address 0 
by specifying the -u 0 option.

• The FPGA bitstream to be formatted for the PROM is specified as the last option, 
<inputfile>.bit, where <inputfile> is the user-specified file name used when 
generating the FPGA bitstream.

promgen -spi -p mcs -o <promdata>.mcs -s 2048 -u 0 <inputfile>.bit

Direct SPI Programming using iMPACT
Starting with version 8.2i, the iMPACT programming software supports direct, in-system 
programming for SPI serial Flash PROMs. The SPI Flash memory devices that are tested 
and supported is indicated under the “Xilinx iMPACT Support” column in Table 4-3, 
page 105.

Prepare Board for Programming
Before attempting to program the SPI PROM, complete the following steps.

1. Ensure that the board is powered.

2. Ensure that the FPGA pins that connect to the SPI Flash are high-impedance (Hi-Z). 
See “Forcing FPGA SPI Bus Pins to High-impedance During Programming,” page 123.

3. Ensure that the programming cable is properly connected both the board and to the 
computer or workstation. See “Programmable Cable Connections,” page 122.

Programming via iMPACT
The following steps describe how to program the SPI PROM using the iMPACT software 
and a Xilinx programming cable.

1. Click Direct SPI Configuration from within iMPACT, as shown in Figure 4-16.

Figure 4-16: iMPACT Supports Direct Programming for SPI Serial Flash Memories.
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2. Right-click in the area indicated.

3. Select Add SPI Device.

4. Select a previously-formatted PROM file, as shown in Figure 4-17.

5. Click Open.

6. Select the Part Name for a supported SPI serial Flash, as shown in Figure 4-18.

7. Click OK.

8. The iMPACT software displays the selected SPI Flash PROM, as shown in Figure 4-19.

Figure 4-17: Select a Previously-formatted PROM File

Figure 4-18: Select a Supported SPI Flash Memory Device.

UG332_c4_04_101006

4

5

UG332_c4_05_101006

6

7

http://www.xilinx.com


Spartan-3 Generation Configuration User Guide www.xilinx.com 133
UG332 (v1.5) March 16, 2009

Direct SPI Programming using iMPACT
R

9. Click Program.

Note: Step 14 occurs later.

10. Click the Programming Properties option under Category, as shown in Figure 4-20.

11. Check Verify. Unchecking Verify reduces programming time but the iMPACT software 
can only guarantee correct programming for a verified PROM.

Figure 4-19: Directly Program Supported SPI Flash PROM.
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Figure 4-20: SPI PROM Programming Options
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12. Check Erase Before Programming. Unchecking the Erase option reduces 
programming time. However, Xilinx recommends erasing the PROM when 
downloading a new FPGA bitstream.

13. Click OK.

14. The iMPACT software indicates successful programming, as shown in Figure 4-19.

Indirect SPI Programming using iMPACT
Indirect programming support is available starting with Xilinx ISE 9.1i, Service Pack 2 and 
later releases for the Spartan-3A and Spartan-3A DSP FPGAs. The Spartan-3E FPGAs are 
supported starting with the ISE 10.1 release. iMPACT supports programming of the 
internal Flash in Spartan-3AN FPGAs. In Indirect mode, the iMPACT software programs 
the memory attached to the FPGA through the FPGA’s JTAG port. For details, see the 
following application note:

• XAPP974: Indirect Programming of SPI Flash Serial PROMs with Spartan-3A 
FPGAs
http://www.xilinx.com/support/documentation/application_notes/xapp974.pdf

During the programming process, the FPGA is configured with a special programming 
application. Consequently, the FPGA’s DONE pin will go High during the programming 
process. 

Programming Setup
To program the attached and selected SPI PROM using the Indirect method, configure the 
board as described below.

1. Disconnect power to the board.

2. Set the FPGA mode select pins for Master SPI mode.

3. Connect the JTAG programming cable to the FPGA’s JTAG port.

4. Re-apply power to the board.

Using iMPACT
To program the attached and selected SPI PROM using the iMPACT software and the 
Indirect programming method, follow the steps outlined below. This specific example uses 
the Spartan-3A FPGA Starter Kit board, which has an XC3S700A FPGA connected to an 
XCF04S Platform Flash PROM on the JTAG chain.

1. Invoke iMPACT and select Configure devices using Boundary Scan (JTAG), as 
shown in Figure 4-21.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp974.pdf
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2. Select Finish.

3. (iMPACT 9.1i only) Select the FPGA bitstream file (*.bit) to be programmed into the 
FPGA, as shown in Figure 4-22. This step is superfluous but required for iMPACT 9.1i. 
This step is eliminated as of iMPACT 9.2i. This file is not the special FPGA-based SPI 
programming application.

4. Select Enable Programming of SPI Flash Device Attached to this FPGA.

Figure 4-21: Indirect Programming Method Uses JTAG

Figure 4-22: Select the FPGA Bitstream File and Enable SPI Programming
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5. Click Open.

6. The iMPACT software warns that it changed the Startup clock source over to the JTAG 
clock pin, TCK. The SPI Flash image is not affected. This warning is safely ignored.

7. As shown in Figure 4-24, select the programming file for the attached SPI Flash PROM.

8. Click Open.

9. Select the part number for the attached SPI Flash PROM, as shown in Figure 4-25.

10. Click OK.

11. Select Bypass when prompted for the Platform Flash PROM programming file, as 
shown in Figure 4-26.

Figure 4-23: iMPACT Uses the JTAG Clock Input TCK for Startup Clock when Programming via JTAG
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Figure 4-24: Select the SPI PROM Programming FIle

Figure 4-25: Select SPI Flash PROM Type
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12. As shown in Figure 4-27, the iMPACT software then displays the JTAG chain for the 
XC3S700A Spartan-3A FPGA followed by the XCF04S Platform Flash PROM. Click to 
highlight the FLASH memory attached to the XC3S700A FPGA. This action enables 
the command options shown in Step 13.

13. Double-click Program.

Figure 4-26: Bypass the Platform Flash PROM

Figure 4-27: iMPACT Presents JTAG Chain, Shows Attached Flash PROM
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Note: Step 18 occurs later.

14. Click the Programming Properties option under Category, as shown in Figure 4-28.

15. Check Verify. Unchecking Verify reduces programming time but the iMPACT software 
can only guarantee correct programming for a verified PROM.

16. Check Erase Before Programming. Unchecking the Erase option reduces 
programming time. However, Xilinx recommends erasing the PROM when 
downloading a new FPGA bitstream.

17. Click OK.

18. The iMPACT software indicates successful programming, as shown in Figure 4-28. The 
FPGA is configured with the new programming file.

Serial Peripheral Interface (SPI) Configuration Timing
Figure 4-29 provides example waveforms for Master SPI configuration. The following 
items correspond to the numbered markers in Figure 4-29. The symbols for the FPGA 
timing parameters are listed in Table 4-15. The required SPI Flash PROM timing and the 
dependencies on FPGA timing is provided in Table 4-16, page 141.

Figure 4-28: SPI PROM Programming Options
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1. The FPGA powers on, releasing the internal Power-On Reset (POR) circuit or the 
PROG_B input returns High.

2. The FPGA begins clearing its internal configuration memory. The FPGA actively 
drives the INIT_B output Low.

3. Ensure that HSWAP or PUDC_B is at a stable logic level throughout the configuration 
process. The value on this input pin defines whether pull-up resistors are enabled 
during configuration. Some applications may depend on the pull-up resistors to define 
the VS[2:0] variant-select pins and to hold CSO_B High before the FPGA actively 
drives it Low.

4. The VS[2:0] variant-select pins must be defined and stable before the INIT_B pin 
returns High. The value on VS[2:0] defines the specific read command that the FPGA 
issues to the SPI serial PROM. See Table 4-2, page 105.

5. The M[2:0] mode-select pins must be defined for Master SPI mode (<0:0:1>) and stable 
before the INIT_B pin returns High.

Figure 4-29: Waveforms for Serial Peripheral Interface (SPI) Configuration
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6. After the FPGA completes clearing the internal configuration memory, the FPGA 
release the INIT_B pin, allowing it to float High via the dedicated internal pull-up 
resistor to VCCO_2.

7. After the INIT_B pin returns High, the FPGA begins toggling the CCLK output, which 
controls all the configuration timing. The CCLK output initially starts at its lowest, 
default frequency, approximately 1 MHz.

8. The SPI Flash requires a High-to-Low transition on the CSO_B output. The FPGA 
actively drives the CSO_B output High for one CCLK cycle before asserting the CSO_B 
pin Low. This begins the SPI bus transaction.

9. Based on the VS[2:0] pin values sampled when INIT_B pin returned High, the FPGA 
begins issuing a SPI Flash read command. The FPGA sends the command, most-
significant bit first. The FPGA subsequently sends a 24-bit address, all zeros, and the 
appropriate number of dummy bits, also zero, for the select Flash memory. The FPGA 
clocks out the command, address, and dummy bits on the MOSI output, clocked on the 
falling edge of CCLK.

10. Within the first 384 bits of the configuration bitstream, the FPGA loads the ConfigRate 
setting for the remainder of the configuration process. The ConfigRate setting defines 
the CCLK frequency. All interface timing must be evaluated for the specific setting. See 
“CCLK Frequency,” page 114 and “ConfigRate: CCLK Frequency,” page 125.

11. The SPI Flash PROM provides data on the falling edge of CCLK. This PROM data must 
be valid and setup on the FPGA’s DIN serial data input before next rising edge of 
CCLK.

Table 4-15 lists the various FPGA timing parameters associated with the SPI configuration 
interface.

Table 4-16 shows the relationship between the SPI Flash PROM timing specifications and 
the FPGA’s configuration timing specifications. For example, the SPI Flash clock-to-output 
time, TV, must be less than or equal the FPGA minimum CCLK Low time and the specified 
ConfigRate setting, TCCLKLn, minus the FPGA’s setup time on the DIN input, TDCC. See 
the TV parameter highlighted in Figure 4-29, page 139.

Table 4-15: FPGA Timing Symbols for Serial Peripheral Interface (SPI) 
Configuration Mode

Symbol Description

TCCLK1 Initial CCLK clock period

TCCLKn CCLK clock period after FPGA loads ConfigRate setting

TMINIT Setup time on the VS[2:0] variant-select pins and the M[2:0] mode-select pins 
before the rising edge of INIT_B

TCCLKL1 Minimum CCLK Low time at the initial, default ConfigRate setting

TCCLKLn Minimum CCLK Low time at the ConfigRate setting specified in the FPGA 
bitstream.

TINITM Hold time on the VS[2:0] variant-select pins and the M[2:0] mode-select pins 
before the rising edge of INIT_B

TCCO MOSI output valid delay after CCLK falling clock edge

TDCC Setup time on the DIN data input before CCLK rising clock edge

TCCD Hold time on the DIN data input after CCLK rising clock edge
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All communication from the FPGA to the SPI Flash PROM, i.e., sending the read 
command, address, and dummy bits, all occurs at the default CCLK ConfigRate setting, 
which is the slowest setting in the Spartan-3E FPGAs, TCCLK1, which equates to 
approximately 1 MHz. The Extended Spartan-3A family families default to 6 MHz.

Multi-Package Layout
Most of the SPI PROM vendors have a multi-package migration scheme that allows a 
design to migrate to larger or smaller memory densities.

The multi-package layout provides ...

• Density migration between smaller- and larger-density SPI Flash PROMs. Not all 
SPI Flash memory densities are available in all packages. The SPI Flash migration 
strategy follows nicely with the pinout migration provided by Xilinx FPGAs. Should 
the application need more nonvolatile storage, there is always a convenient, upward 
density migration path in the SPI Flash PROM, up to 128Mbits. 

• Consistent configuration PROM layout when migrating between FPGA densities. 
Within the Extended Spartan-3A family FPGAs and within the Spartan-3E FPGA 
family, a particular FPGA package option spans different density levels while 
maintaining footprint compatibility. The SPI Flash multi-package layout allows 
comparable flexibility in the associated configuration PROM. Ship the optimally-sized 
SPI Flash memory for the specific FPGA mounted on the board.

• Supply security. If a certain SPI Flash density is not available in the desired package, 
switch to a different package style or to a different density to secure availability. 
Likewise, multiple vendors support the STMicroelectronics (Numonyx) footprint.

An example package layout for the M25Pxx SPI serial Flash family, from the Spartan-3E 
FPGA Starter Kit Board, is provided in Figure 4-30. The multi-package layout supports the 
8-lead 8x6 mm MLP package, the 8-pin SOIC package and the 16-pin SOIC package. Pin 1 
for the 8-pin SOIC and MLP packages is located in the top-left corner. However, pin 1 for 
the 16-pin SOIC package is located in the top-right corner, because the package is rotated 

Table 4-16: Configuration Timing Requirements for Attached SPI Serial Flash

Symbol Description Requirement Units

TCCS SPI serial Flash PROM chip-select time ns

TDSU SPI serial Flash PROM data input setup time ns

TDH SPI serial Flash PROM data input hold time ns

TV SPI serial Flash PROM data clock-to-output time ns

fC or fR Maximum SPI serial Flash PROM clock frequency (also 
depends on specific read command used)

MHz

Notes: 
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post-

configuration requirements may be different, depending on the application loaded into the FPGA and the resulting clock source.
2. Subtract additional printed circuit board routing delay as required by the application.

TCCS TMCCL1 TCCO–≤

TDSU TMCCL1 TCCO–≤

TDH TMCCH1≤

TV TMCCLn TDCC–≤

fC
1

TCCLKn min( )
------------------------------≥
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90°. The 16-pin SOIC package also has four pins at the center each side that do not connect 
on the board. These pins must be left unconnected, i.e. floating. 

Saving Power
Most SPI Flash memories support multiple power-saving options. The simplest and most 
useful is the Standby Mode, which reduces power simply by de-selecting the SPI Flash 
memory. Within the FPGA application, drive the CSO_B pin High.

Deassert CSO_B to Enter Standby Mode
The SPI Flash memory automatically enters Standby power mode when the memory’s 
active-Low Slave Select line is deasserted High. After configuration or when not accessing 
the SPI Flash, the application must drive the CSO_B pin High.

Figure 4-30: Multi-Package Layout for the M25Pxx Family on Spartan-3E Starter Kit 
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Chapter 5

Master BPI Mode

Overview
The master Byte-wide Peripheral Interface (BPI) configuration mode is available for either 
the Spartan®-3A/3AN/3A DSP and Spartan-3E FPGA families. It is not supported on the 
Spartan-3 FPGA family although there is a similar mode that leverages Xilinx® Parallel 
Platform Flash PROMs (see Chapter 6, “Master Parallel Mode”).

In BPI mode, a Spartan-3E or Extended Spartan-3A family FPGA configures itself from a 
standard parallel NOR Flash PROM, as illustrated in Figure 5-1, page 144 for Spartan-3E 
FPGAs and Figure 5-2, page 145 for Extended Spartan-3A family FPGAs. The figures show 
optional components in gray and designated “NO LOAD”.

The BPI configuration interface is primarily designed to support standard parallel NOR 
Flash PROMs and the interface supports both byte-wide (x8) and byte-wide/word-wide 
(x8/x16) PROMs. In a pinch, the interface also functions with word-only (x16) PROMs, but 
the upper byte in a portion of the PROM remains unused. For FPGA configuration, the BPI 
interface does not require any specific Flash PROM features, such as a boot block or a 
specific sector size.

The BPI interface also works equally well with other asynchronous memories that use a 
similar SRAM-style interface such as the following, many of which have faster access 
times.

• Xilinx Parallel Platform Flash PROMs (XCFxxP)

• SRAM

• NVRAM (non-volatile RAM)

• EEPROM

• EPROM

• Masked ROM

NAND Flash memory is a different technology and is commonly used in memory cards for 
digital cameras. Extended Spartan-3A family and Spartan-3E FPGAs do not configure 
directly from NAND Flash memories.

The FPGA’s internal oscillator controls the interface timing and the FPGA supplies the 
clock on the CCLK output pin. However, the CCLK signal typically is not connected in 
single FPGA applications. The FPGA drives three pins Low during configuration 
(LDC[2:0]) and one pin High during configuration (HDC) to the PROM’s control inputs.

http://www.xilinx.com
http://www.xilinx.com/products/silicon_solutions/proms/pfp/
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Figure 5-1: Spartan-3E FPGA Configured from Parallel NOR Flash
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Master BPI Mode Differences between Spartan-3 Generation FPGA 
Families

Table 5-1 summarizes the BPI configuration mode differences between various Spartan-3 
generation FPGA families. BPI mode is only available on the Spartan-3E and Extended 
Spartan-3A family FPGA families. The Extended Spartan-3A family BPI mode supports up 
to 26 address lines, capable of addressing up to 512 Mbits (64 KBytes).

Figure 5-2: Extended Spartan-3A Family FPGA Configured from Parallel NOR Flash
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PROM Address Generation
Extended Spartan-3A family FPGAs always start configuration from address 0 with 
incrementing addresses, a mode called BPI Up. Extended Spartan-3A family FPGAs 
always set M[2:0] = <0:1:0> for BPI mode.

 As shown in Figure 5-1, page 144, the Spartan-3E FPGA family supports two versions 
of BPI configuration, defined by the M0 mode select pin. As shown in Table 5-2, page 147, 
when the M0 mode-select pin is Low, a Spartan-3E FPGA configures using BPI Up mode, 
starting at address 0 and incrementing the addresses presented on the A[23:0] address 
pins. When the M0 mode-select pin is High, a Spartan-3E FPGA configures using the BPI 
Down mode, starting from the highest memory location (A[23:0] = 0xFFFFFF) and 
automatically decrementing the memory addresses. Extended Spartan-3A family FPGAs 
do not support BPI Down mode. 

Table 5-1: BPI Configuration Mode Differences between Spartan-3 Generation 
FPGA Families

Spartan-3 
FPGA

Spartan-3E 
FPGA

Spartan-3A/3AN
Spartan-3A DSP 

FPGA

BPI Up mode supported
(start at 0, increment addresses)

BPI Mode not 
available on 

Spartan-3 
FPGA family

Yes Yes

BPI Down mode supported (start at 
highest location, decrement addresses)

Yes No

Maximum number of address lines 
supplied by FPGA

24 26

FPGA I/O Banks used for address lines Banks 1 and 2 Bank 1 only

Address lines independent of Right-
edge Clock inputs (RHCLKs) No Yes

Parallel daisy chains supported Yes Yes

Serial daisy chains supported No Yes

Supports MultiBoot configuration Yes Yes

Watchdog Timer retry No Yes

Number of interface timing options, 
controlled by ConfigRate setting (see 
Table 5-6)

3 12

CCLK directionality during Master BPI 
mode I/O

Output only for 
improved signal 

integrity

RDWR_B and CSI_B required during 
configuration

Yes No
(don’t care)

M[2:0] pins have dedicated internal 
pull-up resistors during configuration

No

Optional, 
controlled by 

HSWAP

Yes

A
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Addresses are generally incremented (or decremented for BPI Down mode) on every 
falling CCLK edge. The exception is when using Spartan-3A FPGAs as part of a serial daisy 
chain (see “Serial Daisy Chaining (Extended Spartan-3A Family FPGAs Only),” page 157).

The Spartan-3E addressing flexibility allows the FPGA to share the parallel Flash PROM 
with an external or embedded processor. Depending on the specific processor architecture, 
the processor boots either from the top or bottom of memory. The FPGA is flexible and 
boots from the opposite end of memory from the processor. Only the processor or the 
FPGA can boot at any given time. The FPGA can configure first, holding the processor in 
reset or the processor can boot first, asserting the FPGA’s PROG_B pin.

Spartan-3E FPGAs generally provide up to 24 address lines to access an attached parallel 
memory. There are a few exceptions as described below.

• Spartan-3E FPGAs available in the TQ144 package only provide 20 address lines, 
which is more than sufficient for the smaller FPGA array sizes offered in the TQ144 
package.

• Similarly, the XC3S100E FPGA in the CP132 package only has 20 address lines while 
the XC3S250E and XC3S500E FPGAs in the same package have 24 address lines.

• The BPI address pins are not provided on Spartan-3E FPGAs offered in the VQ100. 
Consequently, Spartan-3E FPGAs in the VQ100 package cannot configure from a 
parallel NOR Flash, but can configure using parallel Xilinx Platform Flash (XCFxxP).

Extended Spartan-3A family FPGAs generally provide up to 26 address lines to access an 
attached parallel memory. There are a few exceptions as described below.

• The XC3S50A FPGA does not support BPI mode.

As shown in Figure 5-14, page 169, the mode select pins, M[2:0], are sampled when the 
FPGA’s INIT_B output goes High and must be at defined logic levels during this time. 
After configuration, when the FPGA’s DONE output goes High, the mode pins are 
available as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP pin must be Low to enable pull-up resistors on all user-
I/O pins or High to disable the pull-up resistor. The HSWAP or PUDC_B control must 
remain at a constant logic level throughout FPGA configuration. After configuration, 
when the FPGA’s DONE output goes High, the HSWAP or PUDC_B pin is available as full-
featured user-I/O pin and is powered by the VCCO_0 supply.

On Spartan-3E FPGAs, the RDWR_B and CSI_B pins must be Low throughout the 
configuration process, although the start of configuration is delayed until CSI_B is 
asserted. After configuration, these pins also become user I/O. The RDWR_B and CSI_B 
are not used and are ignored on Extended Spartan-3A family FPGAs.

In a single-FPGA application, the FPGA’s CSO_B and CCLK pins are not used but are 
actively driving during the configuration process. The Spartan-3E BUSY pin, not available 
on Extended Spartan-3A family FPGAs, is not used but actively drives during 
configuration and is available as a user I/O after configuration.

Table 5-2: BPI Addressing Control

M2 M1 M0 Mode Supported Families Start Address Addressing

0 1

0
BPI Up Spartan-3A/3AN, 

Spartan-3A DSP, 
Spartan-3E FPGAs

0 Incrementing

1
BPI Down Spartan-3E FPGAs 

only
0xFF_FFFF Decrementing

P
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After configuration, all of the interface pins except DONE and PROG_B are available as 
user I/Os.

Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

HSWAP
PUDC_B

Input User I/O Pull-Up Control. When 
Low during configuration, 
enables pull-up resistors in all I/O 
pins to respective I/O bank VCCO 
input.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level 
throughout configuration.

User I/O

M[2:0] Input Mode Select. Selects the FPGA 
configuration mode. Extended 
Spartan-3A family FPGAs have 
dedicated internal pull-up 
resistors on these pins. See 
“Design Considerations for the 
HSWAP, M[2:0], and VS[2:0] 
Pins,” page 75.

M2 = 0, M1 = 1. Set M0 = 0 to start 
at address 0, increment addresses. 
On Spartan-3E FPGAs, optionally 
set M0 = 1 to start at address 
0xFFFFFF and decrement 
addresses. Sampled when INIT_B 
goes High.

User I/O

Spartan-3E 
FPGAs only:
CSI_B

Input Chip Select Input. Active Low Must be Low throughout 
configuration. This input is ignored 
on Extended Spartan-3A family 
FPGAs.

User I/O

Spartan-3E 
FPGAs only:
RDWR_B

Input Read/Write Control. Active Low 
write enable. Read functionality 
typically only used after 
configuration, if bitstream option 
Persist:Yes.

Must be Low throughout 
configuration. This input is ignored 
on Extended Spartan-3A family 
FPGAs.

User I/O

LDC0 Output PROM Chip Enable Connect to PROM chip-select input 
(CS#). FPGA drives this signal Low 
throughout configuration.

User I/O. If the FPGA 
does not access the 
PROM after 
configuration, drive 
this pin High to 
deselect the PROM. 
A[23:0], D[7:0], LDC2 
LDC1, and HDC then 
become available as 
user I/O.

LDC1 Output PROM Output Enable Connect to the PROM output-
enable input (OE#). The FPGA 
drives this signal Low throughout 
configuration.

User I/O

HDC Output PROM Write Enable Connect to PROM write-enable 
input (WE#). FPGA drives this 
signal High throughout 
configuration.

User I/O

P

A
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LDC2 Output PROM Byte Mode This signal is not used for x8 
PROMs. For PROMs with a x8/x16 
data width control, connect to 
PROM byte-mode input (BYTE#). 
See “Precautions Using x8/x16 
Flash PROMs”. FPGA drives this 
signal Low throughout 
configuration.

User I/O. Drive this 
pin High after 
configuration to use a 
x8/x16 PROM in x16 
mode.

Spartan-3E 
FPGAs:
A[23:0]

Spartan-3A
Spartan-3AN
Spartan-3A DSP
FPGAs:

A[25:0]

Output Address Connect to PROM address inputs. 
High-order address lines may not 
be available in all packages and not 
all may be required. Number of 
address lines required depends on 
the size of the attached Flash 
PROM. Spartan-3E FPGA address 
generation controlled by M0 mode 
pin. Addresses presented on falling 
CCLK edge.

User I/O

D[7:0] Input Data Input FPGA receives byte-wide data on 
these pins in response the address 
presented on A[23:0] or A[25:0]. 
Data captured by FPGA on rising 
edge of CCLK. D0 is the MSB (see 
“BPI Data Ordering”)

User I/O.

CSO_B Output Chip Select Output. Active Low. Not used in single-FPGA 
applications. In a daisy-chain 
configuration, this pin connects to 
the CSI_B pin of the next FPGA in 
the chain. If HSWAP or 
PUDC_B = 1 in a multi-FPGA 
daisy-chain application, connect 
this signal to a 4.7 kΩ pull-up 
resistor to VCCO_2. Actively drives 
Low when selecting a downstream 
device in the chain.

User I/O

Spartan-3E: 
FPGAs
BUSY

Output Busy Indicator. Not used in single-FPGA designs; 
BUSY is pulled up, not actively 
driving. 

User I/O.

Spartan-3A
Spartan-3AN
Spartan-3A DSP
FPGAs:

DOUT

Output Serial Data Output. Used in 
Extended Spartan-3A family 
serial daisy chains.

Not used in single-FPGA designs; 
DOUT is pulled up, not actively 
driving. In an Extended Spartan-3A 
family serial daisy-chain 
configuration, this pin connects to 
DIN input of the next FPGA in the 
chain.

User I/O.

Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections (Cont’d)

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

D
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Voltage Compatibility
 The FPGA’s parallel Flash interface signals are within I/O Banks 1 and 2. The majority 

of parallel Flash PROMs use a single 3.3V supply voltage. Consequently, in most cases, the 
FPGA’s VCCO_1 and VCCO_2 supply voltages must also be 3.3V to match the parallel 
Flash PROM. There are some 1.8V parallel Flash PROMs available and Spartan-3E FPGAs 
interface with these devices if the VCCO_1 and VCCO_2 supplies are also 1.8V. Extended 
Spartan-3A family FPGAs do not support 1.8V PROMs because of the Spartan-3A FPGA’s 
Power-On Reset (POR) voltage threshold, VCCO2T, shown in the appropriate Extended 
Spartan-3A family data sheet and summarized in Table 12-1, page 241.

Also, see “Power-On Precautions if 3.3V Supply is Last in Sequence,” page 167.

See also “JTAG Cable Voltage Compatibility,” page 198.

Compatible Parallel NOR Flash Families
The Spartan-3E and Extended Spartan-3A family BPI configuration interface operates with 
a wide variety of x8 or x8/x16 parallel NOR Flash devices. Table 5-4 provides a few 
example Flash memory families that operate with the BPI interface. Xilinx has hardware 

CCLK Output Configuration Clock. Generated 
by FPGA internal oscillator. 
Frequency controlled by 
ConfigRate bitstream generator 
option. If CCLK PCB trace is long 
or has multiple connections, 
terminate this output to maintain 
signal integrity. See “CCLK 
Design Considerations,” page 58.

Not used in single FPGA 
applications but actively drives. In 
a daisy-chain configuration, drives 
the CCLK inputs of all other FPGAs 
in the daisy chain.

User I/O. Drive High 
or Low if not used. 

INIT_B Open-
drain 

bidirec-
tional I/O

Initialization Indicator. Active 
Low. Goes Low at start of 
configuration during the 
Initialization memory clearing 
process. Released at the end of 
memory clearing, when the mode 
select pins are sampled. 

Active during configuration. If 
CRC error detected during 
configuration, FPGA drives INIT_B 
Low.

User I/O. If unused in 
the application, drive 
INIT_B High to avoid 
a floating value. See 
INIT_B “After 
Configuration”.

DONE Open-
drain 

bidirec-
tional I/O

FPGA Configuration Done. Low 
during configuration. Goes High 
when FPGA successfully 
completes configuration. 

Low indicates that the FPGA is not 
yet configured.

Pulled High via 
external pull-up. 
When High, indicates 
that the FPGA is 
successfully 
configured.

PROG_B Input Program FPGA. Active Low. 
When asserted Low for 500 ns or 
longer, forces the FPGA to restart 
its configuration process by 
clearing configuration memory 
and resetting the DONE and 
INIT_B pins once PROG_B 
returns High.

Must be High to allow 
configuration to start.

Drive PROG_B Low 
and release to 
reprogram FPGA. 
Hold PROG_B to force 
FPGA I/O pins into 
Hi-Z, allowing direct 
programming access 
to Flash PROM pins.

Table 5-3: Byte-Wide Peripheral Interface (BPI) Connections (Cont’d)

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

V
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tested various family members from some vendors. Other devices appear to be compatible 
based on a data sheet analysis. Consult the manufacturer’s data sheet for the desired 
parallel NOR Flash device to determine the suitability of a specific device.

While most parallel NOR Flash have comparable memory read functions, different 
vendors may use different programming algorithms, which has no impact on FPGA 
configuration.

Required Parallel Flash PROM Densities
Table 5-5 indicates the smallest usable parallel Flash PROM to program a single Extended 
Spartan-3A family or Spartan-3E FPGA. Parallel Flash memory devices are typically 
specified by bit density but the memory is addressed as bytes or half-words. Extended 
Spartan-3A family FPGAs present up to 26 address lines during configuration, although 
not all are address lines are required, depending on number of bytes required to hold the 
FPGA bitstream(s). Table 5-5 shows the minimum required number of address lines 
between the FPGA and parallel Flash PROM. The actual number of address line required 
depends on the density of the attached parallel Flash PROM.

Table 5-4: Example Compatible Parallel NOR Flash Families

Flash Vendor Flash Memory Family Status

STMicroelectronics (Numonyx) M29W Hardware tested

Atmel AT29 / AT49 Hardware tested

Spansion S29 Data sheet compatible

Intel (Numonyx) Embedded Flash (J3 v. D) Hardware tested

Macronix MX29 Data sheet compatible

Table 5-5: Number of Bits to Program an Extended Spartan-3A Family or Spartan-3E FPGA and Smallest 
Usable Parallel PROM

Family  FPGA
Uncompressed
File Sizes (bits)

Smallest Usable
Parallel Flash PROM

Minimum Required
Address Lines

Spartan-3A/3AN

XC3S50A/AN 437,312 BPI Mode not available on XC3S50A FPGAs

XC3S200A/AN 1,196,128 2 Mbit A[17:0]

XC3S400A/AN 1,886,560 2 Mbit A[17:0]

XC3S700A/AN 2,732,640 4 Mbit A[18:0]

XC3S1400A/AN 4,755,296 8 Mbit A[19:0]

Spartan-3A DSP
XC3SD1800A 8,197,280 8 Mbit A[19:0]

XC3SD3400A 11,718,304 16 Mbit A[20:0]

Spartan-3E

XC3S100E 581,344 1 Mbit A[16:0]

XC3S250E 1,353,728 2 Mbit A[17:0]

XC3S500E 2,270,208 4 Mbit A[18:0]

XC3S1200E 3,841,184 4 Mbit A[18:0]

XC3S1600E 5,969,696 8 Mbit A[19:0]

http://www.numonyx.com
http://www.atmel.com
http://www.atmel.com/dyn/products/devices.asp?family_id=624
http://www.spansion.com
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.macronix.com
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/75d338438656550a48256f5500408bf7/?OpenDocument
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxIndustryStandardFlashM29.aspx
http://www.spansion.com/flash_memory_products/floating_gate.html
http://www.xilinx.com
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A multiple-FPGA daisy-chained application requires a parallel Flash PROM large enough to 
contain the sum of the FPGA file sizes. An application can also use a larger-density parallel 
Flash PROM to hold additional data beyond just FPGA configuration data. For example, the 
parallel Flash PROM might also contain the application code for a MicroBlaze™ RISC 
processor core implemented within the Extended Spartan-3A family or Spartan-3E FPGA. 
After configuration, the MicroBlaze processor either executes directly from the external 
Flash memory or it copies the code to other, faster system memory before executing the 
code.

CCLK Frequency
In BPI mode, the FPGA’s internal oscillator generates the configuration clock frequency 
that controls all the interface timing. The FPGA starts configuration at its lowest frequency 
and increases its frequency for the remainder of the configuration process if so specified in 
the configuration bitstream. The maximum frequency is specified using the ConfigRate 
bitstream generator option.

Table 5-6 shows the maximum ConfigRate settings for various PROM read access times 
over the Commercial temperature operating range. See “Byte Peripheral Interface (BPI) 
Timing,” page 169 for more detailed timing information. Extended Spartan-3A family 
FPGAs have more ConfigRate options and therefore offer finer matching to specific 
memory interface speeds. See Table 5-8, page 160 for ConfigRate settings when using 
parallel Platform Flash PROMs.

Despite using slower ConfigRate settings, BPI mode is equally fast as the other 
configuration modes. In BPI mode, data is accessed at the ConfigRate frequency and 
internally serialized with an 8X clock frequency.

Table 5-6: Maximum ConfigRate Settings for Parallel Flash PROMs (Commercial 
Temperature Range)

 ConfigRate 
Bitstream Setting

Parallel NOR Flash Read Access Time (TACC (tAVQV))

Units
Spartan-3E FPGAs

Spartan-3A/3AN,
Spartan-3A DSP FPGAs

1 < 263 ns < 609 ns

ns

3 < 120 ns < 189 ns

6 < 49 ns < 85 ns

7 N/A < 71 ns

8 N/A < 60 ns

10 N/A < 43 ns

12 < 14 ns < 33 ns

13 N/A < 28 ns

17 N/A < 18 ns

Notes: 
1. PCB signal propagation time assumed to be 1 ns.

http://www.xilinx.com/microblaze
http://www.xilinx.com
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Using the BPI Interface after Configuration
After the FPGA successfully completes configuration, all pins connected to the parallel 
Flash PROM are available as user I/Os.

If not using the parallel Flash PROM after configuration, drive LDC0 High to disable the 
PROM’s chip-select input. The remainder of the BPI pins then become available to the 
FPGA application, including all A[25:0] or A[23:0] address lines, the eight D[7:0] data lines, 
and the LDC2, LDC1, and HDC control pins.

Because all the interface pins are user I/Os after configuration, the FPGA application can 
continue to use the interface pins to communicate with the parallel Flash PROM. Parallel 
Flash PROMs are available in densities ranging from 1 Mbit up to 128 Mbits and beyond. 
However, a single Spartan-3E/3A/-3AN FPGA requires typically less than 6 Mbits for 
configuration. If desired, use a larger parallel Flash PROM to contain additional 
nonvolatile application data, such as MicroBlaze processor code, or other user data, such as 
serial numbers and Ethernet MAC IDs. In such an example, the FPGA configures from 
parallel Flash PROM. Then using FPGA logic after configuration, a MicroBlaze processor 
embedded within the FPGA can either execute code directly from parallel Flash PROM or 
copy the code to external DDR SDRAM and execute from DDR SDRAM. Similarly, the 
FPGA application can store nonvolatile application data within the parallel Flash PROM.

For Spartan-3E FPGAs, the configuration data is stored starting at either at location 0 (BPI 
Up) or starting at the highest address location (BPI Down) or at both locations for when 
performing MultiBoot configuration (see “Spartan-3E MultiBoot,” page 263). For 
Extended Spartan-3A family FPGAs, there is always a configuration image starting at 
location 0 (BPI Up) and possibly at other higher address locations when performing 
Extended Spartan-3A family MultiBoot configuration (see “Extended Spartan-3A Family 
MultiBoot,” page 271). Store any additional data beginning in other available parallel 
Flash PROM sectors. 

Caution! Do not mix FPGA configuration data and user data in the same sector. Mixing both 
configuration and user data in the same sector should only be done with extreme caution.

Similarly, the parallel Flash PROM interface can be expanded to additional parallel 
peripherals. The address, data, LDC1 (OE#) and HDC (WE#) control signals are common 
to all parallel peripherals. Connect the chip-select input on each additional peripheral to 
one of the FPGA user I/O pins. If HSWAP or PUDC_B = 0 during configuration, the FPGA 
holds the chip-select line High via an internal pull-up resistor. If HSWAP or PUDC_B = 1, 
connect the select line to +3.3V via an external 4.7 kΩ pull-up resistor to avoid spurious 
read or write operations. After configuration, drive the select line Low to select the desired 
peripheral. Refer to the individual peripheral data sheet for specific interface and 
communication protocol requirements.

The FPGA optionally supports a 16-bit peripheral interface by driving the LDC2 (BYTE#) 
control pin High after configuration. See “Precautions Using x8/x16 Flash PROMs” for 
additional information.

A Spartan-3E FPGA provides up to 24 address lines during configuration, addressing up 
to 128 Mbits (16 Mbytes). An Extended Spartan-3A family provides up to 26 address lines, 
addressing up to 512 Mbits (64 Mbytes). If using a larger parallel PROM, connect the upper 
PROM address lines to FPGA user I/O. During configuration, the upper address lines will 
be pulled High if HSWAP or PUDC_B = 0. Otherwise, use external pull-up or pull-down 
resistors on these address lines to define their values during configuration.
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Precautions Using x8/x16 Flash PROMs
 Most low- to mid-density PROMs, typically 8 Mbits and below, are only available as 

byte-wide (x8) memories. Many higher-density Flash PROMs, usually 16 Mbits and above, 
support both byte-wide (x8) and word-wide (x16) data paths and include a mode input pin 
called BYTE# that switches between the x8 or x16 modes. During configuration, Spartan-
3E and Extended Spartan-3A family FPGAs only support byte-wide data, as shown in 
Figure 5-3a. However, after configuration as shown in Figure 5-3b, the FPGA supports 
either x8 or x16 modes because the FPGA’s LDC2 pin, which controls the PROM’s BYTE# 
mode input, is controlled by the FPGA application. In x16 mode, up to eight additional 
user I/O pins are required for the upper data bits, D[15:8].

Caution! Different Flash memory vendors use different nomenclature when naming address 
pins. Make sure that the FPGA connects correctly to the selected memory.

Connecting a Spartan-3E or Extended Spartan-3A family FPGA to a Flash PROM that 
supports both x8/x16 modes is simple, but does require a precaution. Various Flash PROM 
vendors use slightly different interfaces to support both x8 and x16 modes. Some vendors 
(Intel/Numonyx, Micron, some STMicroelectronics/Numonyx devices) use a 
straightforward interface with pin naming that matches the FPGA connections. However, 
the PROM’s A0 pin is wasted in x16 applications and a separate FPGA user-I/O pin is 
required for the D15 data line. Fortunately, the FPGA A0 pin is still available as a user I/O 
after configuration, even though it connects to the Flash PROM.

Other vendors (AMD, Atmel, Silicon Storage Technology, Spansion, and some 
STMicroelectronics/Numonyx devices) use a pin-efficient interface but change the 
function of one pin, called IO15/A-1, depending if the PROM is in x8 or x16 mode. 
Figure 5-3 illustrates this interface. In x8 mode, BYTE# = 0 controlled by the FPGA’s LDC2 
pin, the Flash’s IO15/A-1 pin becomes the least-significant address line into the Flash 
memory. The IO15/A-1 line selects a byte location. The A0 address line, which one might 
assume to be the least-significant address line, is actually the select line for word (x16) 
locations. 

After the FPGA configures successfully, the FPGA application can optionally access the 
Flash memory using a 16-bit data interface. The FPGA application drives BYTE# = 1, 

D

Figure 5-3: FPGA Supports x8 Interface before Configuration and Optional x16 Interface after 
Configuration
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which switches the definition of the IO15/A-1 pin. This pin then becomes the most-
significant data bit, D15 because byte addressing is not required in x16 mode. Check to see 
if the Flash PROM has a pin named IO15/A-1 or DQ15/A-1. If so, be careful to connect 
x8/x16 Flash PROMs correctly, as shown in Figure 5-3 and Table 5-7. Also, remember that 
the D[14:8] data connections require FPGA user I/O pins but that the D15 data is already 
connected for the FPGA’s A0 pin.

Some x8/x16 Flash PROMs have a long setup time requirement on the BYTE# signal. For 
the FPGA to configure correctly, the PROM must be in x8 mode with BYTE# = 0 at power-
on or when the FPGA’s PROG_B pin is pulsed Low. If required, extend the BYTE# setup 
time for a 3.3V PROM using an external 680 Ω pull-down resistor on the FPGA’s LDC2 pin 
or by delaying assertion of the CSI_B select input to the FPGA.

Daisy Chaining
If the application requires multiple FPGAs with different configurations, then configure 
the FPGAs using a daisy chain, as shown in Figure 5-4, page 156 or Figure 5-5, page 158.

• Parallel daisy chains from a BPI mode master FPGA are supported by both Spartan-
3E and Extended Spartan-3A family FPGAs.

• Serial daisy chains from a BPI mode master FPGA are only supported by Extended 
Spartan-3A family FPGAs.

To successfully configure a daisy chain, the GTS_cycle bitstream option must be set to a 
Startup phase after the DONE_cycle setting for all FPGAs in the chain. This is the software 
default setting. Optionally, set GTS_cycle:Done.

Table 5-7: FPGA Connections to Flash PROM with IO15/A-1 Pin

FPGA Pin
Connection to Flash PROM with 

IO15/A-1 Pin
x8 Flash PROM Interface After 

FPGA Configuration
x16 Flash PROM Interface After 

FPGA Configuration

LDC2 BYTE# Drive LDC2 Low or leave 
unconnected and tie PROM 
BYTE# input to GND

Drive LDC2 High

LDC1 OE# Active-Low Flash PROM 
output-enable control

Active-Low Flash PROM 
output-enable control

LDC0 CS# Active-Low Flash PROM chip-
select control

Active-Low Flash PROM chip-
select control

HDC WE# Flash PROM write-enable 
control

Flash PROM write-enable 
control

A[23:1] A[n:0] A[n:0] A[n:0]

A0 IO15/A-1 IO15/A-1 is the least-
significant address input

IO15/A-1 is the most-significant 
data line, IO15

D[7:0] IO[7:0] IO[7:0] IO[7:0]

User I/O Upper data lines IO[14:8] not 
required unless used as x16 Flash 
interface after configuration

Upper data lines IO[14:8] not 
required

IO[14:8]
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Parallel Daisy Chaining
Both Spartan-3E and Extended Spartan-3A family FPGA families support parallel 
configuration daisy chains when the first device in the chain uses BPI mode.

As shown in Figure 5-4, all downstream FPGAs in the daisy chain use Slave Parallel mode 
(M[2:0] = <1:1:0>). However, if there are more than two FPGAs in the daisy chain, the last 
FPGA in the chain can be from any recent Xilinx FPGA family that supports the SelectMAP 
interface, such as the Virtex®-II, Virtex-II Pro, and Spartan-3 FPGAs. However, all 
intermediate FPGAs located in the middle of the chain between the first and last FPGAs 
must from either the Spartan-3E, Extended Spartan-3A family, or Virtex-5 FPGA families. 
These three FPGA families are the only ones that provide a CSO_B output while in Slave 
Parallel (SelectMAP) mode.

After the master FPGA—the FPGA on the top left in Figure 5-4—finishes loading its 
configuration data from the parallel Flash PROM, the master device continues generating 
addresses to the Flash PROM and asserts its CSO_B output Low, enabling the next FPGA 

Figure 5-4: Parallel Daisy Chain using BPI Mode
UG332_c5_05_040107
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in the daisy chain. The next FPGA then receives parallel configuration data from the Flash 
PROM. The master FPGA’s CCLK output synchronizes data capture.

If the FPGA’s HSWAP or PUDC_B pin is High, then pull-up resistors are disabled during 
configuration and an external 4.7kΩ pull-up resistor must be added on the CSO_B pin, 
which guarantees a logic High to the CSI_B input of the next device in the chain. If FPGA’s 
HSWAP or PUDC_B pin is Low, no external pull-up is necessary.

Serial Daisy Chaining (Extended Spartan-3A Family FPGAs Only)
The Extended Spartan-3A family FPGA family supports serial daisy chains, where the first 
device in the chain uses BPI mode. The first or master device effectively provides a 
parallel-to-serial conversion of the bitstream data for the downstream slave devices. Serial 
daisy chains from BPI mode are not supported for Spartan-3E FPGAs.

As shown in Figure 5-5, page 158, all downstream FPGAs in the serial daisy chain use 
Slave Serial mode (M[2:0] = <1:1:1>) and can be from any Xilinx FPGA family.

The CCLK output from the master device operates at 8 times the frequency of the Flash 
read interface and CCLK synchronizes all FPGAs in the daisy chain. The master FPGA 
accesses the byte-wide Flash once every 8 CCLK cycles but provides serial data on its 
DOUT output to downstream FPGAs every CCLK cycle. iMPACT programming software 
automatically adjusts the CCLK frequency when serial daisy chains are selected in Step 14, 
Figure 5-10, page 164. In standalone BPI mode, the ConfigRate option determines the byte-
wide interface frequency. When a BPI daisy chain is selected, the ConfigRate option 
determines the serial interface frequency, and the parallel Flash interface will run at 1/8 of 
that rate.

After the master FPGA—the FPGA on the top left in Figure 5-5—finishes loading its 
configuration data from the parallel Flash PROM, the master device continues generating 
addresses to the Flash PROM. The master FPGA reads byte-wide data from the PROM, 
internally serializes the data, and provides the data to downstream devices via its DOUT 
output pin. The next FPGA in the daisy chain then receives serial configuration data from 
the preceding FPGA in the chain. The master FPGA’s CCLK output synchronizes data 
capture.
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Using Xilinx Platform Flash PROMs with Master BPI Mode
The Master BPI mode also supports the Xilinx Parallel Platform Flash PROM (XCFxxP) 
family, as shown in Figure 5-6.

Figure 5-5: Serial Daisy Chains are Only Available for Extended Spartan-3A Family BPI Mode
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• The diagram in Figure 5-6 shows an Extended Spartan-3A family FPGA, but the same 
approach also works with Spartan-3E FPGAs.

• The Xilinx Parallel Platform Flash PROM family is in-system programmable using 
JTAG, similar to the FPGA.

• See XAPP483, Multiple-Boot with Platform Flash PROMs

• The FPGA’s LDC2, LDC1, LDC0, and HDC outputs actively drive during 
configuration. Use the LDC0 output to enable the Platform Flash PROM during 

Figure 5-6: Master BPI Mode Using Xilinx Parallel Platform Flash PROMs (XCFxxP)
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configuration. After configuration, the FPGA application drives LDC0, now an I/O 
pin to enable or disable the PROM.

• After configuration, the FPGA application can control the I/O pins that connect to the 
PROM, the application can read additional non-configuration data from the PROM.

A similar approach using Slave Parallel mode is possible, minus the MultiBoot capability. 
The solution requires either an external configuration clock source or the Platform Flash 
PROM’s internal clock option. The advantage of the alternate solution is that the FPGA’s 
address pins are not active during configuration. Furthermore, if using an external clock 
source, the clock frequency has little variation and likely operates at a higher average 
frequency, which shortens configuration time.

ConfigRate Settings Using Platform Flash
As shown in Table 5-8, parallel Platform Flash PROMs support a high ConfigRate setting. 
The performance is even more dramatic considering that the PROM loads eight bits per 
clock. The resulting bandwidth on an Extended Spartan-3A family FPGAs is between 110 
to 190 Mbits per second!

Generating the Bitstream for a Master BPI Configuration
The create the FPGA bitstream for a Master BPI configuration, follow the steps outlined in 
“Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an FPGA 
configured in Master BPI mode, set the following bitstream generator options.

ConfigRate: CCLK Frequency
Set the ConfigRate option as described in “CCLK Frequency,” page 152. Using the ISE® 
software Project Navigator, the Configuration Rate frequency is set in Step 7 in Figure 1-7, 
page 44.

-g ConfigRate:12

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep 
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA 
to actively drive the DONE pin after successfully completing the configuration process. 

Table 5-8: Maximum ConfigRate Settings Using Parallel Platform Flash

Platform Flash Part 
Number

I/O Voltage 
(VCCO_2, VCCO)

 Spartan-3E 
ConfigRate Setting

 Spartan-3A/3AN
Spartan-3A DSP 

ConfigRate Setting

XCF08P
XCF16P
XCF32P

3.3V or 2.5V
25

33

1.8V N/A
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Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in 
Figure 1-8, page 45.

-g DriveDone:Yes

GTS_cycle: Global Three-State Release Timing for Daisy Chains
If creating a multi-FPGA daisy chain, set the GTS_cycle option to be later than the 
DONE_cycle setting, which is the default setting for both. Alternatively, set 
GTS_cycle:Done. From ISE Project Navigator, the GTS_cycle setting is the Enable Outputs 
(Output Events) option, shown as Step 14 in Figure 1-8, page 45.

Preparing a Parallel NOR Flash PROM File 
This section provides guidelines to create PROM files for parallel NOR Flash memories.

The Xilinx software tools, “iMPACT” or PROMGen, generate formatted PROM files from 
the FPGA bitstream or bitstreams. 

iMPACT
The following steps graphically describe how to create a PROM file for parallel NOR Flash 
using iMPACT from within the ISE Project Navigator. iMPACT supports indirect 
programming for the Spartan-3A and Spartan-3A DSP families. iMPACT supports 
programming the internal Flash of the Spartan-3AN family. If creating a Spartan-3A/3A 
DSP MultiBoot image for a parallel Flash memory, see “Generating an Extended Spartan-
3A Family MultiBoot PROM Image using iMPACT,” page 278.

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG 
File from within the Process pane, as shown in Figure 5-7.

Figure 5-7: Double-click Generate PROM, ACE or JTAG File

1
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2. As shown in Figure 5-8, select Prepare a PROM File.

3. Click Next.

Figure 5-8: Prepare a PROM File
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4. As shown in Figure 5-9, target a Generic Parallel PROM.

5. Select a PROM File Format.

6. Name the output PROM File Name.

7. Click Next.

Figure 5-9: Set Options for a Generic Parallel PROM

4

7

5

6

UG332_c5_10_111806

http://www.xilinx.com


164 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

8. As shown in Figure 5-10, select the Parallel PROM Density, measured in bytes. This 
example uses a 32 Mbit Flash PROM, equivalent to 4 Mbytes.

9. Click Add.

10. The selected PROM size appears in the 0 position. The Master BPI mode uses a single 
PROM.

11. Check Create BPI-mode PROM.

12. Choose whether the BPI Master Device is either a Spartan-3E or Spartan-3A FPGA.

13. If the Spartan-3E option is selected, then choose whether the PROM file is loaded at 
address 0 using incrementing addresses (BPI Up) or at the highest address location 
using decrementing addresses (BPI Down). This option is not available if the 
Spartan-3A option is the selected BPI Master Device.

14. If the Spartan-3A option is selected, then choose whether to create a Parallel or Serial 
configuration daisy chain. This option is not available if the Spartan-3E option is the 
selected BPI Master Device, although Spartan-3E FPGAs support parallel daisy chains.

15. Click Next.

Figure 5-10: Select Parallel PROM Size and Configuration Style
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16. As shown in Figure 5-11, start selecting the FPGA bitstreams to store in the PROM.

17. This example create a PROM file for a Spartan-3A serial daisy chain. Select the first 
FPGA bitstream.

18. Click Open.

19. When asked to add another design file, click Yes.

20. Select the second FPGA bitstream.

21. Click Open. Continue with Steps 19-21 until all FPGA bitstream files are selected. 
After entering the last bitstream, click No from Step 19 when asked to add another 
design file.

22. Click OK.

Figure 5-11: Select FPGA Bitstream Files
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23. As shown in Figure 5-12, the iMPACT software graphically displays the selected 
configuration topography. In this example, a single parallel PROM provides the 
bitstreams to two XC3S700A FPGAs using a serial daisy-chain configuration.

24. Click Generate File.

25. The iMPACT software indicates when the PROM File Generation Succeeded.

Indirect Parallel Flash Programming Using iMPACT
Indirect parallel Flash PROM programming support is available starting with Xilinx ISE 
9.2.02i and later releases. In Indirect mode, the iMPACT software programs the memory 
attached to the FPGA through the FPGA’s JTAG port. During the programming process, 
the FPGA is configured with a special programming application. Consequently, the 
FPGA’s DONE pin will go High during the programming process.

The iMPACT software supports indirect programming of the Intel (Numonyx) 28F P30 and 
J3 v D StrataFlash embedded flash family through the Spartan-3A (XC3S400A, XC3S700A, 
and XC3S1400A) and Spartan-3A DSP FPGAs.

In-System Programming Support
In production applications, the parallel Flash PROM is typically preprogrammed before it 
is mounted on the printed circuit board. In-system programming support is available from 
third-party boundary-scan tool vendors and from some third-party PROM programmers 
using a socket adapter with attached wires. To gain direct access to the parallel Flash 
signals, hold the FPGA’s PROG_B input Low throughout the programming process. This 
action places all FPGA I/O pins, including those attached to the parallel Flash, in high-
impedance (Hi-Z). If the HSWAP or PUDC_B input is Low, the I/Os have pull-up resistors 
to the VCCO input on their respective I/O bank. The external programming hardware then 
has direct access to the parallel Flash pins. 

Figure 5-12: Generate Parallel PROM File
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http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxStrataFlashEmbeddedMemoryP30P33.aspx
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http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx


Spartan-3 Generation Configuration User Guide www.xilinx.com 167
UG332 (v1.5) March 16, 2009

Power-On Precautions if 3.3V Supply is Last in Sequence
R

The FPGA itself can also be used as a parallel Flash PROM programmer during 
development and test phases. Because parallel NOR Flash is most commonly used with 
the MicroBlaze processor core, the Xilinx Platform Studio (XPS) includes Flash 
programming support. Essentially, XPS downloads a Flash programmer into the FPGA via 
the FPGA’s JTAG port. The FPGA then performs necessary the Flash PROM programming 
algorithms and receives programming data from the host via the FPGA’s JTAG interface.

• Chapter 9, “Flash Memory Programming” in Embedded System Tools Reference 
Manual (EDK 10.1)
http://www.xilinx.com/support/documentation/sw_manuals/edk10_est_rm.pdf

Similarly, the FPGA application can leverage an existing communication channel in the 
system to program or update the Flash memory. The Spartan-3E FPGA Starter Kit board 
provides a design example that programs the on-board Intel (Numonyx) StrataFlash 
PROM using the board’s RS-232 serial port. Similarly, the Spartan-3A FPGA Starter Kit 
board provides a similar example, but for the STMicro (Numonyx) M29DW323DT parallel 
Flash PROM.

• PicoBlaze™ Processor RS-232 StrataFlash™ Programmer
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_nor_flash_programmer

• Programmer for the M29DW323DT Parallel NOR Flash
www.xilinx.com/products/boards/s3astarter/reference_designs.htm#parallel_flash_programmer

Power-On Precautions if 3.3V Supply is Last in Sequence
Extended Spartan-3A family and Spartan-3E FPGAs have a built-in power-on reset (POR) 
circuit, as shown in Figure 12-3, page 240. The FPGA waits for its three power supplies — 
VCCINT, VCCAUX, and VCCO to I/O Bank 2 (VCCO_2) — to reach their respective power-on 
thresholds before beginning the configuration process.

The parallel NOR Flash PROM is powered by the same voltage supply feeding the FPGA's 
VCCO_2 voltage input, typically 3.3V. Parallel NOR Flash PROMs specify that they cannot 
be accessed until their VCC supply reaches its minimum data sheet voltage, followed by an 
additional delay, often called a VCC setup time. Table 5-9 shows some representative 
values.

In many systems, the 3.3V supply feeding the FPGA's VCCO_2 input is valid before the 
FPGA's other VCCINT and VCCAUX supplies, and consequently, there is no issue. However, 
if the 3.3V supply feeding the FPGA's VCCO_2 supply is last in the sequence, a potential 
race occurs between the FPGA and the NOR Flash PROM, as shown in Figure 5-13.

Table 5-9: Example Minimum Power-On to Setup Times for Various Parallel NOR 
Flash PROMs

Vendor
Flash PROM 
Part Number

Data Sheet Minimum Time from VCC min to Select = Low

Symbol Value Units

Intel Corp. 
(Numonyx)

J3 v. D tVCCPH 60 μs

Spansion S29AL016M tVCS 50 μs

Macronix MX29LV004C tVCS 50 μs

http://www.xilinx.com/microblaze
http://www.xilinx.com/support/documentation/sw_manuals/edk10_est_rm.pdf
http://www.xilinx.com/s3estarter
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_nor_flash_programmer
http://www.xilinx.com
http://www.xilinx.com/s3astarter
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm#parallel_flash_programmer


168 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 5: Master BPI Mode
R

If the FPGA's VCCINT and VCCAUX supplies are already valid, then the FPGA waits for 
VCCO_2 to reach its minimum threshold voltage before starting configuration. This 
threshold voltage is labeled as VCCO2T in Table 12-1, page 241 and ranges from 
approximately 0.4V to 2.0V, substantially lower than the NOR Flash PROM's minimum 
voltage. Once all three FPGA supplies reach their respective Power On Reset (POR) 
thresholds, the FPGA starts the configuration process and begins initializing its internal 
configuration memory. The initialization varies by family and arrays size, listed in 
Table 12-2, page 242. After initialization, the FPGA deasserts INIT_B, selects the NOR 
Flash PROM, and starts accessing data. The parallel NOR Flash PROM must be ready for 
read operations at this time.

If the 3.3V supply is last in the sequence and does not ramp fast enough, or if the parallel 
NOR Flash PROM cannot be ready when required by the FPGA, delay the FPGA 
configuration process by holding either the FPGA's PROG_B input or INIT_B input Low, 
described in “Delaying Configuration,” page 243. Release the FPGA when the parallel 
NOR Flash PROM is ready. For example, a simple R-C delay circuit attached to the INIT_B 
pin forces the FPGA to wait for a preselected amount of time. Alternately, a Power Good 
signal from the 3.3V supply or a system reset signal accomplishes the same purpose. If 
using a multi-FPGA daisy-chain configuration, use an open-drain or open-collector output 
when driving PROG_B or INIT_B as multiple FPGAs are connected to the same node. 
Similarly, if the Power Good signal is a 3.3V signal, remember that PROG_B is powered by 
VCCAUX, which must be 2.5V on Spartan-3 and Spartan-3E FPGAs and may be 2.5V or 3.3V 
on Spartan-3A/3A DSP FPGAs. Add a 68Ω or larger series resistor if there is a voltage 
mismatch.

Extended Spartan-3A Family and Configuration Watchdog Timer
Extended Spartan-3A family FPGAs include a configuration watchdog timer (CWDT) 
which makes parallel Flash configuration more robust, even when the 3.3V supply is 
applied last.

In Master BPI mode, the CWDT ensures that the FPGA reads a valid synchronization word 
from the parallel NOR Flash PROM within the first 216-1 cycles of CCLK. The 
synchronization word is part of the FPGA configuration bitstream. If the FPGA does not 
find the synchronization word, the CWDT forces the FPGA to automatically restart the BPI 
the configuration process. The CWDT retries to successfully configure from parallel NOR 

Figure 5-13: Parallel NOR Flash PROM/FPGA Power-On Timing if 3.3V Supply is 
Last in Power-On Sequence
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Flash three times before failing. If the FPGA fails to configure, it then drives the INIT_B pin 
Low, indicating a failure.

Byte Peripheral Interface (BPI) Timing
Figure 5-14 provides a detailed timing diagram for the BPI configuration mode. The 
specific diagram is for the Spartan-3E FPGA family, using the BPI Down mode. However, 
the timing is also similar for the Extended Spartan-3A family FPGA families and for the 
BPI Up mode.

The following numbered items correspond to the markers provided in Figure 5-14.

1. The M[2:0] mode pins must be set for BPI mode. Only the Spartan-3E FPGA supports 
the BPI Down mode. Both Spartan-3E and Extended Spartan-3A family FPGAs 
support BPI Up mode. See Table 5-2. The mode pin must be setup with sufficient time 
before the rising edge of INIT_B.

Figure 5-14: BPI Configuration Timing Waveform (Spartan-3E BPI Down mode shown)
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Data DataData

AddressAddress

Data

Address

Byte 0

0xFF_FFFF

INIT_B
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2. On Spartan-3E FPGAs, the CSI_B select input and the RDWR_B read/write control 
input must be Low before the rising edge of INIT_B. It is possible to delay the start of 
BPI mode configuration by controlling when CSI_B is asserted Low. The CSI_B and 
RDWR_B pins are not used for Extended Spartan-3A family FPGAs.

3. The HSWAP or PUDC_B pull-up resistor control input must be setup and valid before 
the rising edge of INIT_B. Similarly, the example in Figure 5-14 shows the pull-up 
resistors enabled.

4. The HSWAP or PUDC_B control input defines the initial condition for the FPGA pins 
that control the Flash, including LDC2, LDC1, LDC0, HDC, and CSO_B. If HSWAP or 
PUDC_B = 1, then these pins are floating (Hi-Z). If HSWAP or PUDC_B = 0, then these 
pins have an internal pull-up resistor.

5. After the FPGA completes its internal housecleaning and allows INIT_B to go High, 
the FPGA actively drives the Flash control outputs.

6. The FPGA begins driving the CCLK clock output, which controls all the timing for BPI 
interface.

7. The CCLK output begins operating at its lowest frequency option. The ultimate 
frequency is controlled by a bitstream option called ConfigRate.

8. The FPGA-generated address outputs are clocked by the falling edge of CCLK.

9. The initial address is held for five CCLK cycles in BPI Up mode and two CCLK cycles 
in BPI Down mode. BPI Down mode is only available on Spartan-3E FPGAs.

10. In response to the address inputs provided by the FPGA, the attached PROM 
asynchronously presents output data.

11. During the first 320 bits in the bitstream, the FPGA loads the ConfigRate bitstream 
setting that potentially increases the CCLK output frequency of in order to reduce 
configuration time.

12. Two directly-related factors control the interface timing. One factor is the PROM data 
access time, typically called TACC (tAVQV) or TAVQV in memory data sheets. The other 
is the maximum CCLK frequency, controlled by the ConfigRate bitstream generator 
setting. A faster PROM access time allows a higher ConfigRate setting, resulting in a 
faster CCLK frequency and a correspondingly faster configuration time. See Table 5-6, 
page 152.

Table 5-10 shows the timing requirements of the attached parallel Flash PROM, based on 
FPGA data sheet timing values.

Table 5-10: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol Description Requirement Units

TCE
(tELQV)

Parallel NOR Flash PROM chip-
select time

ns

TOE
(tGLQV)

Parallel NOR Flash PROM output-
enable time

ns

TACC
(tAVQV)

Parallel NOR Flash PROM read 
access time

ns

TCE TINITADDR≤

TOE TINITADDR≤

TACC 50%TCCLKn min( ) TCCO TDCC PCB–––≤

http://www.xilinx.com
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Limitations when Reprogramming via JTAG if FPGA Set for BPI 
Configuration

The FPGA can always be reprogrammed via the JTAG port, regardless of the mode pin 
(M[2:0]) settings. However, there is a minor limitation if using BPI mode and versions of 
the ISE software prior to ISE 9.1i, Service Pack 1 (ISE 9.1.01i). The issue with prior software 
releases exists for all Spartan-3A/3AN FPGA and all Spartan-3E FPGA FPGAs. The issue 
is resolved using ISE 9.1i, Service Pack 1 or later. The issue does not exist for Spartan-3A 
DSP FPGAs because support started in later software versions.

Using versions prior to ISE 9.1i, Service Pack 1, if the FPGA is set to configure in BPI mode 
and the FPGA is attached to a parallel memory containing a valid FPGA configuration file, 
then subsequent reconfigurations using the JTAG port will fail. Potential workarounds 
include setting the mode pins for JTAG configuration (M[2:0] = <1:0:1>) or offsetting the 
bitstream start address in Flash by 0x2000.

Spartan-3E BPI Mode Interaction with Right and Bottom Edge 
Global Clock Inputs

Some of the Spartan-3E BPI mode configuration pins are shared with global clock inputs 
along the right and bottom edges of the device (Bank 1 and Bank 2, respectively). These 
pins are not easily reclaimable for clock inputs after configuration, especially if the FPGA 
application access the parallel NOR Flash after configuration. Table 5-11 summarizes the 
shared pins on Spartan-3E FPGAs. These pins are not shared connections on Extended 
Spartan-3A family FPGAs.

TBYTE
(tFLQV, 
tFHQV)

For x8/x16 PROMs only: BYTE# to 
output valid time(3)

ns

Notes: 
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK clock signal. The 

post-configuration requirements might be different, depending on the application loaded into the FPGA and the resulting clock 
source.

2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The 

resistor value also depends on whether the FPGA’s HSWAP or PUDC_B pin is High or Low.

Table 5-10: Configuration Timing Requirements for Attached Parallel NOR Flash (Cont’d)

Symbol Description Requirement Units

TBYTE TINITADDR≤

http://www.xilinx.com
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BPI Data Ordering
On Xilinx FPGAs, data bit D0 is the most-significant bit (MSB) and bit D7 is the least-
significant bit (LSB). Consequently, it is crucial to understand how the data ordering in the 
configuration data file corresponds to the data ordering expected by the FPGA. The Xilinx 
PROM file generation software provides the option to generate bit-swapped PROM files. 
The .mcs, .exo, and .tek PROM file formats are byte-swapped unless the BitGen -spi option 
is used. The .hex file format can be byte-swapped or not byte-swapped, depending on user 
options. The bitstream files (.bit, .rbt, .bin) are never byte-swapped. Although this 
convention differs from many other devices, it is consistent across all Xilinx FPGAs. The 
BPI data ordering is the same as the SelectMAP data ordering. See “SelectMAP Data 
Ordering” in Chapter 7 for more details.

Table 5-11: Spartan-3E: Shared BPI Configuration Pins and Global Buffer Input 
Pins

Device
Edge

Global Buffer
Input Pin

BPI Mode
Configuration Pin

Bottom

GCLK0 RDWR_B

GCLK2 D2

GCLK3 D1

GCLK12 D7

GCLK13 D6

GCLK14 D4

GCLK15 D3

Right

RHCLK0 A10

RHCLK1 A9

RHCLK2 A8

RHCLK3 A7

RHCLK4 A6

RHCLK5 A5

RHCLK6 A4

RHCLK7 A3

http://www.xilinx.com
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Chapter 6

Master Parallel Mode

Master Parallel Mode is only available on the Spartan®-3 FPGA family. See the 
DS099: Spartan-3 FPGA Family Data Sheet for details.

The Extended Spartan-3A family and Spartan-3E FPGA families do not support Master 
Parallel Mode, but do support a variation described in Chapter 5, “Master BPI Mode.”

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
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Chapter 7

Slave Parallel (SelectMAP) Mode

When using Slave Parallel mode configuration (M[2:0] = <1:1:0>), an external host, such as 
a microprocessor or microcontroller, writes byte-wide configuration data into the FPGA, 
using a typical peripheral interface. The interface for Spartan®-3E and Extended Spartan-
3A family FPGAs appears in Figure 7-1, page 176. The interface for Spartan-3 FPGAs is 
similar but there a few minor differences, as shown in Figure 7-2, page 177. The figures 
show optional components in gray and designated “NO LOAD”. A list of Slave Parallel 
(SelectMAP) interface pins appears in Table 7-2, page 179.

An overview of Slave Parallel functions is provided in Table 7-1, page 178. The external 
download host starts the configuration process by pulsing the FPGA’s PROG_B pin Low 
and monitoring that the INIT_B pin returns High, indicating that the FPGA is ready to 
receive its first data. The host asserts the active-Low chip-select signal (CSI_B or CS_B in 
the Spartan-3 family) and the active-Low Write signal (RDWR_B). The host then continues 
supplying data and clock signals until either the FPGA’s DONE pin goes High, indicating 
a successful configuration, or until the FPGA’s INIT_B pin goes Low, indicating a 
configuration error. 

The FPGA captures data on the rising CCLK edge. On Spartan-3 and Spartan-3E FPGAs, if 
the CCLK frequency exceeds 50 MHz, then the host must also monitor the FPGA’s BUSY 
output. Extended Spartan-3A family FPGAs do not have a BUSY pin. If the FPGA asserts 
BUSY High, the host must hold the data for an additional clock cycle, until BUSY returns 
Low. If the CCLK frequency is 50 MHz or below, the BUSY pin may be ignored but actively 
drives during configuration.

The configuration process requires more clock cycles than indicated from the configuration 
bitstream size alone. Additional clocks are required during the FPGA’s start-up sequence, 
especially if the FPGA is programmed to wait for selected Digital Clock Managers (DCMs) 
to lock to their respective clock inputs (LCK_cycle). See “Startup,” page 248 for additional 
information.

If the Slave Parallel interface is only used to configure the FPGA, never to read data back 
data from the FPGA, then the RDWR_B signal can also be removed from the interface, but 
must remain Low during configuration.

After configuration, all of the interface pins except DONE and PROG_B are available as 
user I/Os. Alternatively, the bidirectional SelectMAP configuration interface is available 
after configuration. To continue using SelectMAP mode, set the Persist:Yes bitstream 
generator option. The external host can then read and verify configuration data.

The Slave Parallel mode is also used with BPI mode to create multi-FPGA daisy chains. 
The lead FPGA is set for BPI mode configuration; all the downstream daisy-chain FPGAs 
are set for Slave Parallel configuration, as highlighted in Figure 5-4, page 156.

http://www.xilinx.com
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Figure 7-1: Slave Parallel Mode (Spartan-3E and Extended Spartan-3A Family FPGAs)
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Figure 7-2: Slave Parallel Mode (Spartan-3 FPGAs)
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Table 7-1: Slave Parallel (SelectMAP) Function Overview

Inputs to FPGA (D[7:0] is bidirectional) FPGA Outputs
Function

PROG_B CSI_B RDWR_B D[7:0] BUSY CCLK INIT_B DONE

0 X X X X X X Drive PROG_B Low to reset FPGA.

1 X X X X 0 0
FPGA initializing when INIT_B is 
Low after a PROG_B pulse or 
initially at power-on.

1 X X X X 1 0
FPGA ready for configuration 
when INIT_B returns High.

1 1 X X X 1 0 No operation when CSI_B is High.

1 0 0
D[7:0]

to FPGA
0 ↑ 1 0

To write configuration data to 
FPGA, drive RDWR_B Low before 
or coincident with driving CSI_B 
Low. Each D[7:0] byte captured on 
each rising CCLK edge.

1 0 0
D[7:0]

to FPGA
1 ↑ 1 0

BUSY is High, indicating that the 
FPGA not ready to receive data. 
Hold current D[7:0] byte until the 
next CCLK cycle when BUSY 
returns Low. BUSY not used on 
Extended Spartan-3A family 
FPGAs.

1 0 0 to 1 X X X X ABORT condition if RDWR_B 
changes state while CSI_B is Low.

1 0 1 to 0s X X X X

1 0 1
D[7:0]
from 

FPGA
0 ↑ 1 1

After configuration, if the 
Persist:Yes bitstream option is set, 
the Slave Parallel (SelectMAP) 
interface can be used to Readback 
data from the FPGA, assuming the 
security bits were not set in the 
FPGA bitstream.

1 X X X 0 8x ↑ X 1
FPGA successfully configured 
eight CCLK cycles after DONE 
goes High.

1 X X X X 0 0
At the end of configuration, if 
INIT_B is again Low, then a 
configuration CRC error occurred.

Notes: 
X = don’t care
↑ = rising edge
CSI_B is CS_B in the Spartan-3 family

http://www.xilinx.com
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Table 7-2: Slave Parallel Mode Connections

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

Spartan-3E:
HSWAP

Spartan-3A:
Spartan-3AN
Spartan-3A DSP:

PUDC_B

Spartan-3:

HSWAP_EN

Input User I/O Pull-Up Control. When 
Low during configuration, 
enables pull-up resistors in all 
I/O pins to respective I/O bank 
VCCO input.

0: Pull-ups during configuration
1: No pull-ups

Drive at valid logic level 
throughout configuration.

Spartan-3:
Dedicated pin (don’t 
care after configuration)
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

User I/O

M[2:0] Input Mode Select. Selects the FPGA 
configuration mode. See “Design 
Considerations for the HSWAP, 
M[2:0], and VS[2:0] Pins,” 
page 75.

M2 = 1, M1 = 1, M0 = 0 
Sampled when INIT_B goes 
High.

User I/O

D[7:0] Input Data Input. Byte-wide data provided by 
host. FPGA captures data on 
rising CCLK edge. D0 is the 
MSB (see “SelectMAP Data 
Ordering”)

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

Spartan-3:
Spartan-3E:
BUSY

Output Busy Indicator. Not required for 
Extended Spartan-3A family 
FPGAs but function exists on 
DOUT pin. Do not connect 
DOUT to active logic during 
configuration.

If CCLK frequency is less than 
50 MHz, this pin may safely be 
ignored.   When High, indicates 
that the FPGA is not ready to 
receive additional 
configuration data. Host must 
hold data an additional clock 
cycle.

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

Spartan-3E:
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

CSI_B

Spartan-3:

CS_B

Input Chip Select Input. Active Low. Must be Low during valid data 
cycles.

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

RDWR_B Input Read/Write Control. Active Low 
write enable.

Must be Low throughout 
configuration. Do not change 
the state of RDWR_B while 
CSI_B or CS_B is asserted; 
otherwise an ABORT is issued.

User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.

CCLK Input Configuration Clock. If CCLK 
PCB trace is long or has multiple 
connections, terminate this 
output to maintain signal 
integrity. See “CCLK Design 
Considerations,” page 58.

External clock. User I/O. If bitstream 
option Persist:Yes, 
becomes part of 
SelectMap parallel 
peripheral interface.
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Voltage Compatibility
 Most Slave Parallel interface signals are within the FPGA’s I/O Bank 2, supplied by the 

VCCO_2 supply input. The VCCO_2 voltage can be 1.8V, 2.5V, or 3.3V to match the 
requirements of the external host, ideally 2.5V. Using 1.8V or 3.3V requires additional 
design considerations as the DONE and PROG_B pins are powered by the FPGA’s 2.5V 
VCCAUX supply. Extended Spartan-3A family FPGAs do not support 1.8V PROMs because 
of the Spartan-3A FPGA’s Power-On Reset (POR) voltage threshold, VCCO2T, shown in the 
appropriate Extended Spartan-3A family data sheet and summarized in Table 12-1, 
page 241.

See XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional information.

Also see “JTAG Cable Voltage Compatibility,” page 198.

Spartan-3E:
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

CSO_B

Output Chip Select Output. Active Low. 
Not provided on Spartan-3 
FPGAs.

Not used in single-FPGA 
designs; CSO_B is pulled up, 
not actively driving. In a 
Spartan-3E or Extended 
Spartan-3A family parallel 
daisy-chain configuration, this 
pin connects to CSI_B or CS_B 
input of the next FPGA in the 
chain.

User I/O

INIT_B Open-drain 
bidirectional 

I/O

Initialization Indicator. Active 
Low. Goes Low at the start of 
configuration during the 
Initialization memory clearing 
process. Released at the end of 
memory clearing, when mode 
select pins are sampled. 

Active during configuration. If 
CRC error detected during 
configuration, FPGA drives 
INIT_B Low.

User I/O. If unused in 
the application, drive 
INIT_B High to avoid a 
floating value. See 
INIT_B “After 
Configuration”.

DONE Open-drain 
bidirectional 

I/O

FPGA Configuration Done. Low 
during configuration. Goes High 
when FPGA successfully 
completes configuration. 

Low indicates that the FPGA is 
not yet configured.

When High, indicates 
that the FPGA 
successfully configured.

PROG_B Input Program FPGA. Active Low. 
When asserted Low for 500 ns or 
longer, forces the FPGA to restart 
its configuration process by 
clearing configuration memory 
and resetting the DONE and 
INIT_B pins once PROG_B 
returns High.

Must be High to allow 
configuration to start.

Drive PROG_B Low and 
release to reprogram 
FPGA.

Table 7-2: Slave Parallel Mode Connections (Cont’d)

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

V
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Daisy Chaining
If the application requires multiple FPGAs with different configurations, then configure 
the FPGAs using a daisy chain. Use Slave Parallel mode (M[2:0] = <1:1:0>) for all FPGAs in 
the daisy chain. There are two possible topologies available, one that supports only 
Spartan-3E and Extended Spartan-3A family FPGAs and another that works with any 
modern Xilinx® FPGA, Virtex® or Spartan-II FPGA and later.

Spartan-3E/Extended Spartan-3A Family Slave Parallel Daisy Chains
Figure 7-3, page 181 shows a daisy-chain topology that primarily supports Spartan-3E and 
Extended Spartan-3A family FPGAs, although the last FPGA in the chain can be from any 
modern Xilinx FPGA family. It essentially leverages the BPI mode daisy-chain technique. 
The upstream FPGA in the chain drives its CSO_B Low, enabling the downstream FPGA’s 
CSI_B or CS_B input. Only Spartan-3E, Spartan-3A, Spartan-3AN, Spartan-3A DSP, and 
Virtex-5 FPGAs have a CSO_B output. Consequently, one of these FPGAs must be the first 
and intermediate FPGAs in the daisy chain.

Pull-up resistors on the CSO_B to CSI_B connect are required if the FPGAs HSWAP, 
PUDC_B, HSWAP_EN or input is High, meaning that the FPGA’s internal pull-up resistors 
are disabled during configuration.

Figure 7-3: Slave Parallel Daisy Chain for Spartan-3E/Extended Spartan-3A Family FPGAs
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Slave Parallel Daisy Chains Using Any Modern Xilinx FPGA Family
Figure 7-4, page 182 describes an alternate Slave Parallel daisy-chain scheme that supports 
any modern Xilinx FPGA family, including all Spartan-3 generation FPGAs. The topology 
is similar to that shown in Figure 7-3, page 181 except that each FPGA has a separate CSI_B 
or CS_B chip-select input.

SelectMAP Data Loading 
The SelectMAP interface provides for either continuous or non-continuous data loading. 
Data loading is controlled by the FPGA’s CSI_B, RDWR_B, CCLK, and BUSY signals. 
Extended Spartan-3A family FPGAs do not have a BUSY signal.

CSI_B 
The active-Low chip-select input (CSI_B) enables the SelectMAP interface. When CSI_B is 
High, the FPGA ignores the SelectMAP interface. The data port and BUSY output pin are 
high-impedance (Hi-Z). CSI_B in the Spartan-3E and Extended Spartan-3A families is 
equivalent to CS_B in the Spartan-3 family.

If only one device is being configured through the SelectMAP and readback is not 
required, or if ganged SelectMAP configuration is used, connect the CSI_B signal to GND.

Figure 7-4: Slave Parallel Daisy Chain Using Any Modern Xilinx FPGA
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RDWR_B 
The RDWR_B input controls whether the SelectMAP data pins are inputs or outputs. 

• When RDWR_B = 0, the D[7:0] data pins are inputs (writing to the FPGA). 

• When RDWR_B = 1, the D[7:0] data pins are outputs (reading from the FPGA). 

When writing configuration data to the FPGA, the RDWR_B pin must be Low. When 
reading back configuration information from the FPGA, the RDWR_B pin must be High, 
while CSI_B is deasserted.

Changing the value of RDWR_B while CSI_B is Low triggers an ABORT if the FPGA 
receives a rising edge on CCLK (see “SelectMAP ABORT,” page 186). If Readback is not 
used, RDWR_B can be tied to ground or used for debugging with SelectMAP ABORT. 

The RDWR_B signal is ignored while CSI_B is High. Read/write control (three-state 
control) of the D[7:0] data pins is asynchronous. The FPGA actively drives SelectMAP data. 

CCLK 
All activity on the SelectMAP data bus is synchronous to CCLK. When writing 
configuration data to the FPGA, RDWR_B is Low and the FPGA samples the data on rising 
CCLK edges. When RDWR_B is set for read control (RDWR_B = 1, Readback), the FPGA 
updates the SelectMAP data pins on rising CCLK edges. 

Configuration can be paused by pausing CCLK as outlined in “Non-Continuous 
SelectMAP Data Loading,” page 185. 

BUSY 
If the system writes data to or reads data from the FPGA at less than 50 MHz, then the 
BUSY pin can be left unconnected. Extended Spartan-3A family FPGAs do not require a 
BUSY pin but have the same functionality on the DOUT pin.

BUSY is an output indicating when the device is ready to receive configuration data or 
drive Readback data. 

• When BUSY = 0, the FPGA is ready to receive or send data, depending on the 
operation.

• When BUSY = 1, the FPGA is not ready to receive or send data. If writing to the FPGA, 
hold the current data value until BUSY returns Low.

When CSI_B is deasserted (CSI_B = 1), the BUSY pin is in a high-impedance (Hi-Z) state. 

BUSY remains in a Hi-Z state until CSI_B is asserted. If CSI_B is asserted before power-up 
— for example, if the pin is tied to GND —BUSY initially is in a Hi-Z state, then drives Low 
after the Power-On Reset is released.

Continuous SelectMAP Data Loading
Continuous data loading occurs when the external processor or controller provides an 
uninterrupted stream of configuration data to the FPGA. After power-up, the controller 
asserts RDWR_B = 0 to write data to the FPGA and asserts CSI_B = 0 to select the FPGA. 
This action causes the FPGA to drive BUSY Low, which is an asynchronous transition. 
Drive the FPGA’s RDWR_B pin Low before or coincident with asserting CSI_B Low, 
otherwise an ABORT occurs, described in “SelectMAP ABORT,” page 186. 
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On the next rising CCLK edge, the FPGA begins sampling the D[7:0] data pins. Actual 
FPGA configuration begins after the FPGA recognizes the synchronization word, as 
described in “Synchronization,” page 244.

After the configuration bitstream is loaded, the device enters the Startup sequence. The 
FPGA asserts its DONE signal High in the Startup phase specified by the DONE_cycle 
bitstream option. See “Startup,” page 248. The processor or controller must continue 
sending CCLK pulses until after the Startup sequence successfully completes, which 
requires several CCLK pulses after DONE goes High.

After configuration, the CSI_B and RDWR_B signals can be deasserted, or they can remain 
asserted. Because the SelectMAP port is inactive, toggling RDWR_B at this time does not 
cause an ABORT event. Figure 7-5 summarizes the timing of SelectMAP configuration 
with continuous data loading. 

The following numbered items correspond to the markers provided in Figure 7-5.

1. CSI_B signal can be tied Low if there is only one device on the SelectMAP bus. If CSI_B 
is not tied Low, it can be asserted at any time. 

2. RDWR_B can be tied Low if readback is not needed. RDWR_B should not be toggled 
after CSI_B has been asserted because this triggers an ABORT. See “SelectMAP 
ABORT,” page 186.

3. If CSI_B is tied Low, BUSY drives Low before INIT_B returns High. 

4. The FPGA samples the M[2:0] mode-select pins when INIT_B goes High. 

5. Assert RDWR_B before CSI_B to avoid causing an abort. 

6. CSI_B is asserted, enabling the SelectMAP interface. 

7. BUSY (Spartan-3/3E only) remains in High-Z state until CSI_B is asserted. 

8. The first D[7:0] byte is loaded on the first rising CCLK edge after CSI_B is asserted. 

9. The configuration bitstream is loaded one byte per rising CCLK edge. 

10. After the last byte is loaded, the FPGA enters the Startup sequence. 

11. The startup sequence lasts a minimum of eight CCLK cycles. 

Figure 7-5: SelectMAP Continuous Data Loading

PROG_B

INIT_B

CCLK

CSI_B

RDWR_B

DATA[7:0]

UG332_c7_05_081006

Byte 0 Byte 1 Byte n

BUSY

DONE

1

2

3

4

5

7

6

12

13

14

High-Z

9 10 118

http://www.xilinx.com


Spartan-3 Generation Configuration User Guide www.xilinx.com 185
UG332 (v1.5) March 16, 2009

Non-Continuous SelectMAP Data Loading
R

12. The DONE pin goes High during the startup sequence. Additional CCLK cycles can be 
required to complete the startup sequence. See “Startup,” page 248.

13. After configuration has finished, the CSI_B signal can be deasserted. 

14. After the CSI_B signal is deasserted, RDWR_B can be deasserted. 

Non-Continuous SelectMAP Data Loading
Non-continuous data loading is used in applications where the processor or controller 
cannot provide an uninterrupted stream of configuration data. This may occur, for 
example, if the controller pauses configuration while it fetches additional data, switches to 
another task, or services an interrupt. 

There are two methods to throttle or pause the configuration data throughput in the 
Spartan-3 and Spartan-3E FPGAs. Only the second method is supported in the Spartan-3A, 
Spartan-3AN, and Spartan-3A DSP FPGAs.

1. Deassert the CSI_B signal with a free-running CCLK, shown in Figure 7-6 and 
described in “Deasserting CSI_B,” page 185.

2. Pause CCLK, shown in Figure 7-7 and described in “Pausing CCLK,” page 186.

Deasserting CSI_B
Note: This method is only supported in the Spartan-3 and Spartan-3E FPGAs. It is not supported in 
the Extended Spartan-3A FPGAs, which should instead use the “Pausing CCLK” method. CSI_B is 
labeled CS_B in the Spartan-3 family.

The following numbered items correspond to the markers provided in Figure 7-6.

1. The external processor drives RDWR_B Low, setting the FPGA’s D[7:0] pins as inputs 
for configuration. The RDWR_B input can be tied Low if Readback is not used in the 
application. RDWR_B should not be toggled after CSI_B has been asserted because this 
triggers an ABORT, described in “SelectMAP ABORT,” page 186.

2. The FPGA is ready for configuration after INIT_B returns High. 

Figure 7-6: SelectMAP Non-Continuous Data Loading with Controlled CSI_B
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3. The processor asserts CSI_B Low, enabling the SelectMAP interface. The CSI_B input 
can be tied Low if there is only one device on the SelectMAP bus. If CSI_B is not tied 
Low, it can be asserted at any time.

4. BUSY goes Low shortly after CSI_B is asserted. If CSI_B is tied Low, BUSY is driven 
Low before INIT_B returns High.

5. A D[7:0] data byte is loaded on the rising CCLK edge.

6. A D[7:0] data byte is loaded on the rising CCLK edge.

7. The processor deasserts CSI_B, and the data on D[7:0] is ignored.

8. The processor deasserts CSI_B, and the data on D[7:0] is ignored.

9. A D[7:0] data byte is loaded on the rising CCLK edge.

10. A D[7:0] data byte is loaded on the rising CCLK edge.

11. The processor deasserts CSI_B, and the data on D[7:0] is ignored

12. A D[7:0] data byte is loaded on the rising CCLK edge.

13. A D[7:0] data byte is loaded on the rising CCLK edge.

14. A D[7:0] data byte is loaded on the rising CCLK edge.

Pausing CCLK

The following numbered items correspond to the markers provided in Figure 7-7.

1. The D[7:0] data pins are high-impedance (Hi-Z) while CSI_B is deasserted.

2. RDWR_B has no effect on the device while CSI_B is deasserted. 

3. CSI_B is asserted by the processor. The FPGA captures configuration data on rising 
CCLK edges. 

4. A D[7:0] data byte is loaded on the rising CCLK edge. 

5. A D[7:0] data byte is loaded on the rising CCLK edge. 

6. A D[7:0] data byte is loaded on the rising CCLK edge. 

SelectMAP ABORT 
An ABORT is an interruption in the SelectMAP configuration process or in the Readback 
sequence that occurs if the RDWR_B pin changes state while CSI_B is asserted Low. 
During a configuration ABORT, the FPGA drives internal status information onto the 
D[7:4] pins over the next four CCLK cycles. The other data pins, D[3:0] remain High. After 
the ABORT sequence finishes, the processor that is downloading the FPGA must 

Figure 7-7: Non-Continuous SelectMAP Data Loading with Controlled CCLK
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resynchronize the configuration logic before resuming configuration. For applications that 
must deassert RDWR_B between bytes use the method described in “Pausing CCLK,” 
page 186.

Configuration Abort Sequence Description 
An ABORT is signaled during configuration as shown in Figure 7-8.

1. The configuration sequence begins normally. 

2. The processor changes the value on the RDWR_B pin while the FPGA is still selected; 
CSI_B is Low. 

3. BUSY goes High if CSI_B remains asserted Low. The FPGA drives the status word onto 
the data pins if RDWR_B is High, reading data from the FPGA. The Status value is not 
presented by the FPGA if RDWR_B is Low.

4. The ABORT lasts for four clock cycles, and Status is updated. 

Readback Abort Sequence Description 
An ABORT is signaled during readback as shown in Figure 7-9.

Figure 7-8: Configuration Abort Sequence
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1. The readback sequence begins normally. 

2. The processor changes the RDWR_B pin while the FPGA is still selected; CSI_B is Low. 

3. BUSY (Spartan-3/3E only) goes High if CSI_B remains asserted Low. The FPGA drives 
the status word onto the data pins if RDWR_B is High, reading data from the FPGA. 
The Status value is not presented by the FPGA if RDWR_B is Low.

ABORT operations during Readback typically are not followed by a status word because 
the RDWR_B signal will be Low, causing the ABORT. When RDWR_B is Low, the 
processor is writing to the FPGA and the FPGA’s D[7:0] pins are inputs. The FPGA cannot 
present the Status value. 

ABORT Status Word 
During the configuration ABORT sequence, the FPGA presents a status word onto the 
D[7:4] pins. The other data pins, D[3:0], are all High. The key for that status word is given 
in Table 7-3. 

Figure 7-9: Readback Abort Sequence
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The ABORT sequence lasts four CCLK cycles. During those cycles, the status word changes 
to reflect data alignment and ABORT status. An example ABORT sequence appears in 
Table 7-4.

After the last cycle, the synchronization word can be reloaded to establish data alignment. 

Resuming Configuration or Readback After an Abort 
There are two ways to resume configuration or readback after an ABORT: 

1. The FPGA can be resynchronized after the ABORT completes by resending the 
configuration synchronization word. See Table 12-3, page 244.

2. Reset the FPGA by pulsing PROG_B Low at any time. 

To resynchronize the device, CSI_B must first be deasserted then reasserted. To resume 
configuration or readback, resend the last configuration or readback packet that was in 
progress when the ABORT occurred. Alternatively, restart configuration or readback from 
the beginning. 

Table 7-3: ABORT Status Word

Bit Number Status Bit Name Meaning 

D7 CFGERR_B Configuration Error, active Low

0 = A configuration error has occurred. 

1 = No configuration error. 

D6 DALIGN Synchronization Word Received

0 = No synchronization word received. 

1 = Synchronization word received. 

D5 RIP Readback In Progress 

0 = No readback in progress. 

1 = A readback is in progress. 

D4 IN_ABORT_B ABORT in progress, active Low

0 = Abort is in progress. 

1 = No abort in progress. 

D[3:0] N/A 1111 (all High)

Table 7-4: Example ABORT Sequence

D[7:0] from 
FPGA

D7 D6 D5 D4 D[3:0]

CFGERR_B DALIGN RIP IN_ABORT_B N/A

11011111 1 1 0 1 1111

11001111 1 1 0 0 1111

10001111 1 0 0 0 1111

10011111 1 0 0 1 1111
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Persist
Generally, the FPGA’s dual-purpose configuration pins become user-I/O pins after 
configuration. The SelectMAP configuration port can be maintained after configuration by 
setting the bitstream generation option Persist:Yes or by selecting “Allow SelectMAP Pins to 
Persist” in the Project Navigator. Allowing the configuration port to persist enables 
readback or reconfiguration through the external configuration pins.

The pins that retain their configuration function when Persist:Yes is selected appear in 
Table 7-5. These pins become disconnected from the user design when Persist is used and 
therefore cannot be used by the design.

When Persist:Yes is selected, the post-configuration CRC checker in the Spartan-3A, 
Spartan-3AN, and Spartan-3A DSP FPGAs is clocked by CCLK.

SelectMAP Reconfiguration 
The term reconfiguration refers to reprogramming an FPGA after its DONE pin has gone 
High, which is distinctly different than programming the FPGA immediately after power 
is applied. To reconfigure the FPGA, pulse the PROG_B pin Low, which is identical to 
configuration, or reconfigure by resynchronizing the FPGA and sending configuration 
data. 

Generally, the FPGA’s SelectMAP pins become user-I/O pins after configuration, because 
the Persist:No bitstream option is set by default. To reconfigure a device in SelectMAP 
mode without pulsing PROG_B, set the bitstream option Persist:Yes, which reserves the 
Slave Parallel (SelectMAP) interface pins after configuration, preventing them from 
becoming user-I/O pins. 

Reconfigure the FPGA by clocking the appropriate synchronization word, shown in 
Table 12-3, page 244, into the SelectMAP port. The remainder of the operation is identical 

Table 7-5: Pins Affected by Persist

Pin Name FPGA Families Description

M[2:0]
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, 

Spartan-3A DSP
Mode Select

CCLK
Spartan-3E, Spartan-3A, Spartan-3AN, 

Spartan-3A DSP
Configuration Clock 

(Dedicated in Spartan-3)

INIT_B
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, 

Spartan-3A DSP
Initialization

CSI_B
Spartan-3E, Spartan-3A, Spartan-3AN, 

Spartan-3A DSP Chip Select, Active-Low

CS_B Spartan-3

RDWR_B Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, 
Spartan-3A DSP

Read/Write

BUSY Spartan-3, Spartan-3E FPGA Busy Indicator

D[7:0]
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3AN, 

Spartan-3A DSP
Data

A[23:20] Spartan-3E
Highest-order Address 

Lines
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to configuration as described above. The devices support full reconfiguration through the 
SelectMAP port.

SelectMAP Data Ordering 
On Spartan-3 generation FPGAs, by Xilinx convention, data bit D0 is the most-significant 
bit (MSB) and bit D7 is the least-significant bit (LSB). However, this convention varies 
between vendors and can be especially confusing when the FPGA uses one convention 
and the attached processor downloading configuration data to the FPGA uses the opposite 
convention! Consequently, it is crucial to understand how the data ordering in the 
configuration data file corresponds to the data ordering expected by the FPGA. 

In SelectMAP, the byte-wide configuration data is loaded one byte per CCLK, with the 
most-significant bit of each byte presented to the FPGA’s D0 data pin. The same data 
ordering applies to the BPI mode.

Table 7-6 provides an example of how the FPGA would like to see the hexadecimal value 
0xABCD presented on the SelectMAP data bus. Note how the bits within each byte need to 
be reversed.

Notes: 
1. D[0:7] represent the SelectMAP DATA pins. 

Some applications can accommodate the non-conventional data ordering without much 
difficulty. For other applications, it may be more convenient to store the source 
configuration data file with the data bits already bit-swapped, meaning that the bits in 
each byte of the data stream are reversed. The Xilinx PROM file generation software 
provides the option to generate bit-swapped PROM files.

Byte Swapping
The .mcs, .exo, and .tek PROM file formats are byte-swapped unless the -spi option is 
used. The .hex file format can be byte-swapped or not byte-swapped, depending on user 
options. The bitstream files (.bit, .rbt, .bin) are never byte-swapped. 

The .hex file format contains only configuration data. The other PROM file formats 
include address and checksum information that should not be sent to the FPGA. The 
address and checksum information is used by some third-party device programmers, but 
is not programmed into the PROM.

Figure 7-10 shows how two bytes of data (0xABCD) are byte-swapped.

Table 7-6: Bit Ordering for SelectMAP 8-Bit Mode

CCLK 
Cycle 

Hex 
Equivalent

D7 D6 D5 D4 D3 D2 D1 D0 

1 0xAB 1 1 0 1 0 1 0 1 

2 0xCD 1 0 1 1 0 0 1 1 
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The MSB of each byte goes to the D0 pin regardless of the orientation of the data:

• In the byte-swapped version of the data, the bit that goes to D0 is the rightmost bit

• In the non-byte-swapped data, the bit that goes to D0 is the leftmost bit.

Whether or not data must be byte-swapped is entirely application-dependent, and is only 
applicable for SelectMAP configuration applications. Non-byte-swapped data should be 
used for SPI and Slave serial downloads.

Figure 7-10: Byte Swapping Example 

ug071_30_120903

Hex:

Binary:

Byte-
Swapped
Binary: 

Byte-
Swapped
Hex:

SelectMAP
Data Pin:

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

1  0  1  0  1  0  1  1  1  1  0  0  1  1  0  1

A                 B                 C                D

1  1  0  1  0  1  0  1  1  0  1  1  0  0  1  1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

D                 5                 B                 3

SelectMAP
Data Pin:
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Chapter 8

Slave Serial Mode

In Slave Serial mode (M[2:0] = <1:1:1>), an external host such as a microprocessor or 
microcontroller writes serial configuration data into the FPGA, using the synchronous 
serial interface shown in Figure 8-1. The figure shows optional components in gray. The 
serial configuration data is presented on the FPGA’s DIN input pin with sufficient setup 
time before each rising edge of the externally generated CCLK clock input.

The intelligent host starts the configuration process by pulsing PROG_B and monitoring 
that the INIT_B pin goes High, indicating that the FPGA is ready to receive its first data. 
The host then continues supplying data and clock signals until either the DONE pin goes 
High, indicating a successful configuration, or until the INIT_B pin goes Low, indicating a 
configuration error. The configuration process requires more clock cycles than indicated 
from the configuration file size. Additional clocks are required during the FPGA’s start-up 
sequence, especially if the FPGA is programmed to wait for selected Digital Clock 
Managers (DCMs) to lock to their respective clock inputs (see “Startup,” page 248).
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The mode select pins, M[2:0], are sampled when the FPGA’s INIT_B output goes High and 
must be at defined logic levels during this time. After configuration, when the FPGA’s 
DONE output goes High, the mode pins are available as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP (PUDC_B) pin must be Low to enable pull-up resistors 
on all user-I/O pins or High to disable the pull-up resistors. The HSWAP (PUDC_B) 
control must remain at a constant logic level throughout FPGA configuration. After 
configuration, when the FPGA’s DONE output goes High, the HSWAP (PUDC_B) pin is 
available as full-featured user-I/O pin and is powered by the VCCO_0 supply.

Figure 8-1: Slave Serial Configuration
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Voltage Compatibility
 Most Slave Serial interface signals are within the FPGA’s I/O Bank 2, supplied by the 

VCCO_2 supply input. The VCCO_2 voltage can be 3.3V, 2.5V, or 1.8V to match the 
requirements of the external host, ideally 2.5V. Using 3.3V or 1.8V requires additional 
design considerations as the DONE and PROG_B pins are powered by the FPGA’s 2.5V 
VCCAUX supply. Extended Spartan-3A family FPGAs do not support 1.8V PROMs because 
of the Spartan-3A FPGA’s Power-On Reset (POR) voltage threshold, VCCO2T, shown in the 
appropriate Extended Spartan-3A family data sheet and summarized in Table 12-1, 
page 241.

See XAPP453: The 3.3V Configuration of Spartan®-3 FPGAs for additional information.

Daisy Chaining
If the application requires multiple FPGAs with different configurations, then configure 
the FPGAs using a serial daisy chain, as shown in Figure 1-3, page 33. Use Slave Serial 
mode (M[2:0] = <1:1:1>) for all FPGAs in the daisy chain. After the lead FPGA is filled with 
its configuration data, the lead FPGA passes configuration data via its DOUT output pin to 
the next FPGA on the falling CCLK edge.

V

http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
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Table 8-1: Slave Serial Mode Connections

Pin Name
FPGA 

Direction
Description During Configuration After Configuration

HSWAP_EN, 
HSWAP, or 
PUDC_B

Input User I/O Pull-Up Control. When 
Low during configuration, enables 
pull-up resistors in all I/O pins to 
respective I/O bank VCCO input.

0: Pull-up during configuration
1: No pull-ups

Drive at valid logic level 
throughout configuration.

Spartan-3:
Dedicated pin (don’t 
care after 
configuration)
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3A DSP:

User I/O

M[2:0] Input Mode Select. Selects the FPGA 
configuration mode. See “Design 
Considerations for the HSWAP, 
M[2:0], and VS[2:0] Pins,” page 75.

M2 = 1, M1 = 1, M0 = 1 
Sampled when INIT_B goes 
High.

User I/O

DIN Input Data Input. Serial data provided by host. 
FPGA captures data on rising 
CCLK edge.

User I/O

CCLK Input Configuration Clock. If CCLK 
PCB trace is long or has multiple 
connections, terminate this output 
to maintain signal integrity. See 
“CCLK Design Considerations,” 
page 58.

External clock. User I/O

INIT_B Open-drain 
bidirectional 

I/O

Initialization Indicator. Active 
Low. Goes Low at start of 
configuration during Initialization 
memory clearing process. 
Released at end of memory 
clearing, when mode select pins 
are sampled. 

Active during configuration. 
If CRC error detected during 
configuration, FPGA drives 
INIT_B Low.

User I/O. If unused in 
the application, drive 
INIT_B High to avoid a 
floating value. See 
INIT_B “After 
Configuration”.

DONE Open-drain 
bidirectional 

I/O

FPGA Configuration Done. Low 
during configuration. Goes High 
when FPGA successfully 
completes configuration 

Low indicates that the FPGA 
is not yet configured.

Pulled High via 
external pull-up. When 
High, indicates that the 
FPGA successfully 
configured.

PROG_B Input Program FPGA. Active Low. 
When asserted Low for 500 ns or 
longer (300 ns in the Spartan-3 
FPGAs), forces the FPGA to restart 
its configuration process by 
clearing configuration memory 
and resetting the DONE and 
INIT_B pins once PROG_B returns 
High.

Must be High to allow 
configuration to start.

Drive PROG_B Low 
and release to 
reprogram FPGA.
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Chapter 9

JTAG Configuration Mode and 
Boundary-Scan

Spartan®-3 generation FPGAs have a dedicated four-wire IEEE 1149.1/1532 JTAG port that 
is always available any time the FPGA is powered and regardless of the mode pin settings. 
However, when the FPGA mode pins are set for JTAG mode (M[2:0] = <1:0:1>), the FPGA 
waits to be configured via the JTAG port after a power-on event or after PROG_B is pulsed 
Low. Selecting the JTAG mode simply disables the other configuration modes. No other 
pins are required as part of the configuration interface. See “Mode Pin Considerations 
when Programming a Spartan-3AN FPGA via JTAG using iMPACT” for special mode pin 
requirements.

Figure 9-1 illustrates a JTAG-only configuration interface. The figure shows optional 
components in gray. The JTAG interface is easily cascaded to any number of FPGAs by 
connecting the TDO output of one device to the TDI input of the next device in the chain. 
The TDO output of the last device in the chain loops back to the port connector.
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JTAG Cable Voltage Compatibility
The FPGA’s JTAG interface is powered by the VCCAUX supply. All of the user I/Os are 
separately powered by their respective VCCO_# supplies.

The voltage supplied to the JTAG programming cable, shown as VREF in Figure 9-1, may 
be different than the VCCAUX supply. If the JTAG and VCCAUX voltages are the same, 
simply connect the FPGA directly to the JTAG programming socket or use 0Ω resistors, as 
shown in Table 9-1. For Spartan-3AN FPGAs, VCCAUX must be 3.3V. For Spartan-3A and 
Spartan-3A DSP FPGAs, VCCAUX can optionally be set to 3.3V.

The interface becomes a bit more complex if the JTAG voltage is different than the FPGA’s 
VCCAUX voltage because current-limiting resistors are required. If the JTAG cable interface 
needs to be 3.3V to support devices in the JTAG chain, then place a series resistor between 
the 3.3V interface and the TDI, TMS, and TCK pins on the FPGA, as indicated in Table 9-1. 
The FPGA’s TDO pin is a CMOS output powered by the VCCAUX supply. Even when 
VCCAUX = 2.5V, the TDO output can directly drive a 3.3V, input but with reduced noise 
immunity. See XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional 
information.

Figure 9-1: JTAG Configuration Interface
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JTAG Device ID
Each Spartan-3 generation FPGA array type has a 32-bit device-specific JTAG device 
identifier as shown in Table 12-4, page 246. The lower 28 bits represent the device vendor 
(Xilinx) and device identifier. The upper four bits, ignored by most tools, represent the 
revision level of the silicon mounted on the printed circuit board.

JTAG User ID
The Spartan-3 generation JTAG interface provides the option to store a 32-bit User ID, 
loaded during configuration. The User ID value is specified via the UserID configuration 
bitstream option, shown in Table 11-2, page 232 or in Step 11, Figure 1-7, page 44 from the 
ISE® Project Navigator software.

The user ID provides a convenient means to store an identifier or revision code for the 
FPGA bitstream loaded into the FPGA. This is different than the Device DNA identifier, 
which is unique to a specific Extended Spartan-3A family FPGA, not the bitstream, and 
permanently factory-programmed in the FPGA.

Using JTAG Interface to Communicate to a Configured FPGA 
Design

After the FPGA is configured, using any of the available modes, the JTAG interface offers a 
possible communications channel to internal FPGA logic. The “Boundary-Scan (BSCAN),” 
page 253, design primitive provides two private JTAG instructions to create an internal 
boundary scan chain.

Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE 
Standard 1149.1 

Spartan-3 generation FPGAs are compliant with the IEEE Standard 1149.1 Test Access Port 
and Boundary-Scan Architecture. The architecture, outlined in Figure 9-2, includes all 
mandatory elements defined in the IEEE 1149.1 Standard. These elements include the Test 
Access Port (TAP), the TAP controller, the Instruction register, the instruction decoder, the 
Boundary-Scan register, and the BYPASS register. Spartan-3 generation FPGAs also 
support a 32-bit Identification register in compliance with the standard. Outlined in the 
following sections are the details of the JTAG architecture for Spartan-3 generation FPGAs. 

Table 9-1: JTAG Cable Interface and Current-Limiting Resistor Requirements

JTAG Connector 
Supply Voltage

FPGA VCCAUX 
Supply Voltage

Current-Limiting Resistors

2.5V 2.5V None required or 0-ohm. Both voltages are identical

3.3V 2.5V Use current-limiting resistors of 68Ω or larger.

3.3V 3.3V None required or 0-ohm. Both voltages are identical
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Test Access Port (TAP) 
The Spartan-3 generation TAP contains four mandatory dedicated pins as specified by the 
protocol given in Table 3-1 and illustrated in Figure 3-1, a typical JTAG architecture. Three 
input pins and one output pin control the 1149.1 Boundary-Scan TAP controller. Optional 
control pins, such as TRST (Test Reset) and enable pins might be found on devices from 
other manufacturers. It is important to be aware of these optional signals when interfacing 
Xilinx® devices with parts from different vendors because they might need to be driven. 

The TAP controller is a state machine (16 states) shown in Figure 9-3 and described in 
Table 9-2. The four mandatory TAP pins are outlined in Table 9-3.

A transition between the states only occurs on the rising edge of TCK, and each state has a 
different name. The two vertical columns with seven states each represent the Instruction 
Path and the Data Path. The data registers operate in the states whose names end with 
"DR" and the instruction register operates in the states whose names end in "IR". The states 
are otherwise identical.

Figure 9-2: Typical JTAG (IEEE 1149.1) Architecture
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Figure 9-3: Test Access Port (TAP) State Machine
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Table 9-2: TAP Controller States

State Description 

TEST-LOGIC-RESET All JTAG logic is disabled, enabling the normal operation of the FPGA. No matter what the 
initial state of the controller is, the Test-Logic-Reset state can be entered by holding TMS High 
and pulsing TCK five times. This is why the Test Reset (TRST) pin is optional.

RUN-TEST/IDLE The JTAG logic is active only if certain instructions are present. For example, if an instruction 
activates the self test, then it is executed when the controller enters this state. The JTAG logic is 
idle otherwise.

SELECT-DR-SCAN Controls whether to enter the Data Path or the SELECT-IR-SCAN state.

SELECT-IR-SCAN Controls whether or not to enter the Instruction Path. The Controller can return to the TEST-
LOGIC-RESET state otherwise.

CAPTURE-IR The shift register bank in the Instruction Register parallel loads a pattern of fixed values on the 
rising edge of TCK. The last two significant bits must always be "01".

SHIFT-IR The Instruction Register gets connected between TDI and TDO, and the captured pattern gets 
shifted on each rising edge of TCK. The instruction available on the TDI pin is also shifted in to 
the Instruction Register.

EXIT1-IR Controls whether to enter the PAUSE-IR state or UPDATE-IR state.

PAUSE-IR Allows the shifting of the Instruction Register to be temporarily halted.

EXIT2-DR Controls whether to enter either the SHIFT-IR state or UPDATE-IR state.

UPDATE-IR The instruction in the Instruction Register is latched to the latch bank of the Instruction Register 
on every falling edge of TCK. This instruction becomes the current instruction once it is latched.
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Notes: 
1. As specified by the IEEE Standard, the TMS and TDI pins both have internal pull-up resistors. These 

internal pull-up resistors of are active before configuration, regardless of the mode selected. See 
Table 2-13, page 65 for resistor values. After configuration, these resistors are controlled by the TmsPin 
and TdiPin bitstream generator option settings, shown in Table 11-2, page 232.

TAP Controller 
Figure 9-3 diagrams a 16-state finite state machine. The four TAP pins control how data is 
scanned into the various registers. The state of the TMS pin at the rising edge of TCK 
determines the sequence of state transitions. There are two main sequences, one for 
shifting data into the data register and the other for shifting an instruction into the 
instruction register. 

Spartan-3 generation FPGAs support the mandatory IEEE 1149.1 commands, as well as 
several Xilinx vendor-specific commands. The EXTEST, INTEST, SAMPLE/PRELOAD, 
BYPASS, IDCODE, USERCODE, and HIGHZ instructions are all included. The TAP also 
supports internal user-defined registers (USER1 and USER2) and configuration/readback 
of the device. 

The Spartan-3 generation Boundary-Scan operations are independent of configuration 
mode selections. The Boundary-Scan mode overrides other mode selections. For this 

CAPTURE-DR The data is parallel-loaded into the data registers selected by the current instruction on the rising 
edge of TCK.

SHIFT-DR These controller states are similar to the SHIFT-IR, EXIT1-IR, PAUSE-IR, EXIT2-IR and 
UPDATE-IR states in the Instruction path.

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

Table 9-2: TAP Controller States

State Description 

Table 9-3: Spartan-3 Generation TAP Controller Pins

Pin Description 

TDI Test Data In. This pin is the serial input to all JTAG instruction and data 
registers. The state of the TAP controller and the current instruction determine 
the register that is fed by the TDI pin for a specific operation. TDI has an 
internal resistive pull-up to provide a logic High to the system if the pin is not 
driven. TDI is applied into the JTAG registers on the rising edge of TCK. 

TDO Test Data Out. This pin is the serial output for all JTAG instruction and data 
registers. The state of the TAP controller and the current instruction determine 
the register (instruction or data) that feeds TDO for a specific operation. TDO 
changes state on the falling edge of TCK and is only active during the shifting 
of instructions or data through the device. TDO is an active driver output. 

TMS Test Mode Select. This pin determines the sequence of states through the TAP 
controller on the rising edge of TCK. TMS has an internal resistive pull-up to 
provide a logic High if the pin is not driven. 

TCK Test Clock. TCK sequences the TAP controller and the JTAG registers. 
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reason, Boundary-Scan instructions using the Boundary-Scan register 
(SAMPLE/PRELOAD, INTEST, and EXTEST) must not be performed during the FPGA 
configuration process. All instructions, except the user-defined instructions, are available 
before a Spartan-3 generation FPGA device is configured. After configuration, all 
instructions are available. 

JSTART and JSHUTDOWN are instructions specific to the Spartan-3 generation FPGA 
architecture and configuration flow. See DS099: Spartan-3 FPGA Family Data Sheet for 
details. In Spartan-3 generation FPGAs, the TAP controller is not reset by the PROG_B pin and 
can only be reset by bringing the controller to the TLR state. The TAP controller is reset on power 
up. 

For details on the standard Boundary-Scan instructions EXTEST, INTEST, and BYPASS, 
refer to the IEEE Standard.

Caution! For JTAG compliance during pre-configuration boundary scan, the internal pull-ups 
should be made active by asserting HSWAP or PUDC_B Low.

Boundary-Scan Architecture
Spartan-3 generation FPGA registers include all registers required by the IEEE 1149.1 
Standard. In addition to the standard registers, the family contains optional registers for 
simplified testing and verification, as described in Table 9-4. 

Boundary-Scan Register 

Each user I/O block (IOB), whether connected to a package pin or unbonded, contains 
additional logic that forms the boundary-scan data register, as shown in Figure 9-4. 
Boundary-Scan operations are independent of how an individual I/O block is configured. 
By default, each I/O block starts as bidirectional with 3-state control. Later, it can be 
configured via JTAG operations to be an input, output, or 3-state pin.

Table 9-4: Spartan-3 Generation JTAG Registers

Register Name Register Length Description 

Boundary-Scan Register 3 bits per I/O Controls and observes input, output, 
and output enable 

Instruction Register 6 bits Holds current instruction OPCODE 
and captures internal device status 

BYPASS Register 1 bit Bypasses the device 

Identification Register 32 bits Captures the Device ID 

JTAG Configuration Register 32 bits Allows access to the configuration 
bus when using the CFG_IN or 
CFG_OUT instructions 

USERCODE Register 32 bits Captures the user-programmable 
code 

User-Defined Registers 
(USER1 and USER2)

Design-specific Design-specific 

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com
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When conducting a data register (DR) operation, the DR captures data in a parallel fashion 
during the CAPTURE-DR state. The data is then shifted out and replaced by new data 
during the SHIFT-DR state. For each bit of the DR, an update latch is used to hold the input 
data stable during the next SHIFT-DR state. The data is then latched during the UPDATE-
DR state when TCK is Low. 

The update latch is opened each time the TAP controller enters the UPDATE-DR state. Care 
is necessary when exercising an INTEST or EXTEST to ensure that the proper data has been 
latched before exercising the command. This is typically accomplished by using the 
SAMPLE/PRELOAD instruction. 

Internal pull-up and pull-down resistors should be considered when test vectors are being 
developed for testing opens and shorts. The Boundary-Scan mode determines whether an 
I/O block has a pull-up resistor. 

Bit Sequence Boundary-Scan Register 

The order of each non-TAP IOB is described in this section. The input is first, then the 
output, and finally the 3-state IOB control. The 3-state IOB control is closest to the TDO. 
The input-only pins contribute only the input bit to the Boundary-Scan I/O data register. 
The bit sequence of the device is obtainable from the Boundary-Scan Description Language 
Files (BSDL files) for Spartan-3 generation FPGAs. The bit sequence always has the same 
bit order and the same number of bits and is independent of the design.

The BSDL files are provided with the Xilinx ISE Development Software or can be 
downloaded directly from the Xilinx web site. From the Xilinx web site, select BSDL 
Models, select the FPGA family, then click Search.

• Xilinx Download Center
http://www.xilinx.com/support/download/index.htm

Figure 9-4: Boundary-Scan Logic per I/O Pin

D Q

1

0

1x
01
00

1x
01
00

1x
01
00

D Q

D Q

1

0

1

0

D Q

LE

LE

D Q

LE

D Q

TDI

IOB.I

INTEST

IOB.O

IOB.T

EXTEST

SHIFT CLOCK DATA
REGISTER

TDO INTEST or EXTEST

UG332_c9_04_081506

PAD

Update
Latch

UPDATE

Capture
Register

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com


Spartan-3 Generation Configuration User Guide www.xilinx.com 205
UG332 (v1.5) March 16, 2009

Boundary-Scan for Spartan-3 Generation FPGAs Using IEEE Standard 1149.1
R

Instruction Register 

The Instruction Register (IR) for the Spartan-3 generation FPGA is connected between TDI 
and TDO during an instruction scan sequence. In preparation for an instruction scan 
sequence, the instruction register is parallel-loaded with a fixed instruction capture 
pattern. This pattern is shifted out onto TDO (LSB first), while an instruction is shifted into 
the instruction register from TDI. 

To invoke an operation, load the desired OPCODE from Table 9-5 into the Instruction 
Register (IR). The length of the instruction register varies by device type. However, the IR 
is six bits wide for all Spartan-3 generation FPGAs.

Note: In general, all JTAG OPCODEs are identical among Spartan-3 generation FPGA families. 
However, the EXTEST instruction is different between Spartan-3 FPGAs and FPGAs from the 
Spartan-3E or Extended Spartan-3A family families.

Table 9-5: Spartan-3 Generation Boundary-Scan Instructions

Boundary-Scan 
Command 

Instruction Description 

EXTEST

(Spartan-3E, 
Spartan-3A/3AN, 
Spartan-3A DSP 

FPGAs)

001111 

Enables Boundary-Scan EXTEST operation. 

EXTEST

(Spartan-3 FPGA)
000000 

SAMPLE 000001 Enables Boundary-Scan SAMPLE operation. 

USER1 000010 Access user-defined register 1. 

USER2 000011 Access user-defined register 2. 

CFG_OUT 000100 Access the configuration bus for readback. 

CFG_IN 000101 Access the configuration bus for configuration. 

INTEST 000111 Enables Boundary-Scan INTEST operation. 

USERCODE 001000 Enables shifting out user code. 

IDCODE 001001 Enables shifting out of ID code. 

HIGHZ 001010 3-state output pins while enabling BYPASS Register. 

JPROGRAM 001011 Equivalent to and has the same effect as PROGRAM. 

JSTART 
001100

Clocks the startup sequence when Startup clock source 
is TCK (StartupClk:JtagClk). 

JSHUTDOWN 001101 Clocks the shutdown sequence. 

ISC_ENABLE 
010000

Marks the beginning of ISC configuration. Full 
shutdown is executed. 

ISC_PROGRAM 010001 Enables in-system programming. 

ISC_NOOP 010100 No operation. 

ISC_READ 010101 Used to read back configuration data.

http://www.xilinx.com


206 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

Table 9-6 shows the instruction capture values loaded into the IR as part of an instruction 
scan sequence.

BYPASS Register 

The BYPASS register, which consists of a single flip-flop between TDI and TDO, is required 
in all JTAG IEEE 1149.1-compliant devices. It passes data serially from the TDI pin to the 
TDO pin during a bypass instruction. The BYPASS register initializes to zero when the TAP 
controller is in the CAPTURE-DR state. 

Identification (IDCODE) Register 

Spartan-3 generation FPGAs have a 32-bit identification register called the IDCODE 
register. The IDCODE is based on the IEEE 1149.1 standard, and is a fixed, vendor-assigned 
value that is used to identify electrically the manufacturer and the type of device that is 
being addressed. This register allows easy identification of the part being tested or 
programmed by Boundary-Scan, and it can be shifted out for examination by using the 
IDCODE instruction. 

The last bit of the IDCODE is always 1 (based on JTAG IEEE 1149.1). The last three hex 
digits appear as 0x093. 

JTAG Configuration Register (Boundary-Scan)

The JTAG Configuration register is a 32-bit register. This register allows access to the 
configuration bus and readback operations. 

The JTAG Configuration register does not pass TDI data through the register to TDO. 
When the CFG_IN JTAG instruction is active, the JTAG Configuration register is input-
only. When the CFG_OUT JTAG instruction is active, the JTAG Configuration register is 
output-only.

Applications requiring standard FPGA configuration over JTAG should refer to XAPP058, 
Xilinx In-System Programming Using an Embedded Microcontroller. Applications requiring 
custom FPGA configuration over JTAG should refer to XAPP452, Spartan-3 FPGA Family 
Advanced Configuration Architecture, for information about the configuration bus. 

ISC_DISABLE 
010110

Completes ISC configuration. Startup sequence is 
executed. 

ISC_DNA
110001

Extended Spartan-3A family FPGAs: Read Device 
DNA. See “JTAG Access to Device Identifier,” 
page 297.

BYPASS 111111 Enables BYPASS. 

RESERVED All other 
codes

Xilinx reserved instructions. 

Table 9-6: Instruction Capture Values

TDI → IR[5] IR[4] IR[3] IR[2] IR[1:0] →TDO 

DONE INIT(1) ISC_ENABLED ISC_DONE 0 1 

Table 9-5: Spartan-3 Generation Boundary-Scan Instructions (Cont’d)

Boundary-Scan 
Command 

Instruction Description 

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf
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Configuration bus commands must arrive at the FPGA TDI pin on a 32-bit shift boundary 
as explained in XAPP188, Configuration and Readback of Spartan-II and Spartan-IIE FPGAs 
Using Boundary Scan.

USERCODE Register

The USERCODE instruction is supported in Spartan-3 generation FPGAs. This register 
allows a user to specify a design-specific identification code. The USERCODE can be 
programmed into the device and can be read back for verification later. The USERCODE is 
embedded into the bitstream during bitstream generation (BitGen -g UserID option) and is 
valid only after configuration. If the device is blank or the USERCODE was not 
programmed, the USERCODE register contains 0xFFFFFFFF. 

USER1 and USER2 Registers

The USER1 and USER2 registers are only available after configuration. These two registers, 
if used in the application, must be implemented using FPGA logic. The “Boundary-Scan 
(BSCAN)” library primitive is required when creating these registers. This primitive is 
only required for driving internal scan chains (USER1 and USER2). These registers can be 
accessed after they are defined via the JTAG interface. 

A common input pin (TDI) and shared output pins represent the state of the TAP controller 
(RESET, SHIFT, and UPDATE). 

Using Boundary-Scan in Spartan-3 Generation FPGAs
Figure 9-5 shows an example timing waveform for boundary-scan operations. Timing 
specifications are listed in the data sheet for each Spartan-3 generation FPGA family.

Programming Cables and Headers
Xilinx provide various programming cables that support the design and development 
phase of a project.

• Platform Cable USB II
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm

Figure 9-5: Spartan-3 Generation Boundary-Scan Timing Waveforms
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• Parallel Cable IV
http://www.xilinx.com/products/devkits/HW-PC4.htm

If possible, place a target interface connector on the FPGA board to facilitate easy 
programming. Xilinx recommends using the high-performance ribbon cable option, 
pictured in Figure 9-6, page 208, for maximum performance and best signal integrity.

Such connectors are available in both through-hole and surface mount configurations, as 
shown in Table 9-7. Use shrouded or keyed connectors to ensure guarantee proper 
orientation when inserting the cable. The specified connector requires only 0.162 square 
inches of board space.

Pin 2 of the connector provides a reference voltage for the output buffers that drive the 
TDI, TCK, and TMS pins. Because these pins are powered by VCCAUX on Spartan-3 
generation FPGAs, connect the VCCAUX supply to pin 2 of the connector.

Programming an FPGA Using JTAG
The JTAG interface is also a convenient means for downloading an FPGA design during 
development and debugging.

Figure 9-6: Target Interface Connector Dimensions and Pin Assignments
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Table 9-7: Mating Connectors for 2 mm pitch, 14 Conductor Ribbon Cable

Manufacturer(1)

Connector Style and Vendor Part Number

Vendor Web SiteSurface Mount, 
Vertical

Through-Hole, 
Vertical

Through-Hole, Right 
Angle

Molex 87832-1420 87831-1420 87833-1420 www.molex.com

FCI 98424-G52-14 98414-G06-14 98464-G61-14 www.fciconnect.com

Comm Con 
Connectors

2475-14G2 2422-14G2 2401R-G2-14 www.commcon.com

Notes: 
1. Some manufacturer pin assignments may not conform to Xilinx pin assignments. Please refer to the manufacturer’s data sheet for 

more information.
2. Additional ribbon cables can be purchased separately from the Xilinx Online Store (www.xilinx.com/store).

http://www.xilinx.com
http://www.commcon.com
http://www.fciconnect.com
http://www.fciconnect.com
http://www.xilinx.com/store
http://www.xilinx.com/products/devkits/HW-PC4.htm
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First, generate an FPGA bitstream as described in “Setting Bitstream Options, Generating 
an FPGA Bitstream,” page 42

The following steps graphically describe how to create a PROM file using iMPACT from 
within the ISE Project Navigator. This particular example shows how to configure the 
XC3S500E FPGA on the Spartan-3E Starter Kit board. Besides the FPGA, the JTAG chain on 
the board includes a Xilinx Platform Flash PROM and a Xilinx CPLD.

1. From within the ISE Project Navigator, double-click Configure Device (iMPACT) 
from the Processes pane, as shown in Figure 9-7.

2. As shown in Figure 9-8, select Configure devices using Boundary-Scan (JTAG).

3. If the board is powered and the Xilinx programming cable properly connected, the 
iMPACT software automatically initializes the JTAG chain and detects the various 
devices on the chain.

4. Click Finish.

Figure 9-7: Double-click Configure Device (iMPACT)

Figure 9-8: Configure Devices Using JTAG
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5. As shown in Figure 9-9, the iMPACT software automatically detected the devices on 
the chain. In this example, a Xilinx XC3S500E Spartan-3E FPGA is first in the chain, 
followed by a Xilinx XCF04S Platform Flash PROM, followed by a Xilinx XC2C64A 
CPLD in the final position. The devices are yet unprogrammed.

6. As shown in Figure 9-10, the iMPACT software automatically prompts for the FPGA 
bitstream. Select the desired bitstream to download specifically to the FPGA.

7. Click Open.

8. As shown in Figure 9-11, the iMPACT software automatically detects that the FPGA 
bitstream was generated for a non-JTAG configuration method. The iMPACT software 
automatically adjusts the Startup clock setting for successful JTAG configuration 
(StartupClk:JtagClk). The original bitstream file is unaffected.

Figure 9-9: iMPACT Automatically Detects Devices on the JTAG Chain

Figure 9-10: iMPACT Prompts for FPGA Bitstream
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9. For faster downloading and a shorter FPGA debugging cycle, there is no need to 
program the Platform Flash PROM or CPLD unless actually desired. To skip 
programming the Platform Flash PROM, click Bypass, as shown in Figure 9-12.

10. Similarly, click Bypass to skip programming of the CPLD, as shown in Figure 9-13.

Figure 9-11: iMPACT Automatically Adjusts FPGA Startup Clock for JTAG Configuration
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Figure 9-12: Click Bypass to Skip Platform Flash Programming
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11. As shown in Figure 9-14, the iMPACT software updates the display, showing the files 
assigned to each device in the JTAG chain. In this example, the XCF04S Platform Flash 
and XC2C64A CPLD are “bypassed” and are not programmed. Click the FPGA to 
highlight it on the display.

12. Once the FPGA is highlighted, the associated Available Operations are enabled on the 
display. Double-click Program.

13. The Programming Properties dialog box appears, as shown in Figure 9-15.

Figure 9-13: Click Bypass to Skip CPLD Programming

Figure 9-14: Double-Click Program to Configure FPGA via JTAG
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14. The iMPACT software provides a Verify feature, even for FPGA programming. 
Typically, the Verify function is not used when downloading the FPGA for debugging 
purposes.

15. Click OK to start the programming process.

16. The iMPACT software indicates when programming is complete, as shown in 
Figure 9-14. The iMPACT software also forces the FPGA to reconfigure on the board. 
The FPGA is downloaded with the specified FPGA bitstream.

Mode Pin Considerations when Programming a Spartan-3AN FPGA via 
JTAG using iMPACT

When iMPACT 9.1i configures the Spartan-3AN FPGAs, it first programs the internal SPI 
Flash PROM. After this configuration is complete, a reboot is triggered and the FPGA 
configures itself from the internal SPI PROM. When the reboot is triggered, the mode pins 
M[2:0] are sampled. For the configuration to complete successfully, the FPGA mode select 
pins must be set to M[2:0] = <0:1:1>, which is the Internal Master SPI mode. 

If you are configuring from iMPACT and your mode pins are set to JTAG mode M[2:0] = 
<1:0:1>, configuration of the FPGA will not complete. To finish configuration of the FPGA, 
you can simply change the mode pins to Internal Master SPI mode and pulse the PROG pin 
to trigger configuration, or reconfigure through iMPACT. 

In iMPACT 9.2i and later, you have the option to either configure the FPGA directly 
through JTAG mode or to program the Internal SPI PROM and then configure through 
Internal Master SPI mode. 

Configuration via JTAG using an Embedded Controller
By using an embedded controller to program Spartan-3 generation FPGAs from an on-
board RAM or EPROM, designers can easily upgrade, modify, and test designs, even in the 
field. The design in XAPP058 is easily modified for remote downloading applications and 
the included C code can be compiled for any microcontroller.

Figure 9-15: FPGA Programming Options
UG332_c9_13_112006

13

14

15

http://www.xilinx.com


214 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 9: JTAG Configuration Mode and Boundary-Scan
R

• XAPP058 Xilinx In-System Programming Using an Embedded Microcontroller
http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.xilinx.com
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Chapter 10

Internal Master SPI Mode

The Internal Master SPI Flash mode is only available on the Spartan®-3AN FPGA family. 
The Spartan-3AN FPGA family has integrated In-System Flash (ISF) memory, primarily for 
FPGA configuration. The ISF memory is sufficiently large to store two FPGA configuration 
bitstreams (MultiBoot) plus additional nonvolatile data storage for the FPGA application.

Spartan-3AN FPGAs also support all of the other Extended Spartan-3A family FPGA 
configuration modes shown in Table 2-1, page 50.

Caution! This configuration mode is only supported by the Spartan-3AN FPGA family. The 
VCCAUX supply MUST be 3.3V.

Figure 10-1 shows the logic levels and signals involved during configuration.

Figure 10-1: Spartan-3AN FPGA using Internal Master SPI Flash Mode
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Internal Flash Memory
The amount of ISF memory varies by Spartan-3AN FPGA logic density as shown in 
Table 10-1. The amount of Flash memory exceeds the amount required to configure the 
FPGA. There is sufficient additional memory for at least two uncompressed bitstream 
images to support MultiBoot or for additional nonvolatile storage for the FPGA 
application.

Mode Select Pins, M[2:0]
The Spartan-3AN FPGA family is generally designed to be pin and function compatible 
with the Spartan-3A/3A DSP FPGA families. The Spartan-3AN FPGA family supports all 
the same configuration modes as the Spartan-3A/3A DSP FPGAs and adds the ability to 
configure from the internal In-System Flash memory.

To configure from Internal Master SPI Flash mode, the FPGA mode select pins must be set 
to M[2:0] = <0:1:1>. Furthermore, the VCCAUX supply must be 3.3V.

Variant Select Pins, VS[2:0]
For backward compatibility, the Spartan-3AN FPGA monitors the variant-select pins, 
VS[2:0], to decide which read command to issue to the SPI Flash PROM. Spartan-3AN 
FPGAs and the integrated SPI serial Flash support the variant-select codes listed in 
Table 10-2. The choice of a variant select code potentially affects configuration 
performance. For more details on the Spartan-3AN FPGA read commands, see UG333, 
Spartan-3AN In-System Flash User Guide.

Furthermore, the VS[2:0] pins have dedicated pull-up resistors that are active, regardless of 
the PUDC_B pin, whenever the M[2:0] mode-select pins are set for Internal Master SPI 
mode.

Table 10-1: Number of Bits to Program a Spartan-3AN FPGA and Internal SPI Flash 
Memory

FPGA
Number of Configuration Bits

(Uncompressed)
In-System Flash Memory

XC3S50AN 437,312 1 Mbit

XC3S200AN 1,196,128 4 Mbit

XC3S400AN 1,886,560 4 Mbit

XC3S700AN 2,732,640 8 Mbit

XC3S1400AN 4,755,296 16 Mbit

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
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Supply Voltage Requirements
The Spartan-3AN FPGA family imposes some minor restrictions on FPGA supply 
voltages.

VCCAUX

The VCCAUX supply input must be 3.3V. The VCCAUX rail supplies power to the In-
System Flash memory.

VCCO_2

The VCCO_2 supply rail, which must be the same voltage as the configuration memory in 
other configuration modes, has no such restriction on Spartan-3AN FPGAs. However, 
VCCO_2 must reach 2.0V to meet the power-on requirements; after configuration, it can 
drop down to a lower level.

Sequencing

When configuring from the In-System Flash, VCCAUX must be in the recommended 
operating range; on power-up make sure VCCAUX reaches at least 3.0V before INIT_B goes 
High to indicate the start of configuration. VCCINT, VCCAUX, and VCCO supplies to the 
FPGA can be applied in any order if this requirement is met. However, an external 
configuration source might have specific requirements. Check the data sheet for the 
attached configuration source. Apply VCCINT last for lowest overall power consumption 
(see the chapter called “Powering Spartan-3 Generation FPGAs” in UG331 for more 
information). The FPGA typically delays configuration long enough for the configuration 
source to be ready. If the configuration source is not ready when the FPGA begins 
configuration, the Configuration Watchdog Timer will allow the FPGA to automatically re-
attempt configuration.

Accessing the Internal SPI Flash PROM After Configuration
The FPGA application has full access to the internal In-System Flash memory after 
configuration using the SPI_ACCESS design primitive, as shown in Figure 10-2. 

Table 10-2: Spartan-3AN FPGA Supported Variant Select (VS[2:0]) Options

Variant Select Pins
VS[2:0]

SPI Flash Read 
Command

(Command Code)

Supported by 
Spartan-3AN FPGA 

Family?

Maximum CLK 
Frequency

<1:1:1>
FAST_READ

(0x0B)
Yes 50 MHz

<1:0:1>
READ
(0x03)

Yes 33 MHz

All Others -- No --

http://www.xilinx.com
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Details on accessing the In-System Flash memory after configuration, from inside the 
FPGA application, are found in UG333: Spartan-3AN In-System Flash User Guide.

• UG333: Spartan-3AN In-System Flash User Guide
www.xilinx.com/support/documentation/user_guides/ug333.pdf

No Configuration Daisy Chains in Internal Master SPI Mode
Spartan-3AN FPGAs do not support multi-FPGA daisy chains when configuring from 
Internal Master SPI mode. The FPGA does not supply the DOUT or CCLK outputs 
required for serial daisy chains when configuring in this mode.

However, the Spartan-3AN FPGA supports daisy chaining when configured using any of 
the other modes or when configured in a Slave configuration mode.

Generating the Bitstream for a Master SPI Configuration
To create the FPGA bitstream for a Internal Master SPI configuration, follow the steps 
outlined in “Setting Bitstream Options, Generating an FPGA Bitstream,” page 42. For an 
FPGA configured in Internal Master SPI mode, set the following bitstream generator 
options.

ConfigRate: CCLK Frequency
Set the ConfigRate option for 33 MHz. Using the ISE® software Project Navigator, the 
Configuration Rate frequency is set in Step 7 in Figure 1-7, page 44.

-g ConfigRate:33

StartupClk: CCLK
By default, the configuration Startup clock source is the internally generated CCLK. Keep 
the StartupClk bitstream generation option, shown as Step 13 in Figure 1-8, page 45.

-g StartupClk:Cclk

DriveDone: Actively Drive DONE Pin
In a single FPGA design or for the Master FPGA in a multi-FPGA daisy chain, set the FPGA 
to actively drive the DONE pin after successfully completing the configuration process. 
Using ISE Project Navigator, check the Drive Done Pin High option, shown as Step 16 in 
Figure 1-8, page 45.

Figure 10-2: Spartan-3AN SPI_ACCESS Design Primitive
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-g DriveDone:Yes

Programming a Spartan-3AN FPGA Using JTAG
A Spartan-3AN FPGA is programmed using JTAG and iMPACT software in the same way 
described for other FPGA families in “Programming an FPGA Using JTAG” in Chapter 9. 
The iMPACT software only requires associating a bitstream with the FPGA, and will 
automatically generate the PROM file for the In-System Flash, program the Flash in the 
Spartan-3AN FPGA, and then configure the Spartan-3AN FPGA from the In-System Flash. 
See “Mode Pin Considerations when Programming a Spartan-3AN FPGA via JTAG using 
iMPACT” in Chapter 9.
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Preparing an In-System Flash Programming File 
This section provides guidelines to create a programming file for the Spartan-3AN In-
System Flash (ISF) memory. These steps are not needed when programming a single 
bitstream into the ISF using iMPACT.

Caution! Requires ISE 9.1i, Service Pack 3 or later.

The Xilinx® software tools, iMPACT or PROMGen, generate files from the Spartan-3AN 
FPGA bitstream or bitstreams. The Spartan-3AN ISF memory is a serial, SPI-based 
memory and data bytes are stored most-significant bit (MSB) first. When using PROMGen, 
the -spi option is required for proper formatting. 

iMPACT
The following steps graphically describe how to create an SPI-formatted PROM file using 
iMPACT from within the ISE Project Navigator. To create a Spartan-3AN MultiBoot image 
for an SPI Flash memory, see “Generating an Extended Spartan-3A Family MultiBoot 
PROM Image using iMPACT,” page 278.

1. From within the ISE Project Navigator, double-click Generate PROM, ACE, or JTAG 
File from within the Process pane, as shown in Figure 10-3.

2. As shown in Figure 10-4, select Prepare a PROM File.

Figure 10-3: Double-click Generate PROM, ACE or JTAG File

1
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3. Click Next.

4. As shown in Figure 10-5, format the FPGA bitstream or bitstreams for a PROM 
Supporting Multiple Design Versions.

Figure 10-4: Prepare a PROM File

3

2
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5. Select Spartan3AN from the drop list.

6. Select a PROM File Format.

7. Enter a PROM File Name.

8. Click Next.

9. Click the drop list to Select Device.

Figure 10-5: Set Options for Spartan-3AN In-System Flash PROM
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10. Choose a specific Spartan-3AN FPGA device. The bit size of the In-System Flash 
memory for the associated FPGA is also displayed.

11. Click Next.

12. The Default Spartan-3AN configuration bitstream (Bitstream 0) is always located at 
address 0. Bitstream 0 is the bitstream that the FPGA automatically loads when power 
is applied or whenever the PROG_B pin is pulsed Low.

Figure 10-6: Select a Spartan-3AN FPGA
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13. Click the option box to include a second MultiBoot bitstream (Bitstream 1). Bitstream 1 
is always aligned to the next ISF memory sector boundary following Bitstream 0. The 
iMPACT software displays the sector address in decimal, based on the current 
addressing mode, as shown in Table 10-3. This is the address used for MultiBoot 
operations to load the second bitstream.

14. By default, leave this option box unchecked! Check this box only if the intended 
Spartan-3AN target was previously and specifically programmed to support the 
optional Power-of-2 addressing mode. See UG333: Spartan-3AN In-System Flash User 
Guide for more information.

15. Click Next.

16. As shown in Figure 10-8, review that the settings are correct to format the Spartan-
3AN In-System Flash. Click Finish to confirm the settings or Back to change the 
settings.

Figure 10-7: Specify the FPGA Configuration Bitstream(s)

Table 10-3: Locations of Default Bitstream and Second MultiBoot Bitstream

Bitstream
Spartan-3AN 

FPGA

ISF 
Memory 

Page

Bitstream Starting Address

Default Optional Power-of-2

Hex
Byte 

Address 
(Decimal)

Hex
Byte 

Address 
(Decimal)

Bitstream 
0 All 0 0x00_0000 0 0x00_0000 0

Bitstream 
1

XC3S50AN 256 0x02_0000 67584 0x01_0000 65536

XC3S200AN 768 0x06_0000 202752 0x03_0000 196608

XC3S400AN 1,024 0x08_0000 270336 0x04_0000 262144

XC3S700AN 1,536 0x0C_0000 405504 0x06_0000 393216

XC3S1400AN 1,280 0x14_0000 675840 0x0A_0000 655360

15

13
12

14
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17. As shown in Figure 10-9, click OK to start adding FPGA configuration bitstreams to 
the In-System Flash image.

18. Locate and select the desired Spartan-3AN FPGA bitstream.

19. Click Open.

20. If the Bitstream 1 option box was checked in Step 12, the iMPACT software will prompt 
for a second bitstream. After selecting the last FPGA bitstream, click OK.

Figure 10-8: Review Spartan-3AN In-System Memory Formatting Settings

Figure 10-9: Add FPGA Configuration Bitstream File(s)
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21. As shown in Figure 10-10, the iMPACT software graphically displays the selected 
Spartan-3AN FPGA and any associated FPGA bitstream(s).

22. The location of the first and second bitstreams is also highlighted.

23. As shown Figure 10-11, click Generate File.

24. The iMPACT software indicates when the PROM file is successfully created.

PROMGen
PROMGen is a command-line utility that provides an alternate means to create a Spartan-
3AN programming file. PROMGen can be invoked from within a command window or 
from within a script file.

Table 10-4 shows the relevant options for formatting a Spartan-3AN programming file.

Figure 10-10: iMPACT View of the Spartan-3AN In-System Flash Memory
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Figure 10-11: Generate the Spartan-3AN In-System Flash File
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The example PROMGen command, provided below, generates a PROM file for an 
XC3S700AN FPGA with the following characteristics.

• Formatted for the SPI-based In-System Memory by specifying the -spi option.

• Formatted using the Intel MCS format by specifying the -p mcs option. The output 
filename is specified by the -o <promdata>.mcs option, where <promdata> is a 
user-specified file name.

• The XC3S700AN In-System Flash memory is only slightly larger than 8M bits or 1,024 
bytes. However, set the size option to twice the size, or -s 2048, because the default 
addressing method uses an additional address line. If using the optional power-of-2 
addressing mode, which requires an additional, separate special programming step, 
set the size option to -s 1024.

• The first FPGA bitstream (bitstream0) is loaded in the upward direction, starting at 
address 0 by specifying the -u 0 option. A second MultiBoot bitstream 
(bitstream1) is loaded at the next sector boundary, shown in Table 10-3, page 224, 
0x0C_0000 for the XC3S700AN.

• The FPGA bitstreams to be added to the In-System Flash memory are specified as the 
last option, <bitstream0>.bit and <bitstream1>.bit, where <inputfile> is 
the user-specified file name used when generating the FPGA bitstream.

Table 10-4: PROM Generator Command Options

PROMGen Option Description 

-spi REQUIRED! Specifies the correct bit ordering required to configure 
from the SPI-based In-System Flash memory. 

-p <format> 
PROM output file format. Specifies the file format required by the SPI 
programming software. Refer to the third party programmer 
documentation for details. 

-s <size> 

Specifies the PROM size in kilobytes. The PROM size must be a power 
of 2, and the default setting is 64 kilobytes. 

By default, the Spartan-3AN In-System Flash memory uses a non-
binary addressing method, which uses an additional address bit. Use 
the size settings shown in Table 10-5.

-u <address> 

Loads the .bit file from the specified starting address in an upward 
direction. This option must be specified immediately before the input 
bitstream file. See Table 10-3, page 224 for starting addresses by 
Spartan-3AN FPGA part type.

Table 10-5: Spartan-3AN PROMGen Size Settings

Spartan-3AN FPGA
In-System Flash Size 

(bits)

-s <size> Setting by Address Mode

Default Power-of-2

XC3S50AN 1M 256 128

XC3S200AN 4M 1,024 512

XC3S400AN 4M 1,024 512

XC3S700AN 8M 2,048 1,024

XC3S1400AN 16M 4,096 2,048
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promgen -spi -p mcs -o <promdata>.mcs -s 2048 -u 0 <bitstream0>.bit 
-u c0000 <bitstream1>.bit

Programming Spartan-3AN FPGAs Using iMPACT
Beginning in ISE 9.1i, Service Pack 3, the iMPACT software provides programming 
support for prototyping and initial hardware development. Production programming 
support is described in “Third-Party Programmer Support,” page 228.

The iMPACT software programs the Spartan-3AN FPGA using the Xilinx programming 
cables, described in “Programming Cables and Headers,” page 207, using the connections 
shown in Figure 10-1, page 215.

Third-Party Programmer Support
The Xilinx iMPACT software, starting with ISE 9.1i, Service Pack 3, provides in-system 
programming support for prototyping and initial development. However, the iMPACT 
software is not efficient for high-volume production programming. The available Spartan-
3AN production programming solutions are listed below by vendor.

BPM Microsystems
BPM Microsystems is a global supplier of engineering and production device 
programmers and is the leading supplier of automated programming systems to the 
semiconductor and electronics industries.

• BPM Microsystems Web Site
www.bpmicrosystems.com

Production Hardware Programming Solutions

Table 10-6 lists the BPM Microsystems programming solutions for Spartan-3AN FPGAs. 
Support is available both for new installations and for pre-existing programmers. Socket 
adapters are required.

Table 10-6: BPM Microsystems Programmers Supporting Spartan-3AN FPGAs

Status Programmer Model Number Programmer Type

Recommended for new 
installations, available for 

purchase

3610

Automated Production
4610

4710

3710MK2

BP-2610
Multi-site Concurrent

BP-2710

BP-1410

Single-site EngineeringBP-1610

BP-1710

http://www.xilinx.com
http://www.bpmicrosystems.com
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Programming Socket Modules and Software

Table 10-7 lists the socket adapters and software required to program Spartan-3AN FPGAs 
on the programming solutions shown in Table 10-6. Check the BPM Microsystems web site 
for the most up-to-date information.

Legacy model. May 
already be installed in 
many programming 

centers

4700

Automated Production

3700MK2

BP-3500

BP-3510

BP-3600

BP-4500

BP-4510

BP-4600

BP-2500

Multi-site Concurrent
BP-2510

BP-2600

BP-2700

BP-1600
Single-site Engineering

BP-1700

Table 10-6: BPM Microsystems Programmers Supporting Spartan-3AN FPGAs 

Status Programmer Model Number Programmer Type

Table 10-7: BPM Microsystems Socket Modules and Software for Spartan-3AN 
FPGAs

Spartan-3AN FPGA
BPM Microsystems

Socket Module
Model Number

Programming Software

XC3S50AN

XC3S200AN
ASM256BGT
SM256BGT

BPWin V4.66.0 and later

XC3S400AN

XC3S700AN
ASM484BGD
SM484BGD

BPWin V4.66.0 and later

XC3S1400AN
ASM676BG
SM676BG

BPWin V4.66.0 and later
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Chapter 11

Configuration Bitstream Generator 
(BitGen) Settings

Various Spartan®-3 generation FPGA functions are controlled by individual settings in the 
configuration bitstream image. These values are specified when creating the bitstream 
image with the Bitstream Generator (BitGen) software.

Table 11-2, page 232 lists the more commonly-used bitstream generator options for 
Spartan-3 generation FPGAs. Each of these options can be specified on the command line 
with the following format:

bitgen -g <option>:<value> infile

The option name and value are separated by a colon with no spaces.

For more information and a complete listing of all options, see the “BitGen” chapter in the 
following document:

• ISE® Software 10.2i Development System Reference Guide
http://toolbox.xilinx.com/docsan/xilinx10/books/docs/dev/dev.pdf

For a quick summary of available options for particular FPGA family, type the command 
shown in Table 11-1 in a DOS box or command window.

Some of the bitstream options can be controlled from the ISE Project Navigator, as 
described in “ISE Software Project Navigator,” page 42. Any option not specifically listed 
in the graphic interface can be included as Step 5 shown in Figure 1-6, page 43.

Table 11-1: Command Line to Review Bitstream Generator Options per Family

FPGA Family Command Line

Spartan-3 bitgen -help spartan3

Spartan-3E bitgen -help spartan3e

Spartan-3A bitgen -help spartan3a

Spartan-3AN bitgen -help spartan3an

Spartan-3A DSP bitgen -help spartan3adsp

http://toolbox.xilinx.com/docsan/xilinx92/books/docs/dev/dev.pdf
http://www.xilinx.com
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Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options

Option Name
Pins/Function 

Affected
Values 

(default)
Description

ConfigRate CCLK, 
Configuration, 
Master Modes 
only

Extended 
Spartan-3A
FPGA:
1, 3, 6, 7, 8, 10, 
12, 13, 17, 22, 
25, 27, 33, 44, 
50, 100

Sets the frequency, approximately in MHz, of the internal 
oscillator used for Master configuration modes. Drives out on 
the FPGA’s CCLK pin. The internal oscillator powers up at its 
lowest frequency, and the new setting is loaded as part of the 
configuration bitstream. See “Configuration Clock: CCLK,” 
page 56 for more information.

Spartan-3E 
FPGA:
1, 3, 6, 
12, 25, 50

Spartan-3 
FPGA:
3, 6,12, 25, 50

StartupClk Configuration, 
Startup

Cclk Default. The CCLK signal (internally or externally generated) 
controls the Startup sequencer as the FPGA transitions from 
configuration mode to the application loaded into the FPGA. 
See “Startup Clock Source,” page 250. 

UserClk A clock signal from within the FPGA application controls the 
Startup sequencer as the FPGA transitions from 
configuration mode to the application loaded into the FPGA. 
See “Startup Clock Source,” page 250. The FPGA application 
supplies the user clock on the CLK pin on the STARTUP 
primitive. See “Start-Up (STARTUP),” page 255. 

JtagClk The JTAG TCK input controls the startup sequence when the 
FPGA transitions from the configuration mode to the user 
mode. See “Startup,” page 248.

ProgPin PROG_B pin Pullup Default. Internally connects a pull-up resistor or between 
PROG_B pin and VCCAUX. See “Program or Reset FPGA: 
PROG_B,” page 56.

Pullnone No internal pull-up resistor on PROG_B pin. An external 4.7 
kΩ pull-up resistor to VCCAUX is required.

UnusedPin Unused I/O Pins Pulldown Default. All unused I/O pins and input-only pins have a 
pull-down resistor to GND.

Pullup All unused I/O pins and input-only pins have a pull-up 
resistor to the VCCO_# supply for its associated I/O bank.

Pullnone All unused I/O pins and input-only pins are left floating (Hi-
Z, high-impedance, three-state). Use external pull-up or pull-
down resistors or logic to apply a valid signal level.
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Persist SelectMAP 
interface pins, 
Slave mode, 
Configuration

No Default. All Slave mode configuration pins are available as 
user-I/O after configuration.

Yes This option is required for Readback using the SelectMAP 
interface. The SelectMAP interface pins (see “SelectMAP 
Data Loading,” page 182) are reserved after configuration 
and are not available as user-I/O.

Security JTAG, 
SelectMAP, 
Readback

None Default. Readback is available via the JTAG port or via the 
SelectMAP interface, if Persist:Yes.

Level1 See “Basic FPGA Hardware-Level Security Options,” 
page 289.

Level2

Level3

Compress FPGA bitstream 
size

No Default. Bitstream is not compressed and will be the size 
shown in Table 1-4.

Yes Possibly compress the FPGA bitstream by finding redundant 
configuration frame and using multi-frame write command 
during configuration. There is no guarantee of the amount of 
compression. Sparse designs or designs that do not use block 
RAM see the most benefit. See “Bitstream Format,” page 39.

Spartan-3 FPGA Family Configuration Pin Controls

(see Table 2-9, page 63 and Table 2-11, page 64)

HswapenPin Spartan-3 FPGA 
only:

HSWAP_EN pin

Pullup Default. Internally connects a pull-up resistor between the 
Spartan-3 HSWAP_EN pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between the 
Spartan-3 HSWAP_EN pin and GND.

Pullnone No internal pull-up resistor on the Spartan-3 HSWAP_EN 
pin.

CclkPin Spartan-3 FPGA 
only:

CCLK pin

Pullup Default. Internally connects a pull-up resistor or between 
CCLK pin and VCCAUX.

Pullnone CCLK pin is high-impedance (floating). Define CCLK logic 
level externally.

M2Pin Spartan-3 FPGA 
only:

M2 pin

Pullup Default. Internally connects a pull-up resistor or between M2 
mode-select pin and VCCAUX.

Pulldown Internally connects a pull-down resistor or between M2 
mode-select pin and GND.

Pullnone M2 pin is high-impedance (floating). Define M2 logic level 
externally.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function 

Affected
Values 

(default)
Description
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M1Pin Spartan-3 FPGA 
only:

M1 pin

Pullup Default. Internally connects a pull-up resistor or between M1 
mode-select pin and VCCAUX.

Pulldown Internally connects a pull-down resistor or between M1 
mode-select pin and GND.

Pullnone M1 pin is high-impedance (floating). Define M1 logic level 
externally.

M0Pin Spartan-3 FPGA 
only:

M0 pin

Pullup Default. Internally connects a pull-up resistor or between M0 
mode-select pin and VCCAUX.

Pulldown Internally connects a pull-down resistor or between M0 
mode-select pin and GND.

Pullnone M0 pin is high-impedance (floating). Define M0 logic level 
externally.

DONE Pin Options

See “DONE Pin,” page 52.

DonePin DONE pin Pullup Default. Internally connects a pull-up resistor between 
DONE pin and VCCAUX. An external 330 Ω pull-up resistor to 
VCCAUX is still recommended. See DONE pin “ConfigRate: 
Bitstream Option for CCLK,” page 60.

Pullnone No internal pull-up resistor on DONE pin. An external 330 Ω 
pull-up resistor to VCCAUX is required.

DriveDone DONE pin No Default. When configuration completes, the DONE pin stops 
driving Low and relies on an external 330 Ω pull-up resistor 
to VCCAUX for a valid logic High. See DONE pin “ConfigRate: 
Bitstream Option for CCLK,” page 60.

Yes When configuration completes, the DONE pin actively drives 
High. When using this option, an external pull-up resistor is 
no longer required. Only one device in an FPGA daisy chain 
should use this setting.

DonePipe DONE pin No Default. The input path from DONE pin input back to the 
Startup sequencer is not pipelined. See DONE pin 
“ConfigRate: Bitstream Option for CCLK,” page 60.

Yes This option adds a pipeline register stage between the DONE 
pin input and the Startup sequencer. Used for high-speed 
daisy-chain configurations when DONE cannot rise in a 
single CCLK cycle. Releases GWE and GTS signals on the first 
rising edge of StartupClk after the DONE pin input goes 
High.

Startup Sequencer Options

See “Startup,” page 248.

DONE_cycle DONE pin, 
Configuration 
Startup

1, 2, 3, 4, 5, 6 Selects the Configuration Startup phase that activates the 
FPGA’s DONE pin. See “Startup,” page 248.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function 

Affected
Values 

(default)
Description

http://www.xilinx.com


Spartan-3 Generation Configuration User Guide www.xilinx.com 235
UG332 (v1.5) March 16, 2009

R

GWE_cycle All flip-flops, 
LUT RAMs, and 
SRL16 shift 
registers, Block 
RAM, 
Configuration 
Startup

1, 2, 3, 4, 5, 6 Default. Selects the Configuration Startup phase that asserts 
the internal write-enable signal to all flip-flops, LUT RAMs 
and shift registers (SRL16). It also enables block RAM read 
and write operations. See “Startup,” page 248.

Done Waits for the DONE pin input to go High before asserting the 
internal write-enable signal to all flip-flops, LUT RAMs and 
shift registers (SRL16). Block RAM read and write operations 
are enabled at this time.

GTS_cycle All I/O pins, 
Configuration

1, 2, 3, 4, 5, 6 Default. Selects the Configuration Startup phase that releases 
the internal three-state control, holding all I/O buffers in 
high-impedance (Hi-Z). Output buffers actively drive, if so 
configured, after this point. See “Startup,” page 248.

Done Waits for the DONE pin input to go High before releasing the 
internal three-state control, holding all I/O buffers in high-
impedance (Hi-Z). Output buffers actively drive, if so 
configured, after this point.

Keep Retains the current GTS_cycle setting.

LCK_cycle DCMs, 
Configuration 
Startup

NoWait Default. The FPGA does not wait for selected DCMs to lock 
before completing configuration.

0, 1, 2, 3, 4, 5, 6 If one or more DCMs in the design have the 
STARTUP_WAIT=TRUE attribute, the FPGA waits for such 
DCMs to acquire their respective input clock and assert their 
LOCKED output. This setting selects the Configuration 
Startup phase where the FPGA waits for the DCMs to lock. 
See “Waiting for DCMs to Lock, DCI to Match,” page 250.

Match_cycle Spartan-3 FPGA 
only:

DCI

Auto The BitGen software examines the FPGA design for any I/O 
standards that use DCI. If found, BitGen automatically sets 
Match_cycle:2, causing the Startup sequence to stall in state 2 
while the DCI circuitry matches the target impedance. 
Otherwise, Match_cycle:NoWait.

NoWait The FPGA does not wait for DCI circuitry to match 
impedance.

0, 1, 2, 3, 4, 5, 6 Specify the Startup cycle where the FPGA waits for the DCI 
circuitry to match the target impedance value, specified using 
external resistors.

DCIUpdateMode Spartan-3 FPGA 
only:

DCI

AsRequired Default. DCI impedance adjustments are made only when 
needed to maintain tracking.

Continuous DCI impedance adjustments are made continuously.

Quiet After the initial DCI impedance match is achieved, no further 
adjustments occur.

JTAG-Related Options

See Chapter 9, “JTAG Configuration Mode and Boundary-Scan.”

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function 

Affected
Values 

(default)
Description
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TckPin JTAG TCK pin Pullup Default. Internally connects a pull-up resistor between JTAG 
TCK pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TCK 
pin and GND.

Pullnone No internal pull-up resistor on JTAG TCK pin.

TdiPin JTAG TDI pin Pullup Default. Internally connects a pull-up resistor between JTAG 
TDI pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TDI 
pin and GND.

Pullnone No internal pull-up resistor on JTAG TDI pin.

TdoPin JTAG TDO pin Pullup Default. Internally connects a pull-up resistor between JTAG 
TDO pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TDO 
pin and GND.

Pullnone No internal pull-up resistor on JTAG TDO pin.

TmsPin JTAG TMS pin Pullup Default. Internally connects a pull-up resistor between JTAG 
TMS pin and VCCAUX.

Pulldown Internally connects a pull-down resistor between JTAG TMS 
pin and GND.

Pullnone No internal pull-up resistor on JTAG TMS pin.

UserID JTAG User ID 
register

0xFFFFFFFF The 32-bit JTAG User ID register value is loaded during 
configuration. The default value is all ones, 0xFFFFFFFF 
hexadecimal. To specify another value, enter an 8-character 
hexadecimal value.

Extended Spartan-3A Family Power-Saving Suspend Feature

See XAPP480 Using Suspend Mode in Spartan-3 Generation FPGAs.

en_suspend Extended 
Spartan-3A
FPGA only:

Suspend mode

No Default. Suspend mode not used. Connect the SUSPEND pin 
to GND.

Yes Enables the power-saving Suspend feature, controlled by the 
SUSPEND pin.

drive_awake Extended 
Spartan-3A
FPGA only:

Suspend mode, 
AWAKE pin

No Default. If Suspend mode is enabled, indicates the present 
status on AWAKE using an open-drain output. An external 
pull-up resistor or High signal is required to exit SUSPEND 
mode.

Yes If Suspend mode is enabled, indicates the present status by 
actively driving the AWAKE output.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function 

Affected
Values 

(default)
Description
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suspend_filter Extended 
Spartan-3A
FPGA only:

Suspend mode, 
SUSPEND pin

Yes Default. Enables the glitch filter on the SUSPEND pin.

No Disables the glitch filter on the SUSPEND pin.

en_sw_gsr Extended 
Spartan-3A
FPGA only:

Suspend mode, 
wake-up timing

No Default. The state of all clocked elements in the FPGA is 
preserved during Suspend mode.

Yes During wake-up from Suspend mode, the FPGA pulses the 
Global Set/Reset (GSR) signal, setting or resetting all clocked 
elements, as originally specified in the FPGA application. All 
state information prior to entering Suspend mode is lost. The 
GSR pulse occurs before the AWAKE pin goes High and 
before the sw_gwe_cycle and sw_gts_cycle settings are active.

sw_clk Extended 
Spartan-3A
FPGA only:

Suspend mode, 
wake-up timing

StartupClk Default. Uses the clock defined by the StartupClk bitstream 
setting to control the Suspend wake-up timing.

InternalClk Uses the internally generated “50 MHz” oscillator to control 
the Suspend wake-up timing. The clock frequency is the same 
as when ConfigRate:50, as described in the FPGA data sheet.

sw_gwe_cycle Extended 
Spartan-3A
FPGA only:

Suspend mode, 
wake-up timing

1,..,5,...,1024 After the AWAKE pin is High, indicates the number of clock 
cycles as defined by the sw_clk setting, when the global 
write-protect lock is released for writable clocked elements 
(flip-flops, block RAM, etc.). The default value is five clock 
cycles after the AWAKE pin goes High. Generally, this value 
is equal to or greater than the sw_gts_cycle setting.

sw_gts_cycle Extended 
Spartan-3A
FPGA only:

Suspend mode, 
wake-up timing

1,..,4,...,1024 After the AWAKE pin is High, indicates the number of clock 
cycles as defined by the sw_clk setting, when the I/O pins 
switch from their SUSPEND Constraint settings back to their 
normal functions. The default value is four clock cycles after 
the AWAKE pin goes High. Generally, this value is equal to 
or less than the sw_gwe_cycle setting.

Extended Spartan-3A Family MultiBoot Control Options

See “Extended Spartan-3A Family MultiBoot,” page 271.

ICAP_Enable Extended 
Spartan-3A
FPGA only:

ICAP, MultiBoot

Auto Default. The BitGen software examines the FPGA design. If 
the ICAP primitive is instantiated in the design, BitGen 
automatically sets ICAP_Enable:Yes, enabling the ICAP port. 
Otherwise, ICAP_Enable:No.

No The ICAP port is disabled.

Yes The ICAP port is enabled.

next_config_addr Extended 
Spartan-3A
FPGA only:

MultiBoot

0x0000000 Specifies the next MultiBoot start address as a 7-character 
hexadecimal value. The specified value is loaded into the 
GENERAL1 and GENERAL2 registers during configuration. 
See “Extended Spartan-3A Family MultiBoot,” page 271 for 
details on use.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function 
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Values 
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Configuration CRC Checking Options

See Chapter 16, “Configuration CRC.”

CRC Configuration Enable Default. Enable CRC checking on the FPGA bitstream. If 
error detected, FPGA asserts INIT_B Low and DONE pin 
stays Low. In the Extended Spartan-3A family, Reset_on_err 
can be enabled to re-attempt configuration instead.

Disable Turn off CRC checking. Not recommended.

Reset_on_err Extended 
Spartan-3A
FPGA only:

MultiBoot, CRC, 
watchdog timer

No Default. The FPGA halts upon encountering a configuration 
CRC error.

Yes If a configuration CRC error occurs, the FPGA automatically 
re-initializes and retries the configuration process. Three 
retry attempts may occur before finally halting. Requires that 
CRC be enabled (default).

post_crc_en Extended 
Spartan-3A
FPGA only:

Post-
configuration 
CRC checker

No Default. Disable the post-configuration CRC checker.

Yes Enable the post-configuration CRC checker. 

post_crc_freq Extended 
Spartan-3A
FPGA only:

Post-
configuration 
CRC checker

1, 3, 6, 7, 8, 10, 
12, 13, 17, 22, 
25, 27, 33, 44, 
50, 100

Sets the clock frequency used for the post-configuration CRC 
checker. The available options are the same as for the 
ConfigRate bitstream option.

post_crc_keep Extended 
Spartan-3A
FPGA only:

Post-
configuration 
CRC checker

No Default. Stop checking when error detected. Allows CRC 
signature to be read back.

Yes Continue to check for CRC errors after an error was detected.

glutmask Extended 
Spartan-3A
FPGA only:

Post-
configuration 
CRC checker

Yes Default. Mask out the Look-Up Table (LUT) bits from the 
SLICEM logic slices. SLICEMs support writable functions 
such as distributed RAM and SRL16 shift registers, which 
generate CRC errors when bit locations are modified.

No Include the LUT bits from SLICEM logic slices. Use this 
option only if the application does not include any 
distributed RAM or SRL16 shift registers.

Table 11-2: Spartan-3 Generation Bitstream Generator (BitGen) Options (Cont’d)

Option Name
Pins/Function 

Affected
Values 

(default)
Description
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Chapter 12

Sequence of Events

Overview
This chapter outlines the multi-stage configuration process for Spartan®-3 generation 
FPGAs. 

While each FPGA configuration mode uses a slightly different interface, the basic steps 
involved are the same for all modes. Figure 12-1 shows the general Spartan-3 generation 
FPGA configuration process. The details of the bitstream will also include the formatting 
and command bits. The following subsections describe each step in detail, where the 
current step is highlighted at the beginning of each subsection. 

Setup for Configuration (Steps 1-3) 
The Setup process is similar for all configuration modes. The Spartan-3 generation FPGA 
first wakes from reset, initializes its internal configuration memory, and determines which 
configuration mode to use by sampling the mode pins.

Wake from Reset

Spartan-3 generation FPGAs wake from reset in several possible ways.

Figure 12-1: Spartan-3 Generation FPGA Configuration Process
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Figure 12-2: FPGA Wake from Reset
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1. The FPGA powers on and the FPGA’s internal Power-On Reset (POR) circuit holds the 
FPGA in reset until the required voltage supplies reach appropriate levels.

2. The system pulses the PROG_B pin Low, which resets the FPGA.

3. The FPGA is reset via the dedicated JTAG interface using the JPROGRAM instruction.

4. The FPGA is reset via the Extended Spartan-3A family REBOOT command available 
using the SelectMAP, JTAG, or ICAP interfaces.

5. On Extended Spartan-3A family FPGAs, the FPGA is reset if the Configuration 
Watchdog Timer (CWDT) expires during configuration and less than three 
configuration retries have occurred.

Power-On Reset (POR)

As shown in Figure 12-3, Spartan-3 generation FPGAs include a Power-On Reset (POR) 
circuit that holds the FPGA in reset until all of the supply rails required for configuration 
have reached their threshold levels. The three supplies required are the following.

1. VCCINT, which supplies the internal FPGA core logic.

2. VCCAUX, which supplies the dedicated configuration pins.

3. VCCO_2 on Extended Spartan-3A family and Spartan-3E FPGAs or VCCO_4 (or 
VCCO_BOTTOM in some packages where VCCO_4 and VCCO_5 are connected) on 
Spartan-3 FPGAs, which supplies the interface pins connected to the external 
configuration data source (i.e., PROM or processor).

Figure 12-3: Extended Spartan-3A Family and Spartan-3E Reset Circuitry
(Spartan-3 is similar)
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The FPGA monitors all three supplies. Once all three supplies exceed the specified 
threshold voltage, summarized in Table 12-1, page 241 from the associated FPGA data 
sheet, the POR circuit releases the internal reset and the FPGA can continue with the 
configuration process unless the PROG_B pin is Low.

VCCINT should rise monotonically within the specified ramp rate. If this is not possible, 
delay configuration by holding the INIT_B pin or the PROG_B pin Low (see “Delaying 
Configuration,” page 243) while the system power supplies reach the required POR 
threshold. 

After successfully configuring, the POR circuit continues to monitor the VCCINT and 
VCCAUX supply inputs. Should either supply drop below the its associated threshold 
voltage, the POR circuit again resets the FPGA. VCCO_2 is not monitored after 
configuration so that the user can reduce it as needed for low-voltage standards.

Note that the Extended Spartan-3A family has a requirement that VCCO_2 reach 2.0V for 
successful power-on. This level is higher than in the Spartan-3 and Spartan-3E FPGAs, and 
helps make sure that external configuration memories are ready before the FPGA starts 
attempting access. If the design only requires 1.8V (or lower) I/Os in bank 2 then the 
VCCO_2 supply would temporarily need to rise to 2.0V and then could drop down to the 
1.8V level for operation. See "Lowering VCCO_2 After Configuration for Extended 
Spartan-3A Family" in chapter 2.

PROG_B Pin

The PROG_B resets the FPGA, regardless of the current state of the FPGA. For additional 
information, see “Program or Reset FPGA: PROG_B,” page 56.

Power-Up Timing

Figure 12-4 shows the general power-up timing, showing the relationship between the 
input voltage supplies, the INIT_B pin, and the PROG_B pin.

Table 12-1: Power-On Reset Threshold Voltages

Voltage Supply
POR Threshold 
Specification

Spartan-3A/3AN
Spartan-3A DSP 

FPGA
Spartan-3E FPGA Spartan-3 FPGA

Units

Min Max Min Max Min Max

VCCINT VCCINTT 0.4 1.0 0.4 1.0 0.4 1.0 V

VCCAUX VCCAUXT 1.0 2.0 0.8 2.0 0.8 2.0 V

VCCO_2 VCCO2T 1.0 2.0 0.4 1.0 V

VCCO_4 (or 
“VCCO_BOTTOM”) VCCO4T 0.4 1.0 V
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Table 12-2 lists and describes the power-up timing specifications shown in Figure 12-4. 
Refer to the associated FPGA data sheet for any unlisted values.

Figure 12-4: FPGA Power-Up Timing Waveforms (Master Modes)
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Table 12-2: FPGA Power-Up Timing Specifications

Symbol Description Family Value Units

TPOR Power-On Reset delay from when all three 
supplies reach their required threshold voltage 
until the FPGA completes clearing its 
configuration memory and INIT_B goes High.

Spartan-3 5 to 7

msSpartan-3E 5 to 7

Spartan-3A 18

TPL Delay from when PROG_B is released High 
until the FPGA completes clearing its 
configuration memory and INIT_B goes High.

Spartan-3 2 to 3

msSpartan-3E 0.5 to 2

Spartan-3A 0.5 to 2

TPROG Minimum PROG_B pulse width required to 
reset FPGA.

Spartan-3 300

nsSpartan-3E
Spartan-3A

500

TICCK For Master configuration modes, the time from 
the rising edge of INIT_B until CCLK output 
begins toggling.

All 0.5 to 4 μs

TMINIT Setup time on M[2:0] mode-select pins and, in 
Master SPI mode, the setup time on VS[2:0] 
variant-select pins before the rising edge of 
INIT_B.

All 50 ns

Notes: 
1. Spartan-3A represents the Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA families.
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Clear Configuration Memory (Initialization) 

Configuration memory is cleared automatically after the FPGA wakes from a reset event. 
During this time, I/Os are placed in a high-impedance (Hi-Z) state except for the dedicated 
Configuration and JTAG pins. The INIT_B pin actively drives Low during initialization, 
and then released after TPOR during a power-up event or after TPL for other cases. See 
Figure 12-4. If the INIT_B pin is held Low externally, the FPGA waits at this point in the 
initialization process until the pin is released. 

The minimum Low pulse time for PROG_B is defined by the TPROG timing parameter. The 
PROG_B pin can be held active (Low) for as long as necessary. 

Sample Control Pins

When the INIT_B pin returns High after initialization, the FPGA samples the M[2:0] mode 
select pins and the VS[2:0] variant select pins. Shortly after, the FPGA begins driving CCLK 
if the M[2:0] mode select pins define one of the Master configuration modes. The VS[2:0] 
values are only used in Master SPI configuration mode. At this point, the FPGA begins 
sampling the configuration data input pins on the rising edge of the configuration clock. 

Delaying Configuration 
There are three methods to delay configuration for Spartan-3 generation FPGAs.

1. Hold the PROG_B pin Low, which holds the FPGA in reset, Step 1 shown in 
Figure 12-2, page 239.

2. Hold the INIT_B pin Low during initialization, which stalls the configuration process 
in Step 2 shown in Figure 12-5, page 243. However, after the FPGA releases INIT_B 
High, the application cannot subsequently delay configuration by pulling INIT_B 
Low. 

3. Hold the DONE pin Low, which prevents the FPGA from completing the Startup 
Sequence, shown as Step 8 in Figure 12-11, page 248.

Figure 12-5: Clear Configuration Memory (Initialization)
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Figure 12-6: Sample Control Pins (Mode Select, Variant Select)
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Bitstream Loading (Steps 4-7) 
The bitstream loading process is similar for all configuration modes; the primary 
difference between modes is the interface between the FPGA and the source of 
configuration data.

The important steps in the bitstream loading process are as follows.

• Synchronization

• Array ID check

• Loading configuration data 

• CRC check

Each of these steps involves distinct parts of the configuration bitstream. 

Synchronization

Embedded at the beginning of an FPGA configuration bitstream is a special 
synchronization word. The synchronization word alerts the FPGA to upcoming 
configuration data and aligns the configuration data with the internal configuration logic. 
Any data on the configuration input pins prior to synchronization is ignored. Because the 
synchronization word is automatically added by the Xilinx® bitstream generation 
software, this step is transparent in most applications.

The length and contents of the synchronization word differ between the Extended Spartan-
3A family FPGA families and the Spartan-3 and Spartan-3E FPGA families, as outlined in 
Table 12-3.

Figure 12-7: Synchronization

Table 12-3: Spartan-3 Generation FPGA Synchronization Word

FPGA Family Length (bits) Contents (hexadecimal)

Spartan-3A/3AN
Spartan-3A DSP 16 0xAA99
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Spartan-3E 32 0xAA995566
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Check Array IDCODE

After the FPGA is synchronized, the FPGA checks that the array ID embedded in the 
bitstream matches its internal array ID. This prevents the FPGA from mistakenly 
attempting to load configuration data intended for a different FPGA array. For example, 
the array ID check prevents an XC3S1000 from being configured with an XC3S200 
bitstream. 

The Spartan-3AN FPGA family can be configured with a Spartan-3A bitstream for the 
equivalent size device, since they are compatible.

The array ID check is built into the bitstream, making this step transparent to most 
designers. Table 12-4 shows the Spartan-3 generation array ID codes. Although the array 
ID code is identical to the JTAG IDCODE register value, the array ID check is performed 
using bitstream commands to the internal configuration logic, not through the JTAG 
IDCODE register. 

The array identifier is a 32-bit value. Within the 32-bit value, 28 bits are unique to a specific 
FPGA array size while the additional four bits are a mask revision code, which varies 
between 0x0 to 0xF. 

There are three components to the 28-bit vendor/array identifier value.

• The least-significant 12 bits, 0x093, represent the Xilinx vendor code (0x49), 
appended to the least-significant bit which is always ‘1’, resulting in the value 0x093. 
These 12 bits are consistent for all Spartan-3 generation FPGAs.

• The most-significant 8 bits represent the FPGA family code.

♦ 0x22: Spartan-3A family

♦ 0x26: Spartan-3AN family

♦ 0x38: Spartan-3A DSP family

♦ 0x1C: Spartan-3E family

♦ 0x14: Spartan-3 family

• The middle 8 bits represent an array-specific code.

Figure 12-8: Check Array ID
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The FPGA indicates if the array value does not match by setting Bit 1 (ID_Err) in the STAT 
(Status) register, as shown in Table 12-5. There are various methods to read the status 
register, including via JTAG using the Xilinx iMPACT software, or by using the SelectMAP 
interface.

Table 12-4: Spartan-3 Generation FPGA Array ID Codes

FPGA Family FPGA Array

32-bit Array Identifier

4-bit Revision 
Code

28-bit Vendor/Array Identifier
(hexadecimal)

Spartan-3A 
FPGAs

XC3S50A 0xX 0x22 10 093

XC3S200A 0xX 0x22 18 093

XC3S400A 0xX 0x22 20 093

XC3S700A 0xX 0x22 28 093

XC3S1400A 0xX 0x22 30 093

Spartan-3AN 
FPGAs

XC3S50AN 0xX 0x26 10 093

XC3S200AN 0xX 0x26 18 093

XC3S400AN 0xX 0x26 20 093

XC3S700AN 0xX 0x26 28 093

XC3S1400AN 0xX 0x26 30 093

Spartan-3A DSP 
FPGAs

XC3SD1800A 0xX 0x38 40 093

XC3SD3400A 0xX 0x38 4E 093

Spartan-3E 
FPGAs

XC3S100E 0xX 0x1C 10 093

XC3S250E 0xX 0x1C 1A 093

XC3S500E 0xX 0x1C 22 093

XC3S1200E 0xX 0x1C 2E 093

XC3S1600E 0xX 0x1C 3A 093

Spartan-3 
FPGAs

XC3S50 0xX 0x14 0C 093

XC3S200 0xX 0x14 14 093

XC3S400 0xX 0x14 1C 093

XC3S1000 0xX 0x14 28 093

XC3S1500 0xX 0x14 34 093

XC3S2000 0xX 0x14 40 093

XC3S4000 0xX 0x14 48 093

XC3S5000 0xX 0x14 50 093
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Load Configuration Data Frames

After the synchronization word is loaded and the array ID is checked, the configuration 
data frames are loaded.

Cyclic Redundancy Check

As the configuration data frames are loaded, the FPGA calculates a Cyclic Redundancy 
Check (CRC) value from the configuration data packets. After the configuration data 
frames are loaded, the configuration bitstream, by default (CRC:Enable), issues a Check 
CRC instruction to the FPGA, followed by an expected CRC value. If the CRC value 
calculated by the FPGA does not match the expected CRC value in the bitstream, then the 
FPGA pulls INIT_B Low and aborts configuration. 

Refer to “CRC Checking during Configuration,” page 309 for additional information.

Table 12-5: STAT Register

Name Bit Description

ID_Err 1
0: Array ID value matched expected value.

1: Array ID value embedded in bitstream does not match the value 
read from the FPGA

Figure 12-9: Load Configuration Data Frames
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Figure 12-10: Cyclic Redundancy Check
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Startup

After successfully loading the configuration frames, the bitstream instructs the FPGA to 
enter the Startup sequence. The Startup sequence is controlled by an 8-phase (phases 0-7) 
sequential state machine. The startup sequencer performs the tasks outlined in Table 12-6. 

The specific order of startup events, except for the End of Startup (EOS) is user-
programmable through various bitstream generator options. Table 12-7 and Figure 12-12, 
page 249 show the general sequence of events, although the specific phase for each of these 
startup events is user-programmable. EOS is always the last phase. By default, startup 
events occur as shown in Table 12-7. 

The FPGA automatically pulses the Global Set/Reset (GSR) signal when entering the 
Startup sequence, forcing all flip-flops and latches in a known state. The sequence and 
timing of how the FPGA switches over is programmable as is the clock source controlling 
the sequence.

Figure 12-11: Startup Sequence

Table 12-6: User-Selectable Cycle of Startup Events

Startup Event Phase 
BitGen 
Control

Wait for DCMs to Lock (optional) 1-6 LCK_cycle

Spartan-3 FPGA family only: Wait for DCI to Match (optional). 1-6 Match_cycle

Assert Global Write Enable (GWE), allowing RAMs and flip-flops 
to change state 

1-6 GWE_cycle

Release the Global 3-State (GTS), activating I/O 1-6 GTS_cycle

Release DONE pin 1-6 DONE_cycle

End Of Startup (EOS) 7 N/A

Table 12-7: Default BitGen Sequence of Startup Events

BitGen 
Control

Default 
Setting 
(Phase)

Event 

DONE_cycle 4 
Release DONE pin, indicating that the FPGA successfully 
completed configuration.

GTS_cycle 5 Release the global three-state control (GTS), activating I/O 

GWE_cycle 6 
Assert the global write-enable (GWE), allowing RAM and flip-
flops to change state 

N/A 7 Assert EOS 

Steps
1 2 3 4 5 6 7 8

Clear LoadSample Control Array ID StartupSynchronization CRC CheckConfiguration Configuration

Wake from
Pins Check Sequence

Memory Data

BitstreamSetup LoadingStart Finish
UG332_c12_09_110406

Reset
(power-on or

PROG_B)
(M[2:0], VS[2:0])
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The default start-up sequence appears in Figure 12-12, where the Global Three-State signal 
(GTS) is released one clock cycle after DONE goes High. This sequence allows the DONE 
signal to enable or disable any external logic used during configuration before the user 
application in the FPGA starts driving output signals. One clock cycle later, the Global 
Write Enable (GWE) signal is released. This allows signals to propagate within the FPGA 
before any clocked storage elements such as flip-flops and block ROM are enabled.

The function of the dual-purpose I/O pins, such as M[2:0], VS[2:0], HSWAP, PUDC_B, and 
A[25:0], also changes when the Global Three-State (GTS) signal is released. The dual-
purpose configuration pins become user I/Os. The exception on Spartan-3E and Extended 
Spartan-3A family FPGAs is the CCLK pin, which becomes a user-I/O pin at the End of 
Startup (EOS).

Figure 12-12: Default Start-Up Sequence

Start-Up Clock

Default Cycles

Sync-to-DONE

0 1 2 3 4 5 6 7

0 1

DONE High

2 3 4 5 6 7

Phase

Start-Up Clock

Phase

DONE

GTS

GWE

DONE

GTS

GWE

UG332_c12_10_110406
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Startup Clock Source
There are three possible clock sources for the Startup sequencer, controlled by the 
StartupClk bitstream generator option.

1. By default, the start-up sequence is synchronized to CCLK. The Cclk option or the 
UserClk option is required for Master Mode or Slave Mode configuration.

2. Alternatively, the start-up sequence can be synchronized to a user-specified clock from 
within the FPGA application using the “Start-Up (STARTUP),” page 255 library 
primitive and by setting the StartupClk:UserClk bitstream generator option. 

3. When using JTAG configuration, the start-up sequence must be synchronized to the 
TCK clock input (StartupClk:JtagClk).

Waiting for DCMs to Lock, DCI to Match
The startup sequence can be forced to wait for the DCMs to lock or for DCI to match with 
the appropriate BitGen options. These options are typically set to prevent DONE, GTS, and 
GWE from being asserted (preventing FPGA operation) before the DCMs have locked 
and/or DCI has matched. 

The DONE signal is released by the startup sequencer on the cycle indicated in the 
bitstream, set by the DONE_cycle bitstream generator option. However, the Startup 
sequencer does not proceed beyond the specified Startup cycle until the DONE pin 
actually sees an external logic High. The DONE pin is an open-drain bidirectional signal by 
default. By releasing the DONE pin, the FPGA simply stops driving a logic Low and the 
pin goes into a high-impedance (Hi-Z) state. A pull-up resistor, either internal or external, 
is required for the DONE pin to reach a logic High in this case. Table 12-8 shows signals 
relating to the startup sequencer. Figure 1-12 shows the waveforms relating to the startup 
sequencer. 

http://www.xilinx.com
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Figure 12-13 is a generalized block diagram of the configuration logic, showing the 
interaction of different device inputs and Bitstream Generator (BitGen) options.

Table 12-8: Signals Relating to Startup Sequencer

Signal Name Type Access Description 

DONE Bidirectional
DONE pin or 

Status Register 

Indicates configuration is complete. 
Can be held Low externally to 
synchronize startup with other 
FPGAs. 

Release_DONE 

Status Status Register 

Indicates whether the FPGA has 
stopped driving the DONE pin Low. If 
the pin is held Low externally, 
Release_DONE can differ from the 
actual value on the DONE pin. 

GWE 

Global Write Enable (GWE). When 
deasserted, GWE disables the CLB and 
the IOB flip-flops as well as other 
synchronous elements on the FPGA. 

GTS 
Global 3-State (GTS). When asserted, 
GTS disables all the I/O drivers except 
for the configuration pins. 

EOS 
End of Startup (EOS). EOS indicates 
the absolute end of the configuration 
and startup process. 

DCI_MATCH 

Spartan-3 FPGA Family only. 
DCI_MATCH indicates when all the 
Digitally Controlled Impedance (DCI) 
controllers have matched their 
internal resistor to the external 
reference resistor. 

DCM_LOCK 

DCM_LOCK indicates when all the 
Digital Clock Managers (DCMs) have 
locked. This signal is asserted by 
default. It is active if the 
STARTUP_WAIT option is used on a 
DCM and the LCK_cycle option is set 
in the bitstream. 

http://www.xilinx.com
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Figure 12-13: Extended Spartan-3A Family, Spartan-3E FPGA Configuration Logic Conceptual Block 
Diagram
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Chapter 13

Configuration-Related Design 
Primitives

The following configuration primitives provide access to FPGA configuration resources 
during or after FPGA configuration. 

Boundary-Scan (BSCAN)
The BSCAN component, shown in Figure 13-1, provides access to and from the JTAG 
Boundary Scan logic controller from internal FPGA logic, allowing communication 
between the internal FPGA application and the dedicated JTAG pins of the FPGA. The 
BSCAN primitive is not required for normal JTAG operations. It is only required when 
implementing private JTAG scan chains within the FPGA logic. Although the BSCAN 
primitive is functionally equivalent on all Spartan®-3 generation FPGAs, the primitive 
name varies by family, as shown in Table 13-1, page 254.

T

Figure 13-1: BSCAN Primitive for Extended Spartan-3A Family FPGAs
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The BSCAN primitive on Spartan-3 generation FPGAs allows up to two internal, private 
boundary scan chains called USER1 and USER2. 

A signal on the TDO1 input is passed to the external TDO output when the USER1 
instruction is executed; the SEL1 output goes High to indicate that the USER1 instruction is 
active. The DRCK1 output provides USER1 access to the data register clock (generated by 
the TAP controller). The TDO2 and SEL2 pins perform a similar function for the USER2 
instruction and the DRCK2 output provides USER2 access to the data register clock 
(generated by the TAP controller). The RESET, UPDATE, SHIFT, and CAPTURE pins 
represent the decoding of the corresponding state of the boundary scan internal state 
machine. The TDI pin provides access to the TDI signal of the JTAG port in order to shift 
data into an internal scan chain.

Usage
The BSCAN component is generally used with IP, such as the ChipScope™ analyzer tool, 
for communications via the JTAG pins of the FPGA to the internal device logic. When used 
with this IP, this component is generally instantiated as a part of the IP and nothing more 
is needed by the user to ensure it is properly used. However, the BSCAN component can 
be instantiated in any FPGA design although only one BSCAN component can be used in 
any single design.

Port Descriptions

Table 13-1: BSCAN Primitives by FPGA Family

FPGA Family Primitive

Spartan-3A/3AN FPGAs

Spartan-3A DSP FPGAs
BSCAN_SPARTAN3A

Spartan-3E FPGAs
BSCAN_SPARTAN3

Spartan-3 FPGAs

Table 13-2: BSCAN Primitive Connections

Port Name Direction Function 

TDI Output The value of the TDI input pin to the FPGA. 

TCK Output The value of the TCK input pin to the FPGA.

TMS Output The value of the TMS input pin to the FPGA.

DRCK1, DRK2 Output 

The value of the TCK input pin to the FPGA when the 
JTAG USER instruction is loaded and the JTAG TAP 
controller is in the SHIFT-DR state. DRCK1 applies to the 
USER1 logic while DRCK2 applies to USER2. 

RESET Output 
Active upon the loading of the USER instruction. It asserts 
High when the JTAG TAP controller is in the TEST-
LOGICRESET state. 

SEL1, SEL2 Output 

Indicates when the USER1 or USER2 instruction is loaded 
into the JTAG Instruction Register. SEL1 or SEL2 becomes 
active in the UPDATE-IR state, and stays active until a 
new instruction is loaded. 

http://www.xilinx.com
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Start-Up (STARTUP)
The STARTUP primitive is used to either interface device pins and/or logic to the global 
asynchronous set/reset (GSR) signal, or for global, 3-state (GTS) dedicated routing. This 
primitive can also be used to specify a different clock for the device startup sequence at the 
end of configuring the device. 

As shown in Figure 13-2, the STARTUP primitive is similar between Spartan-3 generation 
FPGA families, although the Spartan-3E STARTUP primitive has an additional input pin to 
support MultiBoot functions. The specific STARTUP primitive name also varies by family, 
as indicated in Table 13-3.

SHIFT Output 
Active upon the loading of the USER instruction. It asserts 
High when the JTAG TAP controller is in the SHIFT-DR 
state. 

CAPTURE Output 
Active upon the loading of the USER instruction. Asserts 
High when the JTAG TAP controller is in the CAPTURE-
DR state. 

UPDATE Output 
Active upon the loading of the USER instruction. It asserts 
High when the JTAG TAP controller is in the UPDATE-DR 
state. 

TDO1, TDO2 Input 
Active upon the loading of the USER1 or USER2 
instruction. External JTAG TDO pin reflects data input to 
the component's TDO1 (USER1) or TDO2 (USER2) pin. 

Table 13-2: BSCAN Primitive Connections (Cont’d)

Port Name Direction Function 

Figure 13-2: STARTUP Primitive for Extended Spartan-3A Family and Spartan-3E 
FPGAs

Table 13-3: STARTUP Primitives by FPGA Family

FPGA Family Primitive

Spartan-3A/3AN FPGAs

Spartan-3A DSP FPGAs
STARTUP_SPARTAN3A

Spartan-3E FPGAs STARTUP_SPARTAN3E

Spartan-3 FPGAs STARTUP_SPARTAN3

UG332_C13_02_120106

GSR

STARTUP_SPARTAN3A

GTS

CLK

GSR

STARTUP_SPARTAN3E

GTS

MBT

CLK

STARTUP_SPARTAN3
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Usage
The STARTUP primitive must be instantiated into the design. To use the dedicated GSR 
circuitry, connect the sourcing pin or logic to the GSR pin. However, avoid using the GSR 
circuitry of this component unless certain precautions are taken first. Since the skew of the 
GSR net cannot be guaranteed, either use general routing for the set/reset signal in which 
routing delays and skew can be calculated as a part of the timing analysis of the design, or 
ensure that possible skew during the release of GSR will not interfere with proper circuit 
operation.

Similarly, if the dedicated global 3-state is used, connect the appropriate sourcing pin or 
logic to the GTS input pin of the primitive. In order to specify a user clock for the startup 
sequence of configuration, connect a clock from the design to the CLK pin of the STARTUP 
component. 

Port Descriptions

Readback Capture (CAPTURE)
The CAPTURE primitive, shown in Figure 13-3, provides FPGA application control over 
when to capture register (flip-flop and latch) information for readback. Spartan-3 
generation FPGAs provide the readback function through dedicated configuration port 
instructions.

Caution! On Spartan-3E FPGAs, Readback is available on all devices except for the 
XC3S1200E and XC3S1600E in the -4 speed grade, in the commercial temperature range. 
Readback is supported on all Spartan-3E FPGAs available in the -5 speed grade or in the 
industrial temperature range.

Table 13-4: STARTUP Primitive Connections

Port Name Direction Function 

GSR Input Active-High global set / reset (GSR) signal. 

GTS Input Active-High global 3-state (GTS) signal. 

MBT Input
Spartan-3E family only. Active-Low, asynchronous 
MultiBoot trigger input.

CLK Input 
Optional clock input to the configuration Startup 
sequencer, selected using StartupClk:UserClk bitstream 
option. 

Figure 13-3: CAPTURE Primitive for Extended Spartan-3A Family FPGAs (other 
families are similar)
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Usage
The CAPTURE primitive is optional within a design. Without it, Readback is still 
performed, but the asynchronous capture function it provides for register states is not 
available.

Spartan-3 generation FPGAs only capture register (flip-flop and latch) states. Although 
LUT RAM, SRL, and block RAM bit values are read back, their values cannot be captured. 
To capture the register states, assert the CAP signal High. The state is captured on the next 
rising edge of CLK.

By default, data is captured after every trigger (transition on CLK while CAP is asserted). 
To limit the readback operation to a single data capture, add the ONESHOT attribute to 
CAPTURE devices.

Although the CAPTURE primitive functions equivalently on all Spartan-3 generation 
FPGA families, the required design primitive varies by family, as indicated in Table 13-5.

For more information on Readback and the CAPTURE primitive, see XAPP452: Spartan-3 
Advanced Configuration Architecture.

Port Description

Attributes
Table 13-7 describes the ONESHOT attribute available on the CAPTURE primitive.

Table 13-5: CAPTURE Primitive by FPGA Family

FPGA Family Primitive

Spartan-3A/3AN FPGAs

Spartan-3A DSP FPGAs
CAPTURE_SPARTAN3A

Spartan-3E FPGAs
CAPTURE_SPARTAN3

Spartan-3 FPGAs

Table 13-6: CAPTURE Primitive Connections

Port Name Direction Description 

CLK Input Clock for sampling the CAP input. 

CAP Input 
Active-High capture enable. The CAP input is sampled by 
the rising edge of CLK. 

Table 13-7: CAPTURE Attributes

Attribute Type
Allowed 
Values

Default Description

ONESHOT Boolean
TRUE,
FALSE

FALSE
Specifies the procedure for performing 
single readback operation per CAP trigger.

http://www.xilinx.com/support/documentation/application_notes/xapp452.pdf
http://www.xilinx.com
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Internal Configuration Access Port (ICAP)
The Internal Configuration Access Port (ICAP), shown in Figure 13-4, is only available on 
the Extended Spartan-3A family FPGA families.

Usage
The ICAP_SPARTAN3A primitive works similar to the Slave Parallel (SelectMAP) 
configuration interface except it is available to the FPGA application using internal routing 
connections. Furthermore, the ICAP primitive has separate read and write data ports, as 
opposed to the bidirectional bus on the Slave Parallel (SelectMAP) interface. ICAP allows 
the FPGA application to access configuration registers, readback configuration data, or to 
trigger a MultiBoot event after configuration successfully completes.

For additional information on the Slave Parallel (SelectMAP) interface, see Chapter 7, 
“Slave Parallel (SelectMAP) Mode.”

For additional information on Extended Spartan-3A family MultiBoot, Chapter 14, 
“Reconfiguration and MultiBoot.”

Port Description
Caution! Xilinx convention defines I0 and O0 as the most-significant bits; I7 and O7 are the 
least-significant bits. This is different than conventions elsewhere. Watch out for bit reversals!

Figure 13-4: ICAP Primitive (only available on Extended Spartan-3A Family FPGAs)

UG332_C13_04_111906

I[0:7] O[0:7]

WRITE

CE

CLK

BUSY

ICAP_SPARTAN3A

Table 13-8: ICAP_SPARTAN3A Primitive Connections

Signal 
Name 

Equivalent 
SelectMAP Pin 

Name
Direction Description 

CLK CCLK Input ICAP interface clock 

CE CS_B or CSI_B Input Active-Low select

WRITE RDWR_B Input 

Read/Write control input

0 = WRITE

1 = READ

I[0:7] D[0:7] Input Byte-wide ICAP write data bus

O[0:7] D[0:7] Output Byte-wide ICAP read data bus

BUSY DOUT Output 
Active-High busy status. Only used in read 
operations. BUSY remains Low during writes. 
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Device DNA Access Port (DNA_PORT)
The DNA_PORT primitive, shown in Figure 13-5 is only available on the Extended 
Spartan-3A family FPGA. 

The DNA_PORT provides access to a dedicated shift register which can be loaded with the 
Device DNA data bits (unique ID) for a given Extended Spartan-3A family device. In 
addition to shifting out the DNA data bits, this component allows for the inclusion of 
supplemental data bits for additional user data or allow for the DNA data to rollover 
(repeat DNA data after initial data has been shifted out). This component is primarily used 
in conjunction with other circuitry to build anti-cloning protection for the FPGA bitstream 
from possible theft. See Chapter 15, “Protecting FPGA Designs,” for additional 
information.

Usage
The DNA_PORT component must be instantiated in order to be used in a design. To do so, use 
the instantiation template found within the ISE® software Project Navigator HDL Templates 
and place this instance declaration within the code. Connect all inputs and outputs to the 
design in order to ensure proper operation.

In order to access the Device DNA data, the shift register must first be loaded by setting the 
active high READ signal for one clock cycle. After the shift register is loaded, the data may be 
synchronously shifted out by enabling the active high SHIFT input and capturing the data out 
the DOUT output port. If desired, additional data may be appended to the end of the 57-bit shift 
register by connecting the appropriate logic to the DIN port. If DNA data rollover is desired, 
connect the DOUT port directly to the DIN port to allow for the same data to be shifted out after 
completing the 57-bit shift operation. If no additional data is necessary, the DIN port may be 
tied to a logic zero. The attribute SIM_DNA_VALUE may be optionally set to allow for 
simulation of a possible DNA data sequence. By default, the Device DNA data bits are all zeros 
in the simulation model.

See “Operation,” page 294 for additional information.

Figure 13-5: DNA_PORT Primitive (only available on Extended Spartan-3A Family 
FPGAs)
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Port Descriptions

Attributes

Table 13-9: DNA_PORT Primitive Connections

Port Name Direction Function

DOUT Output Serial shifted output data

DIN Input User data input to the shift register

READ Input
Synchronous load of the shift register with the Device 
DNA data A READ operation overrides a SHIFT 
operation.

SHIFT Input Active high shift enable input

CLK Input Clock Input

Table 13-10: DNA_PORT Attributes

Attribute Type
Allowed 
Values

Default Description

SIM_DNA_VALUE
57-bit 
vector

Any 57-bit 
value

All zeros

Specifies a DNA value for 
simulation purposes (the actual 
value will be specific to the 
particular device used)

http://www.xilinx.com
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Chapter 14

Reconfiguration and MultiBoot

Overview
Because Spartan®-3 generation FPGAs are reprogrammable, in the system, some 
applications reload the FPGA with one or more bitstream images during normal operation. 
In this way, a single, smaller FPGA, reprogrammed multiple times, replaces a much larger 
and more expensive ASIC or FPGA programmed just once.

There are a variety of methods to reprogram the FPGA during normal operation. The 
downloaded configuration modes (see Figure 1-2, page 30) inherently provide this 
capability. Via an external “intelligent agent” such as a processor, microcontroller, 
computer, or tester, an FPGA can be reprogrammed numerous times. The downloaded 
modes are available on all Spartan-3 generation FPGA families.

The Spartan-3E and Extended Spartan-3A family FPGA families introduce a new 
capability, called MultiBoot, that allows the FPGA to selectively reprogram and reload its 
bitstream from an attached external memory.

The MultiBoot feature allows the FPGA application to load two or more FPGA bitstreams 
under the control of the FPGA application. The FPGA application triggers a MultiBoot 
operation, causing the FPGA to reconfigure from a different configuration bitstream. As 
shown in Table 14-1, there are differences between MultiBoot on Spartan-3E and 
Spartan-3A/3AN/3A DSP FPGAs.

Once a MultiBoot operation is triggered, the FPGA restarts its configuration process as 
usual. The INIT_B pin pulses Low while the FPGA clears its configuration memory and the 
DONE output remains Low until the MultiBoot operation successfully completes.

For Spartan-3E FPGA applications, see “Spartan-3E MultiBoot,” page 263. For Extended 
Spartan-3A family FPGA applications, see “Extended Spartan-3A Family MultiBoot,” 
page 271.

MultiBoot Options Compared between Spartan-3 Generation 
FPGA Families

Table 14-1 highlights the primary MultiBoot differences between Spartan-3 generation 
FPGA families. The MultiBoot feature is available only on the Spartan-3E and Spartan-3A 
FPGA families.
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Table 14-1: MultiBoot Options on Spartan-3 Generation FPGA Families

Spartan-3 Spartan-3E
Spartan-3A/3AN
Spartan-3A DSP

Application complexity

MultiBoot not 
available on Spartan-

3 FPGA family.

Simple
More complex, but 
also more capable 

and flexible

MultiBoot in BPI mode using parallel NOR 
Flash

Yes Yes

MultiBoot in SPI mode using SPI serial Flash No Yes

MultiBoot from In-System Flash memory No Spartan-3AN only(1)

MultiBoot between different configuration 
modes

No Yes

MultiBoot supports multi-FPGA 
configuration daisy chains

No, single FPGA only Yes

How is MultiBoot triggered by FPGA 
application?

MBT input on 
STARTUP primitive

Via command 
sequence to ICAP 
primitive, JTAG 

interface, Slave Serial, 
or Slave Parallel 

(SelectMAP) interface

Maximum number of MultiBoot 
configuration images 2 (top and bottom of 

parallel Flash)

Limited only by the 
amount of 

configuration 
memory

Bitstream start locations and addressing 
direction

Ether at address 0 
with incrementing 
addresses or highest 
PROM address with 
decrementing 
addresses

Any byte location, 
always with 
incrementing 

addresses

Initial MultiBoot image location Controlled by M0 
mode pin.

0 = Address 0

1 = Highest PROM 
address

Always at address 0

Can FPGA application specify MultiBoot start 
address?

No (always top and 
bottom of parallel 

Flash)
Yes

Configuration watchdog timer automatically 
reconfigures FPGA starting at address 0 if 
MultiBoot operation fails

No Yes

Notes: 
1. See Spartan-3AN Errata regarding limitations using MultiBoot after configuration from the in-system Flash.
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Spartan-3E MultiBoot
After the FPGA configures itself using BPI mode from one end of the parallel Flash PROM, 
then the FPGA can trigger a MultiBoot event and reconfigure itself from the opposite end 
of the parallel Flash PROM. MultiBoot is only available when using BPI mode and only for 
applications using a single Spartan-3E FPGA. MultiBoot does not support multi-FPGA 
configuration daisy chains.

By default, the MultiBoot feature is disabled. To use MultiBoot in an application, the FPGA 
design must first include a STARTUP_SPARTAN3E design primitive, described in 
“Start-Up (STARTUP),” page 255. To trigger a MultiBoot event, assert a Low pulse lasting 
at least 300 ns on the MultiBoot Trigger (MBT) input to the primitive. When the MBT signal 
returns High after the Low pulse, the FPGA automatically reconfigures from the opposite 
end of the parallel Flash memory.

Figure 14-1 illustrates a simple MultiBoot design example. At power up, the FPGA loads 
itself from the attached parallel Flash PROM. In this specific example, the M0 mode pin is 
Low so the FPGA configures starting at Flash address 0 and increments through the PROM 
memory locations. After the FPGA completes configuration, this example FPGA 
application performs a board-level or system test using FPGA logic. If the test is successful, 
the FPGA then triggers a MultiBoot event, causing the FPGA to reconfigure from the 
opposite end of the Flash PROM memory, in this case starting at address 0xFFFF. The 
FPGA actually starts at address 0xF_FFFF but the upper four address bits, A[23:20], are 
not connected to the PROM in this example. The FPGA addresses the second configuration 
image, which in this example contains the FPGA application for normal operation.

Similarly, the second FPGA application could trigger another MultiBoot event at any time 
to reload the diagnostics design from address 0, and so on.

In another potential application, the initial design loaded into the FPGA image contains a 
“golden” or “fail-safe” configuration image, which then communicates with the outside 
world and checks for a newer FPGA configuration image. If there is a new configuration 
revision and the new image verifies as good, the “golden” configuration triggers a 
MultiBoot event to load the new image.

Figure 14-1: Example Spartan-3E MultiBoot Application using 1Mbyte Parallel Flash PROM
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When a MultiBoot event is triggered, the FPGA then again drives its configuration pins as 
described in Chapter 5, “Master BPI Mode.”. However, the FPGA does not assert the 
PROG_B pin. The system design must ensure that no other device drives on these same 
pins during the reconfiguration process. The FPGA’s DONE, LDC[2:0], or HDC pins can 
can be used to temporarily disable any conflicting drivers during reconfiguration.

Asserting the PROG_B pin Low overrides the MultiBoot feature and forces the FPGA to 
reconfigure starting from the end of memory defined by the mode pins, shown in 
Table 5-2, page 147.

Generating a Spartan-3E MultiBoot PROM Image using iMPACT
The iMPACT programming software provides a graphical, step-by-step approach to create 
a MultiBoot PROM file. Similar functionality is also available from the command line or 
via scripts using the PROMGen utility, shown in Figure 14-10. Follow the steps outlined 
below to create a MultiBoot PROM file using the iMPACT software. The steps assume an 
example application like that shown in Figure 14-1.

1. Invoke the iMPACT programming software.

2. As shown in Figure 14-2, choose Prepare a PROM File.

3. Click Next.

4. As shown in Figure 14-3, target a PROM Supporting Multiple Design Revisions.

Figure 14-2: Prepare a MultiBoot PROM Image
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5. Choose the Spartan3E MultiBoot method.

6. Select a PROM File Format. The MCS format is supported by a variety of 
programmers, but other options are available.

7. Enter a PROM File Name.

8. Click Next.

9. As shown in Figure 14-4, select the Initial Boot Direction. This is the location from 
where the first configuration image loads. The initial location depends on the BPI 
mode pin settings.

Figure 14-3: Select a PROM Supporting MultiBoot for Spartan-3E FPGAs
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10. Click Next.

11. As shown in Figure 14-5, Select a Parallel PROM Density, measured in bytes.

12. Click Add to use the PROM density specified in Step 11. In Spartan-3E MultiBoot 
mode, only a single PROM is allowed. The PROM density also determines the highest 
PROM address location.

13. Click Next.

14. The iMPACT software summarizes the current settings, as shown in Figure 14-6. Click 
Finish to continue.

Figure 14-4: Select the Configuration Direction of the First MultiBoot Image

Figure 14-5: Select a PROM Size and Add It to the Design
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15. As shown in Figure 14-7, start selecting the FPGA configuration bitstream for the 
design that initially loads at power-up or when the PROG_B input is pulsed Low.

16. Using the file selection mechanism for your operating system, choose the initial 
bitstream. This bitstream is loaded at the initial PROM location specified in Step 9.

17. Click Open.

Figure 14-6: Confirm the PROM Settings
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Figure 14-7: Select the First MultiBoot Configuration Image
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18. As shown in Figure 14-8, the iMPACT software then prompts for the second MultiBoot 
configuration image.

19. Select the .bit file for the second image.

20. Click Open.

21. The iMPACT software then confirms that all the necessary files are entered.

22. As shown in Figure 14-9, the iMPACT software reports how much of the PROM is 
consumed by the FPGA configuration bitstream files. Double-click Generate File.

Figure 14-8: Select the Second MultiBoot Configuration Image
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23. The iMPACT software successfully generates a PROM file using the name specified in 
Step 7 with the format and file extension specified in Step 6. The file is created in the 
current directory. A “PROMGen Report File” is also created.

PROMGen Report File
The iMPACT software creates the PROM file using the PROMGen command-line 
program. The PROMGen software also creates a report file with an *.prm file extension, as 
shown in Figure 14-10.

Figure 14-9: Generate the PROM File Using the Specified Parameters
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The following items correspond to the markers in Figure 14-10.

1. PROMGen is the command-line program that generates PROM programming files 
using the specified format.

2. Various formats are available. The Intel MCS format is one of the popular options.

3. The base output file name. The extension depends on the selected format.

4. In the example shown above, the first MultiBoot file is loaded for the BPI Up mode, 
meaning that the file starts at address 0.

5. The second MultiBoot file is loaded at the opposite end of memory, in this case at the 
maximum PROM address and loaded downward.

6. The PROM size is specified in kilobytes (K). In the example, the PROM is 1Mbyte or 
1024K.

7. The first MultiBoot image is loaded starting at PROM address 0 and ends at 
hexadecimal address 0x4547F.

8. The second MultiBoot image is loaded starting at the highest PROM address, which is 
at hexadecimal 0xFFFFF for a 1Mbyte PROM. The image is loaded downward 
(decrementing address) and ends at hexadecimal address 0xBAB80.

Spartan-3E MultiBoot using Xilinx Platform Flash PROMs
While the Spartan-3E MultiBoot feature was primarily designed to leverage commodity 
parallel NOR Flash PROMs, it is also possible to use Xilinx® Parallel Platform Flash 
PROMs, specifically the XCFxxP PROM family. The final ‘P’ in the product name indicates 
the Parallel version. See XAPP483 for additional details.

• XAPP483: Multiple-Boot using Platform Flash PROMs
http://www.xilinx.com/support/documentation/application_notes/xapp483.pdf

Figure 14-10: PROMGen Report File (*.prm)

UG332_c14_11_082006

PROMGEN: Xilinx Prom Generator I .32
Copyright (c) 1995-2006 Xilinx, Inc.  All rights reserved .

promgen -w -p mcs -c FF -o MyMultiBootPROM -u 0     first_multiboot_image.bit
-d fffff second _multiboot_image.bit 
-s 1024

PROM MyMultiBootPROM .prm

Calculating PROM checksum with fill value ff

Format        Mcs 86 (32-bit)
Size          1024K
PROM start    0000:0000
PROM end      000f:ffff
PROM checksum 07515767

   Addr1        Addr2                     Date File(s)
0000:0000    0004:547f     Aug 18 22:38:14 2006 first_multiboot_image.bit
000f:ffff 000b:ab80 Aug 18 22:37:07 2006 second_multiboot_image.bit
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Extended Spartan-3A Family MultiBoot
Starting with the Spartan-3A FPGA family, MultiBoot is expanded and enhanced to 
provide additional flexibility and capabilities.

• Extended Spartan-3A family MultiBoot supports multiple FPGA bitstream images 
beyond just the two images supported on Spartan-3E FPGAs.

• The maximum number of FPGA images supported is limited either by the size of the 
configuration PROM or the total number of address bits.

♦ BPI mode supports up to 26 address bits, which addresses up to 64M bytes or 
512M bits.

♦ SPI mode supports up to 24 address bits, which addressees up to 16M bytes or 
128M bits.

♦ An Extended Spartan-3A family bitstream, depending on device logic density, 
ranges between approximately 0.5M to 11.5M bits per FPGA.

• Extended Spartan-3A family FPGAs can MultiBoot between different configuration 
modes. For example, the FPGA can initially configure from parallel Flash using BPI 
mode, then MultiBoot to a configuration image stored in SPI serial Flash using Master 
SPI mode. For the Spartan-3AN Engineering Samples, see the Spartan-3AN Errata for 
limitations on MultiBoot after configuring from internal SPI Flash.

• The initial configuration image is always located at address 0, regardless of 
configuration mode.

• Subsequent MultiBoot images can be located anywhere in memory, aligned to a byte 
location, with some restrictions.

♦ If the FPGA is set to wait for the Digital Clock Managers (DCMs) to lock before 
finishing configuration, then there must be sufficient padding between images to 
allow for this time. The padded region can contain data, but it cannot contain a 
valid configuration synchronization word.

♦ Individual bitstream images may be aligned to a sector or page boundary within 
the attached Flash memory device.

• A built-in configuration watchdog timer prevents a MultiBoot operation from 
“hanging” on an invalid FPGA configuration image.

♦ If no synchronization word is detected within the watchdog time-out period, the 
FPGA automatically returns to and reloads the default, initial configuration 
image.

Specifying the Next MultiBoot Configuration Address
The initial FPGA configuration bitstream is always loaded at address 0 from the attached 
configuration PROM, regardless of mode. For MultiBoot operations, there are two 
methods for the FPGA application to load the address of the next MultiBoot configuration 
image.

1. Fixed, Known Address: If the next address is predefined and known at design time, 
the next MultiBoot address can be preloaded within the current FPGA bitstream using 
the next_config_addr bitstream generator (BitGen) option. The parallel NOR Flash 
address or the SPI serial Flash address is specified as an seven-character hexadecimal 
string.

next_config_addr = 0x0000000

http://www.xilinx.com
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2. Variable or Calculated Address: The FPGA application itself can supply the address 
of the next MultiBoot image by writing a command sequence to the FPGA’s 
ICAP_SPARTAN3A design primitive.

Required Data Spacing between MultiBoot Images
Extended Spartan-3A family MultiBoot addressing is flexible enough to allow a bitstream 
to begin at any byte boundary. However, there are a few practical limitations, based on 
specific application requirements.

Flash Sector, Block, or Page Boundaries

Extended Spartan-3A family FPGAs load MultiBoot configuration images from an external 
Flash PROM. All Flash PROMs have an internal memory architecture that arranges the 
memory into sectors, blocks, or pages. Nearly all PROMs have multiple sectors. Some 
architectures provide additional granularity, splitting a sector into smaller blocks, or even 
smaller still, pages.

Ideally, an Extended Spartan-3A family MultiBoot configuration image should be aligned 
to a sector, block, or page boundary. The specific requirement depends on the Flash PROM 
architecture. If the smallest erasable element in the Flash PROM is a sector, then align the 
FPGA bitstream to a sector boundary. This way, one FPGA bitstream can be updated 
without affecting others in the PROM.

Additional Memory Space Required for DCM_WAIT

An Extended Spartan-3A family application may contain one or more Digital Clock 
Managers (DCMs). Each DCM provides an option setting that, during configuration, 
causes the FPGA to wait for the DCM to acquire and lock to its input clock frequency 
before the DCM allows the FPGA to finish the configuration process. The lock time, which 
is specified in the Extended Spartan-3A family data sheet, depends on the DCM mode, and 
the input clock frequency.

Even if the FPGA is waiting for one or more DCMs to lock before completing 
configuration, the FPGA’s configuration controller continues searching for the next 
synchronization word. If two adjacent MultiBoot images are placed one immediately 
following the other, and the first FPGA bitstream contains a DCM with the DCM_WAIT 
option set, then potential configuration problems can occur. If the controller sees the 
synchronization word in the second FPGA bitstream before completing the current 
configuration, it starts interpreting data from the second bitstream. However, the FPGA’s 
configuration logic may complete the current configuration even though the FPGA has 
read data from the second bitstream.

Caution! FPGA applications that use the DCM_WAIT option on a DCM must ensure sufficient 
spacing between Extended Spartan-3A family MultiBoot configuration images!

Spacing MultiBoot bitstreams sufficiently apart in memory prevents the FPGA from ever 
seeing the second synchronization word. The following are some points to consider.

• Is the DCM_WAIT option being used in the FPGA application? The potential issue 
only occurs if DCM_WAIT=TRUE.

• Which DCM outputs are used? There are two lock time specifications in the data 
sheet: LOCK_DLL specifies the lock time for the DLL outputs from the DCM (CLK0, 
CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV) and LOCK_DFS specifies the 
lock time for the DFS outputs (CLKFX, CLKFX180).
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• The specified lock time also depends on the input clock frequency. Again, consider 
both the DLL and DFS specifications. The lock time is longest at 5 ms for input 
frequencies below 15 MHz

• The amount of spacing between bitstreams also depends on the ConfigRate bitstream 
option setting in the bitstream and the maximum frequency of CCLK at that 
ConfigRate setting.

• The number of spacing bits required also depends on the configuration mode. The SPI 
Flash mode receives one bit per clock while the BPI mode receives eight bits or one 
byte per clock.

Example

A Spartan-3A MultiBoot application includes an FPGA bitstream that contains at least 
one DCM with the DCM_WAIT option set TRUE. The FPGA application uses a DLL 
output from the DCM. The input clock frequency to the DCM is 33 MHz. The data 
sheet lock time specification (LOCK_DLL) for DCM clocks faster than 15 MHz is 600 
μs. The FPGA bitstream has the ConfigRate option set to 25. According to 
DS529: Spartan-3A FPGA Family Data Sheet, setting ConfigRate:25 means that CCLK 
will never have a period shorter than 45 ns. The MultiBoot application configures from 
an SPI serial Flash.

Dividing the 600μs lock time by the 45 ns CCLK period yields 13,334 clock cycles. In 
SPI mode, the FPGA receives one bit per clock cycle. Consequently, under these 
conditions, two MultiBoot configuration images must be place more than 13,334 bit 
locations from each other in memory.

If the FPGA configured from parallel Flash, then the FPGA receives 8 bits per clock 
cycle. Consequently, the application must space the two configurations apart by more 
than 13,334 byte locations, which is equivalent to 106,672 bits.

The memory space between two configuration images can contain data as long as it does 
not contain a valid Spartan-3A configuration synchronization word, shown in Table 12-3, 
page 244. Alternatively, leave the space between locations programmed with 0xFF, which 
is the same state as an unprogrammed Flash location.

MultiBoot Command Sequence (ICAP Example)
The following steps are required to initiate a MultiBoot reconfiguration event from within 
the FPGA application using the ICAP design primitive. MultiBoot events can also be 
issued via JTAG, the Slave Serial, or the Slave Parallel (SelectMAP) interface. The specific 
bit sequences supplied below are for the ICAP interface, but the same general approach 
also applies for the other interfaces.

Caution! By Xilinx convention, data bit D0 is the most-significant bit. In many other 
conventions, data bit D7 is the most-significant bit. In the application, ensure that the correct 
value is being written to the ICAP interface, either by adjusting the data written to the interface or 
by reversing the wiring connections to the interface.

Design Specification

• Enable the ICAP interface, which is required for MultiBoot functionality, in the FPGA 
configuration bitstream, using the ICAP_Enable:Auto or ICAP_Enable:Yes bitstream 
generator option setting.

Caution! The ICAP interface will not be available until the first configuration has completed 
startup, including the End of Startup cycle. Allow a few additional clock cycles after the end of 
configuration before beginning the ICAP MultiBoot sequence. See “Startup” in Chapter 12.
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• If the next address is fixed and already known at design time, preload the GENERAL1 
and GENERAL2 registers with default values by setting the next_config_addr 
bitstream generation (BitGen) option.

FPGA Application Run Time

• Issue the synchronization start word to the ICAP interface.

• If the FPGA application calculates the next MultiBoot configuration start address, 
load the GENERAL1 and GENERAL2 registers via ICAP with the start address of the 
next MultiBoot configuration image.

• OPTIONAL: If rebooting from a different configuration source, write the appropriate 
values to the MODE_REG register. See “Switching between MultiBoot Configuration 
Memory Types,” page 286 for more information.

• Issue the REBOOT command to the CMD register.

• Issue a NoOp command to the ICAP interface.

MultiBoot from an Address Preloaded during Configuration

Table 14-2 shows the command sequence to initiate a MultiBoot event, assuming the 
following.

• The GENERAL1 and GENERAL2 registers are preloaded during configuration via the 
next_config_addr bitstream generation (BitGen) option. 

• The next MultiBoot address is in the same memory originally used to configure the 
FPGA or the same memory used during the last MultiBoot operation.

Each 16-bit command is written as two bytes to the ICAP interface, with the high byte 
presented first, followed by the low byte. Note that D0 is the most-significant bit (msb) for 
the ICAP interface, which is the opposite direction from most processors.

MultiBoot to a Address Specified by the FPGA Application

Table 14-3 shows an example where the FPGA application specifies the address of the next 
MultiBoot image. This specific example is for SPI serial Flash, but parallel NOR Flash is 
similar with slightly different definitions of the bits written to the GENERAL2 register 
(CLK cycles 9 and 10).

Table 14-2: Command Sequence to Initiate MultiBoot from a Preloaded Address

CLK 
Cycle

Command
High or 

Low Byte
D0 D1 D2 D3 D4 D5 D6 D7 Hex

1
SYNC WORD

High 1 0 1 0 1 0 1 0 0xAA

2 Low 1 0 0 1 1 0 0 1 0x99

3 Type 1 Write CMD
(1 Word)

High 0 0 1 1 0 0 0 0 0x30

4 Low 1 0 1 0 0 0 0 1 0xA1

5
REBOOT Command

High 0 0 0 0 0 0 0 0 0x00

6 Low 0 0 0 0 1 1 1 0 0x0E

7
No Op

High 0 0 1 0 0 0 0 0 0x20

8 Low 0 0 0 0 0 0 0 0 0x00
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Each 16-bit command is written as two bytes to the ICAP interface, with the high byte 
presented first, followed by the low byte. Note that D0 is the most-significant bit (MSB) for 
the ICAP interface, which is the opposite direction from most processors.

The sequence in Table 14-3 uses 16 steps, and consequently 16 CLK cycles and 16 memory 
locations. The sequence can be shortened to 12 CLK cycles by making the following simple 
changes.

• Align the next MultiBoot address to a 16-bit (64K) boundary and pre-assign the 
contents of the GENERAL1 register to 0x0000 by setting the 
next_config_addr:00000000 bitstream generator option. The next MultiBoot address 
is then selectable solely by writing to the GENERAL2 register. This eliminates the four 
steps between CLK cycles 3 and 6.

MultiBoot using SelectMAP
ICAP is the internal mirror of the SelectMAP interface. The command sequence for 
MultiBoot using the SelectMAP interface is the same as for the ICAP interface. You must 
control CS_B/CSI_B and RDWR_B for any write to the SelectMAP interface; it is important 
to avoid an Abort. An Abort is triggered when RDWR_B is toggled while CS_B/CSI_B is 
asserted. 

MultiBoot using Slave Serial
The command sequence for MultiBoot using the Slave Serial interface is the same as the 
ICAP command sequence except the sequence starts with the LSB first.

Table 14-3: Command Sequence to Initiate MultiBoot to a Specified Address

CLK 
Cycle

Command
High or 

Low Byte
D0 D1 D2 D3 D4 D5 D6 D7 Hex

1
SYNC WORD

High 1 0 1 0 1 0 1 0 0xAA

2 Low 1 0 0 1 1 0 0 1 0x99

3 Type 1 Write GENERAL1
(1 Word)

High 0 0 1 1 0 0 1 0 0x32

4 Low 0 1 1 0 0 0 0 1 0x61

5 Lower 16 bits of MultiBoot 
Address

High A15 A14 A13 A12 A11 A10 A9 A8

6 Low A7 A6 A5 A4 A3 A2 A1 A0

7 Type 1 Write GENERAL2
(1 Word)

High 0 0 1 1 0 0 1 0 0x32

8 Low 1 0 0 0 0 0 0 1 0x81

9 Upper bits of MultiBoot Address 
(SPI mode example)

High C7 C6 C5 C4 C3 C2 C1 C0

10 Low A23 A22 A21 A20 A19 A18 A17 A16

11 Type 1 Write CMD
(1 Word)

High 0 0 1 1 0 0 0 0 0x30

12 Low 1 0 1 0 0 0 0 1 0xA1

13
REBOOT Command

High 0 0 0 0 0 0 0 0 0x00

14 Low 0 0 0 0 1 1 1 0 0x0E

15
No Op

High 0 0 1 0 0 0 0 0 0x20

16 Low 0 0 0 0 0 0 0 0 0x00
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MultiBoot using JTAG
The easiest method for MultiBoot using the JTAG interface is with an SVF file (see 
XAPP503 SVF and XSVF File Formats for Xilinx Devices). The command sequence is the same 
as the ICAP command sequence and can be loaded into configuration memory using a 
CFG_IN instruction. The following is an example of how to construct the CFG_IN 
instruction.

// MultiBoot command sequence
//FFFF => ffff Dummy word shifted in first
//AA99 => 1010 1010 1001 1001 => 1001 1001 0101 0101 => 9955 SYNC
//30A1 => 0011 0000 1010 0001 => 1000 0101 0000 1100 => 850a Type 1 Write to CMD
//000E => 0000 0000 0000 1110 => 0111 0000 0000 0000 => 7000 REBOOT command
//2000 => 0010 0000 0000 0000 => 0000 0000 0000 0100 => 0004 NOOP
//2000 => 0010 0000 0000 0000 => 0000 0000 0000 0100 => 0004 NOOP
// Append the commands and put them into an SDR for CFG_IN
// This will load the command sequence to config memory in the same way that the ICAP would
// For SDR command, 24 hex characters: 24 x 4 = 96 bit shift
// Loading device with a `cfg_in` instruction
SIR 6 TDI (05);
// Loads the instruction to the IR
//SDR 96 TDI (0004 0004 7000 850a 9955 ffff) SMASK (ffff ffff ffff ffff ffff ffff ffff)
SDR 96 TDI (000400047000850c9955ffff) SMASK (ffffffffffffffffffffffffffff);
STATE RESET;

MultiBoot Registers
Generally, there are three ICAP registers involved in a MultiBoot application. The address 
of the next MultiBoot bitstream is stored in registers GENERAL1 and GENERAL2, 
although they can be preloaded via BitGen option next_config_addr. To trigger a 
MultiBoot event, the FPGA application must issue a REBOOT command using the CMD 
register.

Next MultiBoot Start Address (GENERAL1, GENERAL2)

The start address of the next MultiBoot configuration image is stored in two 16-bit 
registers, called GENERAL1 and GENERAL2. These registers can also be preloaded using 
the bitstream generation (BitGen) option next_config_addr.

The GENERAL1 and GENERAL2 registers are not cleared or modified during a MultiBoot 
event.

The GENERAL1 register holds the lower 16 bits of the next MultiBoot address, as shown in 
Table 14-4.

The context of the GENERAL2 register depends on whether the next MultiBoot address is 
in an external parallel NOR Flash (BPI mode) or an external SPI serial Flash (SPI mode).

In BPI mode, the GENERAL2 register contains the upper 10 bits of the 26-bit BPI address, 
as shown in Table 14-5. The upper six bits of the register are reserved.

Table 14-4: GENERAL1 Register Definition

GENERAL1
Address 01_0011 (0x13)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
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In SPI mode, the GENERAL2 register contains the upper 8 bits of the 24-bit SPI address, as 
shown in Table 14-6. The upper eight bits of the register contain the specific byte-wide read 
command for the attached external SPI serial Flash device.

Command Register (CMD)

Configuration commands control the operation of the configuration state machine. Each 
command consists of five bits, as shown in Table 14-7.

Only one command is required for MultiBoot operations, the REBOOT command, which is 
binary 01110.

Table 14-5: GENERAL2 Register Definition for BPI Mode Options

GENERAL2
Address 01_0100 (0x14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — A25 A24 A23 A22 A21 A20 A19 A18 A17 A16

Table 14-6: GENERAL2 Register Definition for SPI Mode Options

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI Flash Read Command Upper Byte of 24-bit SPI Read Address

C7 C6 C5 C4 C3 C2 C1 C0 A23 A22 A21 A20 A19 A18 A17 A16

Table 14-7: CMD Register Definition

CMD
Address 00_0101 (0x05)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

REBOOT

Command

0 1 1 1 0

http://www.xilinx.com
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Configuration Mode Register (MODE_REG)

The configuration mode register, MODE_REG, defines which configuration mode the 
FPGA uses upon the next MultiBoot trigger event. The NEW_MODE bit defines whether 
the FPGA uses the M[2:0] mode settings defined by the M[2:0] pins of the FPGA or whether 
the FPGA uses the settings defined by the BOOTMODE bits. Setting NEW_MODE = 1 
allows the FPGA to MultiBoot to a different type of attached memory. This is an advanced 
option that is not recommended for most situations. Note that SPI fallback is not supported 
when using NEW_MODE=1.

Table 14-8 describes the bit options available in the MODE_REG register.

Generating an Extended Spartan-3A Family MultiBoot PROM Image using 
iMPACT

Note: For Spartan-3AN, see also “Preparing an In-System Flash Programming File,” page 220.

The iMPACT programming software provides a graphical, step-by-step approach to create 
a MultiBoot PROM file. Similar functionality is also available from the command line or 
via scripts using the PROMGen utility, shown in Figure 14-10. Follow the steps outlined 
below to create an Extended Spartan-3A family MultiBoot PROM file using the iMPACT 
software. Figure 14-11, page 279 shows the Extended Spartan-3A family MultiBoot design 
used in the following example.

Table 14-8: MODE_REG Bit Options

MODE_REG
Address 01_0101 (0x15)

Name Bit(s) Description Default

Reserved [15:7] Reserved 0

NEW_MODE 6

0: Sample M[2:0] pins and, if in SPI mode, the VS[2:0] pins 
to determine MultiBoot configuration mode.

1: Use BOOTMODE value to determine MultiBoot 
configuration mode.

0

BOOTMODE 5:3

Define the M[2:0] configuration mode select setting for 
the next MultiBoot event. Requires NEW_MODE = 1. 
Available options are identical to FPGA mode pin 
settings, M[2:0], shown in Table 2-1, page 50. Default SPI 
mode is not recommended since it does not support 
fallback when using NEW_MODE=1.

001
(SPI)

Reserved 2:0 Reserved 111
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1. Invoke the iMPACT programming software.

2. As shown in Figure 14-3, choose Prepare a PROM File.

3. Click Next.

Figure 14-11:  Spartan-3A MultiBoot Example using XC3S700A and SPI Flash

Figure 14-12: Prepare a MultiBoot PROM Image
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4. As shown in Figure 14-13, target a PROM Supporting Multiple Design Revisions.

5. Choose the Spartan3A MultiBoot method.

6. Select a PROM File Format. The MCS format is supported by a variety of 
programmers, but other options are available.

7. Enter a PROM File Name.

8. Click Next.

Figure 14-13: Select a PROM Supporting MultiBoot for Extended Spartan-3A 
Family FPGAs
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9. As shown in Figure 14-14, choose whether to create an Extended Spartan-3A family 
MultiBoot image for SPI serial Flash or for parallel NOR Flash, using BPI mode. This 
example uses an SPI PROM.

10. Click Next.

11. As shown in Figure 14-15, Select SPI PROM Density, which is always specified in bits. 
This example uses a 16 Mbit PROM.

12. The initial MultiBoot image is always loaded starting at address 0.

13. To add additional images, check Enable Data Stream.

14. Specify the starting address of each MultiBoot image using hexadecimal notation.

Figure 14-14: SPI or Parallel Flash PROMs are Supported

Figure 14-15: Enter a PROM Density and Specify MultiBoot Image Start Locations
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♦ What is the size of the FPGA configuration bitstream? Is the bitstream for a single 
FPGA or a multi-FPGA daisy chain? Extended Spartan-3A family FPGAs do 
support daisy chains when using MultiBoot.

♦ What are the page or sector boundaries of the Flash device? Ideally, the FPGA 
bitstream should start on a Flash sector boundary.

♦ If using the DCM_WAIT option on a Digital Clock Manager (DCM) with the 
FPGA application, is there enough additional spacing between images to 
accommodate the extra lock time?

An uncompressed Spartan-3A XC3S700A FPGA configuration bitstream requires 
2,732,640 bits. Dividing that number by eight provides the required number of bytes, 
341,580 bytes. Divide the number of bytes by 1,024 to determine the number of 
kilobytes, or 333.57K. The Atmel AT45DB161D serial Flash uses 128Kbyte sectors. 
Consequently, a single XC3S700A configuration bitstream occupies ~2.6 sectors. The 
first bitstream always starts at address 0. The next Extended Spartan-3A family 
MultiBoot image should be placed on a following Flash sector boundary. The next 
available boundary after the first configuration image begins at address hexadecimal 
address 0x60000. Place the second bitstream at this address or any subsequent sector 
boundary. With an image at 0x60000, a third image starts at 0xC0000.

15. Click Next.

16. The iMPACT software summarizes the current settings, as shown in Figure 14-16. 
Click Finish to continue.

17. As shown in Figure 14-17, add the initial FPGA bitstream. This is the design that is 
loaded into the FPGA at power-up, or whenever the PROG_B pin is pulsed Low. This 
is also the default bitstream that is automatically loaded if the Configuration 
Watchdog Timer (CWDT) expires during a MultiBoot operation.

Figure 14-16: Confirm PROM Settings
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18. Select the first FPGA configuration bitstream.

19. Click Open.

20. Click No.

21. Perform Steps 17 through 20, but this time for the second FPGA configuration 
bitstream.

22. As shown in Figure 14-18, start adding the third FPGA configuration bitstream.

Figure 14-17: Select the First (Default) Configuration Image
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Figure 14-18: Select the Third MultiBoot Configuration Image
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23. Select the third FPGA configuration bitstream.

24. Click Open.

25. Click No.

26. File selection is complete. Click OK.

27. As shown in Figure 14-19, the iMPACT software reports how much of the PROM is 
consumed by the FPGA configuration bitstream files. Double-click Generate File.

28. The iMPACT software successfully generates a PROM file using the name specified in 
Step 7 with the format and file extension specified in Step 6. The file is created in the 
current directory. A “PROMGen Report File” is also created.

Configuration Fallback
The Spartan-3A, Spartan-3AN, and Spartan-3A DSP families include logic to automatically 
“fallback” and re-start configuration after a configuration failure. These features are 
particularly useful when providing the FPGA with “live” Flash updates. This feature is 
especially useful in MultiBoot applications, including applications that will be updated in 
the field, to help protect against failed updates. Two events may cause the device to 
fallback.

1. A timeout without seeing the configuration synchronization word AA99 (fallback 
always enabled)

2. A CRC error (fallback optional)

Figure 14-19: Generate the PROM File Using the Specified Parameters
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Configuration Watchdog Timer (CWDT) and Fallback
Extended Spartan-3A family FPGAs contain a configuration watchdog timer (CWDT). The 
CWDT provides protection against errant configuration operations such as the following.

• Configuration or MultiBoot operations to an invalid start location

• Configuration or MultiBoot operations to a valid start location, but loaded with an 
incomplete or partially valid configuration bitstream.

The CWDT is a 16-bit counter, clocked by the CCLK configuration clock signal. Upon any 
FPGA configuration operation, be it from power-up, a PROG_B pulse, or a MultiBoot 
event, the CCLK clock begins operation at its lowest ConfigRate setting, which is 
approximately 1 MHz. The CWDT expires 64K clock cycles after the start of configuration, 
or in approximately 65 ms.

If, during a MultiBoot operation, the FPGA does not see a valid configuration 
synchronization word before the CWDT expires, then the FPGA will automatically fallback 
to the default bitstream located at address 0. The FPGA automatically reconfigures from 
the default bitstream, even resending the appropriate SPI Flash read command if using the 
SPI configuration mode.

CRC Error and Fallback
Similarly, an Extended Spartan-3A family FPGA can also recover from a MultiBoot 
operation to a bitstream that has a correct synchronization word, but that eventually issues 
a CRC error for some reason. Set the Reset_on_err:Yes bitstream option to cause the FPGA 
to automatically re-initialize and retry the first configuration at address 0 should a CRC 
error occur. CRC checking must also be enabled, which is the default.

Note that the Reset_on_err:Yes bitstream option is included in the first part of the next 
bitstream. For best support of fallback, Reset_on_err:Yes should be set in each bitstream 
used in a MultiBoot application. If a synchronization word pattern is found but the 
Reset_on_err:Yes bitstream option is not seen due to corrupt data, the device will not 
fallback but will indicate a configuration error on INIT_B and wait for reconfiguration. 
Also note that the CRC check is done at the end of the bitstream; therefore, if the end of the 
bitstream is missing or corrupted the device will not perform the CRC check and automatic 
fallback will not occur. Fallback helps automatically recover from minor corruptions in 
otherwise valid bitstreams, but a significantly corrupted or invalid configuration file may 
not permit fallback to occur. Therefore it is still important to make sure that a valid 
configuration image is being read, while using fallback to recover from minor errors.

Fallback Limited to 3 Additional Tries
In BPI and SPI modes, if reconfiguration has failed and done fallback three times, then on 
the fourth failure the FPGA halts and drives the INIT_B pin Low. Pulsing the PROG_B pin 
or cycling power restarts the configuration process from the beginning.

The counter that keeps track of the failed configurations is reset only when PROG_B is 
pulsed or power is cycled; it is not reset after a successful configuration. The FPGA will 
stop attempting configuration if the initial design is good but the MultiBoot bitstream is 
bad, after the fourth attempt at MultiBoot. Note that when configuring via SPI or BPI 
modes and using the Reset_on_err:Yes bitstream option, any combination of successful 
and failed configurations, over any period of time, will halt after the fourth failed 
configuration, and require assertion of PROG_B or power cycling to reconfigure. It is good 
design practice to have the ability to assert PROG_B to reset configuration if necessary.
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Advanced Capabilities

Switching between MultiBoot Configuration Memory Types

The Extended Spartan-3A family MultiBoot feature also provides the advanced capability 
to jump between configuration modes and hence different types of external memory. This 
feature is not recommended for most applications because switching to the SPI mode does 
not support the Configuration Watchdog Timer.

As shown in Figure 14-20, during a MultiBoot event, the Extended Spartan-3A family 
internal configuration controller determines which FPGA configuration mode to execute. 
By default, the FPGA uses the mode select values physically defined on the FPGA’s M[2:0] 
mode select pins. Similarly, if the FPGA mode pins specify the Master SPI Flash mode, then 
the controller uses the Read Command associated with the variant select values, VS[2:0], 
defined by the associated FPGA pins.

However, by setting the control bit NEW_MODE = 1 in the MODE_REG register, the 
internal configuration controller uses the configuration mode specified by the 
BOOTMODE bits. If BOOTMODE = 001 to specify the Master SPI Flash mode, then the 
controller uses the Read Command specified in the higher-order byte {15:8] of the 
GENERAL2 register, and the remaining lower-order byte of the GENERAL2 register 
provides the upper 8 bits of the 24-bit MultiBoot address. If BOOTMODE = 010 to specify 
the BPI Flash mode, then the lower 10 bits of the GENERAL2 register become the upper 10 
bits of the 26-bit BPI MultiBoot address. In both cases, the GENERAL1 register provides 
the lower 16 bits of the MultiBoot address (see “Next MultiBoot Start Address 
(GENERAL1, GENERAL2),” page 276).

Caution! Fallback is not supported when switching to the SPI mode during MultiBoot.

Figure 14-20: Extended Spartan-3A Family MultiBoot Configuration Mode Control
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MultiBoot Design Examples
The reference designs for the Spartan-3A/3AN FPGA Starter Kit board include MultiBoot 
design examples:

http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm

XAPP468 Fail-safe MultiBoot Reference Design includes algorithms to test bitstream integrity 
and to select the bitstream image to load.

http://www.xilinx.com
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm
http://www.xilinx.com/support/documentation/application_notes/xapp468.pdf
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Chapter 15

Protecting FPGA Designs

Similar to a processor, a Spartan®-3 generation FPGA receives its configuration 
information, i.e., its application program, from an external memory source. The exposed 
external interface makes both processor code and FPGA bitstreams potentially vulnerable 
to copying or cloning.

Unlike a processor, there are no simple “reverse assemblers” for FPGA applications. 
Processors have a defined, fixed instruction set and instruction length, making a reverse 
assembler for a processor a straightforward task. However, reverse engineering an entire 
FPGA design and then converting it to a human-understandable form is exceedingly 
difficult. An FPGA configuration bitstream contains millions of interrelated bits. 
Furthermore, the Xilinx® bitstream format is both proprietary and confidential.

While reverse engineering an FPGA bitstream is difficult, directly copying an FPGA 
bitstream without understanding its underlying function, is rather straightforward. This 
chapter describes the available, low-cost solutions to protect a design against cloning and 
even to protect an intellectual property (IP) core implemented within an FPGA.

This chapter covers the following design security topics.

• “Basic FPGA Hardware-Level Security Options,” page 289

• “Approaches to Design Security,” page 292

• “Extended Spartan-3A Family Unique Device Identifier (Device DNA),” page 294

• “Authentication Design Examples,” page 297

• “U.S. Legal Protection of FPGA Configuration Bitstream Programs,” page 306

Basic FPGA Hardware-Level Security Options
Spartan-3 generation FPGAs provide advanced debugging capabilities via a function 
called Readback. Similarly, the FPGA generally allows full access to all configuration 
operations. However, for security-conscious applications, the Readback function and 
configuration operations, especially via JTAG, provide a potential point of attack.

Fortunately, the FPGA bitstream optionally restricts access to configuration and readback 
operations. By default, there are no restrictions and the JTAG port is always active, 
providing access to configuration and Readback. 

The SelectMAP configuration interface, which can also be used to perform Readback, is 
disabled by default and is not available unless specifically enabled by setting the 
Persist:Yes bitstream option. 

The only way to remove a security setting in a configured FPGA is to clear the FPGA 
program by asserting PROG_B or cycling power.

http://www.xilinx.com
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Spartan-3 and Spartan-3E Security Levels
Table 15-1 shows the available security levels on Spartan-3 and Spartan-3E FPGAs. 
Extended Spartan-3A family FPGAs provide an extra level, as shown in Table 15-2.
t

Extended Spartan-3A Family Security Levels
Extended Spartan-3A family FPGAs provide an additional security level, as shown in 
Table 15-2. Readback can be optionally disabled completely or disabled except for internal 
access from the FPGA application via the Internal Configuration Access Port (ICAP).

Setting the Security Level in the Bitstream
There are two ways to set the security level in the bitstream, either from the ISE® software 
Project Navigator or from the BitGen command-line utility.

ISE Software Project Navigator

Set the security level in the FPGA bitstream, as shown in Figure 15-1.

Table 15-1: Spartan-3 and Spartan-3E Security Levels

Security Level Description

None  Default. Unrestricted access to all configuration and Readback functions

Level1 Disable all Readback functions from either the SelectMAP or JTAG port.

Level2
Disable all configuration and Readback functions from all configuration 
and JTAG ports.

Table 15-2: Extended Spartan-3A Family BitGen Security Levels

Security Level Description

None  Default. Unrestricted access to all configuration and Readback functions

Level1
Disable all Readback functions from both the SelectMAP or JTAG ports. 
Readback via the Internal Configuration Access Port (ICAP) allowed.

Level2 Disables all Readback operations on all ports.

Level3
Disable all configuration and Readback functions from all configuration 
and JTAG ports.

http://www.xilinx.com
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1. Right-click Generate Programming File.

2. Select Properties.

From the Process Properties dialog box shown in Figure 15-2, set the following options.

3. Select the Readback Options category.

4. Choose the Security level value that best meets the needs of the application.

Figure 15-1: Setting Bitstream Generator Options from ISE Project Navigator
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BitGen Command-Line Utility

The security options are also available via the BitGen command-line utility, as shown 
below. The available Security options are provided in Table 15-1 or Table 15-2, depending 
on the Spartan-3 generation FPGA family used. Table 15-3 shows how the options entered 
via the ISE Project Navigator relate to the BitGen command-line options. An example that 
disables Readback is provided below.

bitgen -g Security:Level1 [remaining options] 

Approaches to Design Security
Xilinx programmable logic devices incorporate a variety of approaches to design security, 
as summarized in Table 15-4. Xilinx employs each of these security options in different 
product families. The Spartan-3 generation FPGAs introduce a new option called 
Authentication, which is described throughout the remainder of this chapter.

Table 15-3: Relation between ISE Project Navigator and BitGen Options

Value
Spartan-3/

Spartan-3E FPGAs

Spartan-3A/3AN
Spartan-3A DSP 

FPGAs

Enable Readback and Reconfiguration (default) None None

Disable Readback Level1 Level1

Disable Readback and Reconfiguration Level2 Level3

Table 15-4: Programmable Logic Security Options Compared

Security Bits Encryption Authentication

Xilinx product family that uses this security 
option

Xilinx CPLDs
Virtex®-II, Virtex-II 

Pro, Virtex-4, Virtex-
5 FPGAs

Spartan-3A/3AN/
3A DSP FPGA (but 

variations possible in 
Spartan-3/3E FPGAs)

Is bitstream or programming file visible after 
being secured? No

No, only in 
encrypted form

Yes, but cannot be used 
except in an 

authenticated system

Does security method provide bitstream 
(design) security?

Yes Yes Yes

What happens when an unauthorized or 
unencrypted bitstream loaded into FPGA?

N/A Does not configure

Behavior defined by 
FPGA application (see 

“Handling Failed 
Authentications”)

Does the security method provide an option to 
secure application data?

No No Yes

Does the security method provide an option to 
provide “Digital Rights Management”

No No Yes

Technical Limitations Requires a large 
amount of on-chip 

nonvolatile memory
Key management

Requires logic in the 
FPGA application to 
authenticate design
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Security Bits
Complex PLD (CPLD) designs are programmed into on-chip, nonvolatile memory, similar 
to simple microcontrollers. As such, CPLDs and microcontrollers typically offer a 
“security” bit or bits that locks the internal memory array, preventing the array from being 
read. Locking the array prevents the design from being easily copied.

Encryption
Some FPGAs employ bitstream encryption. Encryption essentially scrambles the external 
bitstream so that it is unusable unless loaded into an FPGA containing the correct “key” to 
decrypt the bitstream. The encryption circuitry is typically a dedicated embedded function 
on the FPGA, consuming valuable silicon area. Applications that do not use encryption 
pay for the feature regardless.

Encryption is considered highly secure, as implemented with battery back-up on the Xilinx 
Virtex, Virtex-II Pro, Virtex-4, and Virtex-5 FPGA families.

The built-in encryption circuitry only protects the FPGA bitstream and is typically not 
available after configuration to protect application data.

The primary downside of encryption is key management and key distribution.

Authentication
Authentication is another protection technique, widely used in a variety of applications. 
Authentication is distinctly different than using either “security bits” or encryption. Here 
are a few examples of everyday applications using authentication.

• When you access an Automated Teller Machine (ATM), you insert your bank card and 
authenticate your identity by entering a Personal Identification Number (PIN). If 
someone steals your ATM card, they cannot use it without also having your PIN 
number.

• When you log onto your computer network, you enter your login name and your 
password. The password authenticates your identity. An imposter must have both 
your login name and your password to access the network from your account.

• Many software programs, including the Xilinx ISE development software, require an 
authorization code before they operate on your computer. You can freely copy the 
DVD but it can only be used when unlocked by the authorization code.

To be ideally effective, authentication requires an identity or authorization code with these 
two essential attributes.

1. Unique

2. Not easily cloned, copied, or duplicated

Weaknesses in either of these elements potentially compromise security. For example, if 
someone has your ATM card and your PIN number, kiss your cash goodbye. The PIN 
number, once learned, is easily cloned. This is one of the reasons behind the move to 
biometric authentication. While it is easy to learn a simple PIN number, it is presently quite 
difficult to clone a human iris or a fingerprint.

http://www.xilinx.com
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Extended Spartan-3A Family Unique Device Identifier (Device 
DNA)

Each Spartan-3A, Spartan-3AN, and Spartan-3A DSP FPGA contains an embedded, 
unique device identifier. The identifier is nonvolatile, permanently programmed into the 
FPGA, and is unchangeable making it tamper resistant.

This identifier is called the Device DNA. The FPGA application accesses the identifier 
value using the “Device DNA Access Port (DNA_PORT)” design primitive, shown in 
Figure 15-3.

Identifier Value
As shown in Figure 15-4, the Device DNA value is 57 bits long. The two most-significant 
bits are always ‘1’ and ‘0’. The remaining 55 bits are unique to a specific Extended Spartan-
3A family FPGA.

Operation
Figure 15-4 shows the general functionality of the DNA_PORT design primitive. An FPGA 
application must first instantiate the DNA_PORT primitive, shown in Figure 15-3, within a 
design.

To read the Device DNA, the FPGA application must first transfer the identifier value into 
the DNA_PORT output shift register. Assert the READ input during a rising edge of CLK, 
as shown in Table 15-5. This action parallel loads the output shift register with all 57 bits of 
the identifier. Because bit 56 of the identifier is always ‘1’, the DOUT output is also ‘1’. The 
READ operation overrides a SHIFT operation.

To continue reading the identifier values, assert SHIFT followed by a rising edge of CLK, as 
shown in Table 15-5. This action causes the output shift register to shift its contents toward 
the DOUT output. The value on the DIN input is shifted into the shift register.

Caution! Avoid a Low-to-High transition on SHIFT when CLK is High as this causes a spurious 
initial clock edge. Ideally, only assert SHIFT when CLK is Low or on a falling edge of CLK.

Figure 15-3: Extended Spartan-3A Family DNA_PORT Design Primitive
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If both READ and SHIFT are Low, the output shift register holds its value and DOUT 
remains unchanged.

The Spartan-3A Starter Kit board has a design example that demonstrates how to read the 
Device DNA value.

• Extended Spartan-3A Family Device DNA Reader Design Example
www.xilinx.com/products/boards/s3astarter/reference_designs.htm#dna_reader

Interface Timing
Table 15-6 provides the interface timing for the DNA_PORT design primitive. The timing 
is the same regardless of the FPGA’s speed grade. As always, please refer to the associated 
data sheet for official timing values.

Figure 15-4: DNA_PORT Operation

5655540
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Factory programmed, unchangeable

560
DIN DOUT57-bit bit loadable shift register
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SHIFT=1
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CLK
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Table 15-5: DNA_PORT Operations

Operation DIN READ SHIFT CLK Shift Register DOUT

HOLD X 0 0 X Hold previous value
Hold previous 

value

READ X 1 X ↑ Parallel load with 57-bit ID
Bit 56 of 

identifier, which 
is always ‘1’

SHIFT DIN 0 1 ↑ Shift DIN into bit 0, shift contents of Shift 
Register toward DOUT

Bit 56 of Shift 
Register

Notes: 
X = Don’t care
↑ = Rising clock edge

Table 15-6: DNA_PORT Interface Timing

Symbol Description Min Max Unit

tDNASSU Setup time on SHIFT before the rising edge of CLK 1.0 – ns

tDNASH Hold time on SHIFT after the rising edge of CLK 0.5 – ns

tDNADSU Setup time on DIN before the rising edge of CLK 1.0 – ns

tDNADH Hold time on DIN after the rising edge of CLK 0.5 – ns

tDNARSU Setup time on READ before the rising edge of CLK 5.0 10,000 ns

tDNARH Hold time on READ after the rising edge of CLK 0 – ns

http://www.xilinx.com
http://www.xilinx.com/s3astarter
http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm#dna_reader


296 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Identifier Memory Specifications
Figure 15-4 presents the general characteristics of the DNA identifier memory. The unique 
FPGA identifier value is retained for a minimum of ten years of continuous usage under 
worst-case recommended operating conditions. The identifier can be read, using the 
READ operation defined in Table 15-5, a minimum of 30 million cycles, which roughly 
correlates to one read operation every 11 seconds for the operating lifetime of the 
Spartan-3A/3AN/3A DSP FPGA.

Extending Identifier Length
As shown in Figure 15-5a, most applications that use the DNA_PORT primitive tie the DIN 
data input to a static value. However, other options are possible.

As shown in Figure 15-5b, the length of the identifier can be extended by feeding the 
DOUT serial output port back into the DIN serial input port. This way, the identifier can be 
extended to any possible length. However, there are still only 55 unique bits, with a 57-bit 
repeating pattern.

It is also possible to add additional bits to the identifier using FPGA logic resources. As 
shown in Figure 15-5c, the FPGA application can insert additional bits via the DNA_PORT 
DIN serial input. The additional bits provided by the logic resources could take the form of 
an additional fixed value or a variable computed from the Device DNA.

tDNADCKO
Clock-to-output delay on DOUT after rising edge 
of CLK 0.5 1.5 ns

tDNACLKF CLK frequency 0 100 MHz

tDNACLKL CLK High time 1.0 ∞ ns

tDNACLKH CLK Low time 1.0 ∞ ns

Table 15-6: DNA_PORT Interface Timing (Cont’d)

Symbol Description Min Max Unit

Table 15-7: Identifier Memory Characteristics

Symbol Description Minimum Units

DNA_CYCLES Number of READ operations, as defined 
in Figure 15-3 or JTAG ISC_DNA read 
operations. Unaffected by HOLD or 
SHIFT operations.

30,000,000 Read cycles

http://www.xilinx.com
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JTAG Access to Device Identifier
The FPGA’s internal device identifier, plus any values shifted in on the DIN input, can be 
read via the JTAG port using the private ISC_DNA command. This is a 1532 command and 
therefore it requires the ISC_ENABLE to be loaded before the ISC_DNA command is 
issued. JTAG access to the Device DNA value is only available before configuration of the 
FPGA.

Bit 56 of the identifier, shown in Figure 15-4, appears on the TDO JTAG output following 
the ISC_DNA command when the device enters the Shift-DR state. The remaining Device 
DNA bits and any data on the input to the register are shifted out sequentially while the 
JTAG controller is left in the Shift-DR state.

iMPACT Access to Device Identifier
The iMPACT software in the ISE 10.1 and later tools can also read the Device DNA value. 
"readDna -p <position>" is the batch command that will read the Device DNA from 
the unconfigured FPGA. 

Authentication Design Examples
Authentication can take various forms in an application, as described in the examples 
below. Some of these examples configure from an attached PROM, others are downloaded 
into the FPGA.

• “Extended Spartan-3A Family FPGA: Imprinting or Watermarking the Configuration 
PROM with Device DNA,” page 298

Figure 15-5: Possible Options for DIN Input
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• “Spartan-3E FPGA: Leveraging Security Features in Select Commodity Flash 
PROMs,” page 299

• “Extended Spartan-3A Family FPGA: Authenticating a Downloaded Design,” 
page 302

• “Authenticating any FPGA Design Using External Secure PROM,” page 303

Extended Spartan-3A Family FPGA: Imprinting or Watermarking the 
Configuration PROM with Device DNA

The Extended Spartan-3A family FPGA in Figure 15-6 configures using one of the Master 
configuration modes from an associated configuration PROM. The PROM contains both 
the FPGA configuration bitstream and a previously generated authentication check value. 
The PROM itself does not require any special features, just enough memory to contain both 
the FPGA bitstream and the authentication check value. The Extended Spartan-3A family 
FPGA has an internal unique Device DNA value.

At power-up or when PROG_B is pulsed Low, the FPGA configures normally.

As shown in Figure 15-7, part of the FPGA application includes circuitry that validates that 
the bitstream programmed into the PROM is authorized to operate on the associated 
Extended Spartan-3A family FPGA. In reality, the Device DNA and the authentication 
check value are both multi-bit binary values. However, for the sake of clarity, this example 
uses symbolic values. In this example, the FPGA’s Device DNA is “Blue” and the 
configuration PROM is programmed with the check value “Blueberry.”

Figure 15-6: Extended Spartan-3A Family FPGA Configures Normally

Figure 15-7: Extended Spartan-3A Family FPGA Authenticates the PROM Image 
Against Device DNA
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After configuration, the FPGA checks that the value contained in the PROM matches the 
value expected by the FPGA application. In this example, the FPGA validates that a 
“Blueberry” is indeed “Blue.” The bitstream loaded from the PROM is authentic, and the 
FPGA application is enabled for full operation.

What happens if an attacker copies the contents of an authenticated PROM, shown in 
Figure 15-7, and uses it with a different, similarly sized Extended Spartan-3A family 
FPGA? If the check value in the PROM does not match the value expected by the FPGA 
application, then the FPGA application decides how to handle this unauthorized copy. 
There are a variety of potential scenarios, as described in “Handling Failed 
Authentications,” page 304. In this example, the PROM image fails because the FPGA 
application checks that a “Blueberry” is not “Yellow.”

Spartan-3E FPGA: Leveraging Security Features in Select Commodity 
Flash PROMs

Only Extended Spartan-3A family FPGAs support the internal unique identifier feature. 
The feature is not available on Spartan-3 or Spartan-3E FPGAs. However, Spartan-3E and 
Spartan-3 FPGAs support a similar authentication method using commodity Flash PROMs 
that have their own device ID values. Table 15-8 provides example devices; there are likely 
others. The identifiers are only available in certain Flash PROM families and usually in the 
larger-density members of the family. The size of the identifier also varies by vendor and 
product family, from 64 bits to 256 bytes. Similarly, some devices also have a user-defined 
field that can be used to extend the size of the unique ID.

Figure 15-8: Authentication Fails Using an Unauthorized Copy
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Table 15-8: Example Flash PROMs with Embedded Unique Identifiers

Vendor Family
Data 

Format
Density Unique ID Field User Field

STMicro 
(Numonyx) M29W Parallel

16 Mbit and 
larger 64 bits –

Spansion S29A Parallel
32 Mbit and 

larger
256 bytes

(ESN) –

Atmel AT45DBxxxD Serial All 64 bytes 64 bytes

Atmel AT45BV Parallel
8 Mbit and 

larger
64 bits 64 bits

http://www.spansion.com/flash_memory_products/floating_gate.html
http://www.xilinx.com
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxIndustryStandardFlashM29.aspx
http://www.atmel.com/products/DataFlash/
http://www.atmel.com/dyn/products/devices.asp?family_id=624#702
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Figure 15-9 shows an authentication example using a Spartan-3E FPGA and a commodity 
Flash PROM with an embedded device identifier. In this example, the configuration 
PROM must contain a unique identifier. The PROM also contains the FPGA configuration 
bitstream and the authentication check value, specific to this implementation.

At power-up or when PROG_B is pulsed Low, the FPGA configures normally.

As shown in Figure 15-10, part of the FPGA application includes circuitry that validates 
that the bitstream programmed into the PROM is authorized to load. The PROM’s 
Device ID and the authentication check value are both multi-bit binary values. For the sake 
of clarity, this example uses symbolic values. The PROM’s Device ID is “Blue” and the 
configuration PROM is programmed with the check value “Blueberry.” The Flash ID plus 
the authentication check value should be as large as practical. A larger number of bits 
thwarts a possible “spoof” or “middleman” attack using an extra interposing device or 
devices that intercepts the access to the off-FPGA identifier and check value. The 
interposing device or devices mimics the response from an authentic PROM. This 
technique requires additional components and a new printed circuit board, the additional 
development and component costs of which act as a suitable deterrent.

If the FPGA authentication application accesses a large data field or check value, then the 
interposing device or devices must be more sophisticated and consequently more 
expensive. This potential vulnerability also highlights the advantage of the Extended 
Spartan-3A family Device DNA, which is securely accessed from inside the FPGA.

Intel 
(Numonyx)

Embedded 
Flash

(J3 v. D)
Parallel All 64 bits 64 bits

Intel 
(Numonyx)

S33 Serial All 64 bits
64 bits + 3,920 

bits

Macronix MX29 Parallel
32 Mbit and 

larger
128 word or 64K 

bytes –

Figure 15-9: Spartan-3E FPGA Authentication Example using Commodity Flash 
PROM with Identifier

Table 15-8: Example Flash PROMs with Embedded Unique Identifiers

Vendor Family
Data 

Format
Density Unique ID Field User Field

Spartan-3E FPGA Configuration PROM 
with Device ID

FPGA Bitstream

FPGA Fabric

Authentication 
Check Value

Device ID

UG332_c16_08_100406

http://www.xilinx.com
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/75d338438656550a48256f5500408bf7/?OpenDocument
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.numonyx.com/en-US/MemoryProducts/NOR/Pages/NumonyxEmbeddedFlashMomoryJ3vD.aspx
http://www.numonyx.com/Documents/Datasheets/314822_S33_Discrete_DS.pdf
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After configuration, the FPGA checks that the value contained in the PROM matches the 
value expected by the FPGA application. In this example, the FPGA validates that a 
“Blueberry” is indeed “Blue.” The bitstream loaded from the PROM is authentic, and the 
FPGA application is enabled for full operation.

The Spartan-3E Starter Kit board includes a design example demonstrating this technique. 
This same method also applies for Spartan-3A, Spartan-3AN, Spartan-3A DSP FPGAs.

• Low-Cost Design Authentication for Spartan-3E FPGAs
www.xilinx.com/products/boards/s3estarter/reference_designs.htm#authentication

Figure 15-10: Spartan-3E FPGA Authenticates the PROM Image Against the 
PROM’s Device ID
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Extended Spartan-3A Family FPGA: Authenticating a Downloaded Design
Authentication also works when downloading an FPGA design. In Figure 15-11, an 
intelligent host such as a microprocessor, microcontroller, or JTAG tester downloads a 
bitstream into an Extended Spartan-3A family FPGA. The bitstream is stored somewhere 
in the system, either in local memory, a disk drive, or obtained via a network connection. 
The downloaded FPGA application is not yet fully authenticated, but is partially 
functional to support the authentication process.

In Figure 15-12, the intelligent host reads the FPGA’s Device DNA identifier, either 
through the FPGA fabric or via the FPGA’s JTAG port. Using the Device DNA value, the 
host either computes an authentication check value locally or communicates to a remote 
host that generates the check value or looks up the value in a list of authenticated devices.

In Figure 15-13, the intelligent host writes the resulting authentication check value back 
into the FPGA. The FPGA then uses this value and the Device DNA value to authenticate 
the bitstream. If deemed authentic, the FPGA application is enabled for full operation.

Figure 15-11: Intelligent Host Downloads a Spartan-3A Bitstream

Figure 15-12: Host Reads Device DNA, Generates Authentication Value

Figure 15-13: Host Writes Authentication Value to Enable FPGA Application
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Authenticating any FPGA Design Using External Secure PROM
Authentication techniques are possible on any FPGA using an external secure PROM. 
Xilinx provides an example design using a Dallas Semiconductor/Maxim DS2432 SHA-1 
Secure EEPROM, as shown in Figure 15-14. This technique works with any Xilinx FPGA 
family with block RAM.

The FPGA configures normally from any configuration PROM. Alternatively, the FPGA 
bitstream can be downloaded using one of the Slave configuration modes.

The FPGA application contains an Authentication Core that communicates to an external 
DS2432 secure EEPROM. The authentication challenge between the FPGA and the 
EEPROM uses a random number and SHA-1 hashing to thwart attacks. If the 
authentication challenge fails, the FPGA application is disabled. Similarly, the FPGA 
application can re-authenticate the design at any time, during normal operation.

This application is discussed in more detail in Xilinx application note XAPP780. The 
Spartan-3E Starter Kit board includes all the necessary components. 

• XAPP780: FPGA IFF Copy Protection Using Dallas Semiconductor/Maxim DS2432 
Secure EEPROMs
http://www.xilinx.com/support/documentation/application_notes/xapp780.pdf

• DS2432 1Kb Protected 1-Wire EEPROM with SHA-1 Engine
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2914

• Spartan-3E Starter Kit
http://www.xilinx.com/s3estarter

Although not supported by an application note or example design, similar solutions are 
possible using external components with similar security features, such as the following.

• STMicroelectronics KryptoTM Secure Parallel Flash Memories
http://www.st.com/stonline/products/families/memories/fl_nor_emb/fl_m28w_fs.htm

• Atmel Crypto and Secure Memories
http://www.atmel.com/products/SecureMem/

Figure 15-14: FPGA Authentication Using SHA-1 Secure EEPROM
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Handling Failed Authentications
One of the strengths of the Spartan-3 authentication scheme is that the designer and the 
application decides how best to respond to a failed authentication. A spectrum of solutions 
is possible, including the following.

• No functionality

• Limited functionality

• Full functionality for a limited period of time

• Active defense against tampering

No Functionality
The simplest way to respond to an unauthorized copy is for the application to stop 
functioning. This is easily accomplished using features already on the FPGA, such as the 
following.

• Assert the Global Set /Reset (GSR) signal on the STARTUP design primitive, which 
holds all flip-flops reset. See “Start-Up (STARTUP),” page 255. The signal driving GSR 
must be either a logic-based latch or from an SRL16 shift register, neither of which are 
affected by the GSR signal.

• Assert the global three-state control on the STARTUP design primitive, which forces 
all output pins to high-impedance (Hi-Z).

• Disable global clock signals using a BUFGCE global clock primitive that has an enable 
input, which prevents the clock signal from being distributed within the design.

• Assert the reset input to a Digital Clock Manager (DCM).

• Drive the set or reset inputs to key logic in Configurable Logic Blocks (CLBs).

• Use a gating signal to disable key logic in Configurable Logic Blocks (CLBs).

• Selectively disable CLB flip-flops using the clock enable input.

• Any or all of the above.

The disadvantage of this approach is that it immediately tells an attacker whether an 
attempted breach was successful or not.

Limited Functionality
Limited functionality provides partial or basic functionality. This approach allows a 3rd 
party test house or contract manufacturers (CM) to build and test the unauthenticated 
systems. This technique allows the CM to program the configuration PROM but does not 
provide them authentication capability, eliminating the risk of potential overbuilding.

Disable key functions or special IP using one or more of the techniques described in “No 
Functionality”. Optionally, degrade the performance of key features. For example, drop to 
a lower communications data rate or a lower display resolution.

Full Functionality with Time Out
This technique allows an unauthenticated design to fully operate for a limited amount of 
time. This approach is most useful when a 3rd party test house or contract manufacturer 
requires full functionality to complete system testing. However, this technique does not 
provide the contract manufacturer with the ability to create authentic copies, which 
reduces the risk of potential overbuilding.

http://www.xilinx.com
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In addition, the time out function makes a potential attack significantly more difficult. If 
the system functions for awhile before failing, significantly more time is required to attack 
the system using a brute force approach. Similarly, using a random time out value makes it 
difficult for an attacker to determine if he or she cracked the system or whether there is an 
inherent system design problem.

Active Defense
The final level of protection against unauthorized copying is an active defense. The active 
defense can take many forms, again depending on the application requirements. For 
example, the application can track the number of failed authentication attempts. Once the 
number of failed attempts reaches a predefined threshold, the application can take more 
drastic protection means such as erasing the configuration PROM or permanently locking 
down sectors in the PROM.

Authentication Algorithm
The obvious question is “What is the authentication algorithm?” The answer is “It’s a 
secret.” Something in the authentication process must be secret, either the authentication 
algorithm or the authentication values. In the examples using the Extended Spartan-3A 
family Device DNA or the Flash PROM with a Device ID, the authentication algorithm 
must be kept secret.

Because the authentication algorithm is implemented using FPGA logic, the algorithm is 
flexible and changeable. The algorithm need only be as simple or complex as required by 
the application being protected. The algorithm can be changed between design releases or 
versions. Similarly, multiple and different authentication checks can co-exist in the same 
application. This approach tunes the “cost” and complexity of security to the needs of the 
application.

Manufacturing Logistics
Authentication simplifies manufacturing logistics, especially for high-volume 
applications, built at contract manufacturers.

• There are no special keys that need to be programmed into the FPGA. There is a a 
programming step where the PROM is “married” to or authenticated with either the 
FPGA’s Device DNA, the PROM’s Unique ID, or both but this operation does not 
affect the FPGA bitstream.

• The FPGA bitstream is common to all units. There is no need to match a bitstream to a 
specific FPGA or a set of FPGAs. The authentication step can be completely separate 
from bitstream programming.

• Configuration PROMs can be bulk programmed. There is no need to match a PROM 
to a specific FPGA or a set of FPGAs during high-volume manufacturing. The 
authentication step can occur at any time, such as in final system test, in a secure 
facility or at the end customer site.

• Using the “Limited Functionality,” page 304 or “Full Functionality with Time Out,” 
page 304 techniques described early, the contract manufacturer can build and test the 
end product without risk of overbuilding or unauthorized cloning.

http://www.xilinx.com


306 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 15: Protecting FPGA Designs
R

Additional Uses of Authentication and Device ID
The authentication techniques described in this chapter primarily protect the FPGA 
application. However, these techniques serve other potential purposes in an application.

Protecting Intellectual Property (IP)
FPGAs are a common deployment vehicle for intellectual property (IP) cores. 
Authentication solves a key concern for IP vendors allowing them to protect the IP core 
from unauthorized copying. The techniques described above also allow a vendor to 
protect key IP but still allow potential customers to try the core before purchase. 

Furthermore, the Device DNA feature in Extended Spartan-3A family FPGAs provides full 
traceability, allowing an IP vendor to track unit shipments by a customer in order to 
determine royalty-based payments for an IP core.

Code and Data Security
The Extended Spartan-3A family FPGA’s Device DNA identifier provides an additional 
level of security for embedded applications. The Device DNA forms a key used to encrypt 
and decrypt both code and data to protect an embedded processor application.

Figure 15-15 shows an example MicroBlaze™ processor application. The Extended 
Spartan-3A family Device DNA identifier forms a key to encrypt and decrypt both code 
and data.

U.S. Legal Protection of FPGA Configuration Bitstream Programs
The FPGA configuration bitstream program may qualify as a “computer program” as 
defined in Section101, Title 17 of the United States Code, and as such may be protected 
under the copyright law. It may also be protected as a trade secret if it is identified as such. 

Xilinx suggests that a company wishing to claim copyright and/or trade secret protection 
in the FPGA configuration bitstream consider taking the following steps.

Place an appropriate copyright notice on the FPGA or adjacent to it on the printed circuit 
board (PCB) giving notice to third parties of the copyright. For example, because of space 
limitations, this notice on the FPGA device could read “©2006 XYZ Company” or, if on the 
PCB, could read “Bitstream © 2006 XYZ Company”.

Figure 15-15: Extended Spartan-3A Family Device DNA Used as a Key to Protect 
Embedded Processing Applications
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File an application to register the copyright claim for the bitstream program with the U.S. 
Copyright Office.

If practical, given the size of the printed circuit board, notice should also be given that the 
user is claiming that the bit-stream program is the company's trade secret. A statement 
could be added to the PCB such as: “Bitstream proprietary to XYZ Company. Copying or 
other use of the bitstream program except as expressly authorized by XYZ Company is 
prohibited.”

To the extent that documentation, data books, or other literature accompanies the FPGA-
based design, appropriate wording should be added to this literature providing third 
parties with notice of the user's claim of copyright and trade secret in the bitstream 
program.

For example, this notice could read: “Bitstream ©2006 XYZ Company. All rights reserved. 
The bitstream program is proprietary to XYZ Company and copying or other use of the bit- 
stream program except as expressly authorized by XYZ Company is expressly prohibited.”

To help prove unauthorized copying by a third party, additional nonfunctional code 
should be included at the end of the bitstream program. Therefore, should a third party 
copy the bitstream program without proper authorization, if the non-functional code is 
present in the copy, the copier cannot claim that the bitstream program was independently 
developed.

These are only suggestions, and Xilinx makes no representations or warranties with 
respect to the legal effect or consequences of the above suggestions. Each end-user 
company is advised to consult legal counsel with respect to seeking protection of a 
bitstream program and to determine the applicability of these suggestions to the specific 
circumstances.
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Additional Information
For additional information see the following references on xilinx.com.

• Xilinx Design Security Solutions
http://www.xilinx.com/products/design_resources/security/index.htm

• Xilinx Spartan-3 Generation Device DNA Security
http://www.xilinx.com/products/design_resources/security/devicedna.htm

• WP266: Security Solutions Using Spartan-3 Generation FPGAs
http://www.xilinx.com/support/documentation/white_papers/wp266.pdf

• WP267: Advanced Security Schemes for Extended Spartan-3A Family FPGAs
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf

http://www.xilinx.com/support/documentation/white_papers/wp266.pdf
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf
http://www.xilinx.com
http://www.xilinx.com/products/design_resources/security/index.htm
http://www.xilinx.com/products/design_resources/security/devicedna.htm
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Chapter 16

Configuration CRC

All Spartan®-3 generation FPGAs have an embedded cyclic-redundancy checker (CRC) 
circuit designed to flag errors when loading the configuration bitstream. The configuration 
CRC circuit is always active during configuration unless specifically disabled in the 
configuration bitstream. Extended Spartan-3A family FPGAs also optionally allow the 
CRC circuit to continue operating after configuration.

CRC Checking during Configuration
As the configuration data frames are loaded, the FPGA calculates a Cyclic Redundancy 
Check (CRC) value from the configuration data packets. After all the configuration data 
frames are loaded, the configuration bitstream issues a Check CRC command to the FPGA, 
followed by an expected CRC value. The CRC uses a 32-bit value in the Spartan-3 and 
Spartan-3E families and a 22-bit value in the Extended Spartan-3A family. If the CRC check 
values match, the FPGA continues the configuration process by progressing to the Startup 
phase. If the CRC value does not match, then there are slightly different behaviors between 
the various Spartan-3 generation product families, as described below.

Spartan-3 and Spartan-3E Configuration CRC Errors
If the CRC value calculated by the FPGA does not match the expected CRC value in the 
bitstream, the FPGA drives the INIT_B pin Low and aborts configuration. When a CRC 
error occurs, the CCLK output goes to the high-impedance state (Hi-Z), unless the HSWAP 
or HSWAP_EN pin is Low, in which case the CCLK output is pulled High.

Configuration CRC Enabled by Default
The CRC check is included in the configuration bitstream by default (CRC:Enable). 
However it is possible to disable the check, which should only be done in rare 
circumstances and with great caution. If the CRC check is disabled, there is a risk of 
loading incorrect configuration data frames, causing incorrect design behavior or damage 
to the FPGA. The fallback capability is also disabled when CRC is disabled.

Possible CRC Escapes
There is a scenario where errors in transmitting the configuration bitstream can be missed 
by the CRC check. Certain clocking errors, such as double-clocking, can cause loss of 
synchronization between the bitstream packets and the configuration logic. Once 
synchronization is lost, any subsequent commands are not understood by the FPGA, 
including the command that performs the CRC check. In this situation, configuration fails 
with the FPGA’s DONE pin Low and the INIT_B pin High because the CRC was ignored. 
In Extended Spartan-3A family BPI mode, the address counter eventually overflows or 
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underflows to cause wraparound, which triggers reconfiguration if the Reset_on_err:Yes 
bitstream option is set.

Extended Spartan-3A Family Configuration CRC Errors and Configuration 
Watchdog Timer

Extended Spartan-3A family FPGAs include a Configuration Watchdog Timer (CWDT) 
function. If the FPGA configures in one of the Master modes, and if the Reset_on_err:Yes 
bitstream option is set, then the Extended Spartan-3A family FPGA automatically re-
initializes itself and attempts to reconfigure if a CRC error occurs during configuration. In 
BPI and SPI modes, if reconfiguration fails three times, then the FPGA halts and drives the 
INIT_B pin Low. The CCLK output goes to the high-impedance state (Hi-Z), unless the 
HSWAP or HSWAP_EN pin is Low, in which case the CCLK output is pulled High. Pulsing 
the PROG_B pin or power cycling restarts the configuration process from the beginning. 
The JTAG interface remains responsive and the device is still alive, only the BPI/SPI 
interface is inoperable.

The counter that keeps track of the three failed configurations is reset only when PROG_B 
is pulsed or power is cycled; it is not reset after a successful configuration. Note that when 
configuring via SPI or BPI modes and using the Reset_on_err:Yes bitstream option, any 
combination of successful and failed configurations, over any period of time, will halt after 
the third failed configuration, and require assertion of PROG_B or power cycling to 
reconfigure. It is good design practice to have the ability to assert PROG_B to reset 
configuration if necessary.

Robust CMOS Configuration Latches (CCLs)
FPGA configuration data is stored in robust CMOS configuration latches (CCLs). Despite 
being readable and writable like static RAM (SRAM), CCLs are designed primarily for 
stability, resulting in improved stability over voltage and temperature. CCLs also exhibit 
10 to 100 times better immunity to single-event upset (SEU) phenomenon than traditional 
SRAM memories.

Xilinx is a world-leader in measuring and mitigating SEU effects on FPGAs. Extensive 
proton-beam and atmospheric data is available upon request.

Post-Configuration CRC (Extended Spartan-3A Family Only)
Despite the robust stability of the CMOS configuration latches (CCLs) that hold the FPGA 
configuration data, some high-reliability, high-demand applications require continuous 
checking of all configuration memory locations. Extended Spartan-3A family FPGAs offer 
this capability. The configuration CRC checker can be enabled so that it continues to 
monitor the FPGA bitstream after configuration.

Overview
Figure 16-1, page 311 provides a conceptual overview of the post-configuration CRC 
checker circuit.

http://www.xilinx.com
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If the POST_CRC=ENABLE configuration constraint is set, then the CRC checker circuit 
continuously scans the FPGA bitstream, calculates a resulting CRC value, then compares 
this value against a previously calculated, expected CRC value. If there is a difference 
between the two CRC check values, then the CRC checker flags the error by driving the 
FPGA’s INIT_B pin Low. 

The calculated CRC value changes if any unmasked bit, in any location, changes for any 
reason. Obviously, the FPGA application will modify some locations during the course of 
normal operation. Consequently, all writable bits, such as flip-flops, latches, and block 
RAM are automatically excluded from the CRC calculation. Any write operations to these 
locations would otherwise result in a different calculated CRC value and a subsequent 
CRC “error.” Similarly, the look-up tables (LUTs) within the SLICEM logic slices in each 
Configurable Logic Block (CLB) also potentially contain writable functions, such as 
distributed RAM or SRL16 shift registers. 

Consequently, by default, all LUTs in all SLICEM logic slices are excluded from the 
calculated CRC value. However, if all the LUTs in the FPGA application are only used for 

Figure 16-1: Conceptual Overview of Post-Configuration CRC Calculator
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logic, that is, there is no distributed RAM or SRL16 shift registers in the design, then the 
SLICEM LUTs can be included in the calculation by setting the glutmask:No bitstream 
option. See the ISE® software project summary report to determine if the design uses any 
distributed RAM or SRL16 shift registers.

Block RAM is excluded from the CRC calculation because a change in the RAM content 
would have a subsequent change in the CRC result. Byte-, half-word-, or word-level 
changes are easily detected using the available parity bits provided as part of the block 
RAM function. See “Techniques to Check Distributed and Block RAM Contents,” page 315 
for more information.

Continuous CRC Checking Until Configuration, JTAG or Suspend Event
The CRC checker continues until one of the following events occurs. Upon any one of these 
events, the CRC checker stops operating.

• The configuration controller receives a valid synchronization word, which can occur if 
the FPGA is being reconfigured or from a MultiBoot operation.

• There is an active configuration operation via the JTAG port, or the Mode pins are set 
to JTAG mode.

• The FPGA enters the power-saving Suspend mode.

If enabled in the bitstream, the CRC checker will reset and restart at the end of the 
configuration event or when the FPGA awakens from Suspend mode.

Clock Source
If enabled, the post-configuration CRC checker is clocked by one of three sources, 
depending on the specific FPGA application, ordered from least-likely to most-likely.

• If the bitstream option Persist:Yes is selected and the FPGA is configured using one of 
the Slave configuration modes, then the post-configuration CRC checker is clocked 
using the FPGA’s CCLK input pin.

• If the Internal Configuration Access Port (ICAP) feature is enabled, the post-
configuration CRC checker is clocked by the CLK input on the ICAP design primitive.

• Otherwise, the post-configuration CRC checker is clocked by the FPGA’s internal 
oscillator. Set the frequency of the internal oscillator using the POST_CRC_FREQ 
configuration constraint. See Table 16-1 for available options.

CRC Checking Time

The time required for each CRC calculation is similar to the serial configuration time, and 
depends on the density and clock rate. The CRC engine is a one-bit-wide shift register as 
are the internal registers of the device. So, for each clock period one bit will be shifted into 
the CRC engine. The total time then to run one CRC check will be the (total number of 
configuration bits) X (clock period). For example, the XC3S50A has 437,312 bits; running at 
12 MHz, the CRC check will take 0.0364 seconds. The XC3S1400A has 4,755,296 bits; 
running at 12 MHz, the CRC check will take 0.39627 seconds.

Behavior when CRC Error Occurs
As described earlier, the FPGA flags a post-configuration CRC error by driving the open-
drain INIT_B pin Low. The INIT_B pin will say Low until the device is re-configured. This 
is identical to the way that the FPGA flags a CRC error during configuration. When the 
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post-configuration CRC feature is enabled, the INIT_B pin is reserved as an open-drain 
output with an internal, dedicated pull-up resistor to the VCCO_2 supply input. The 
INIT_B pin cannot be used as an user-I/O when the CRC feature is enabled.

The POST_CRC_ACTION configuration constraint defines how the post-configuration 
CRC checker behaves should it detect an error. If POST_CRC_ACTION=HALT, then the 
CRC circuit stops calculating a new CRC value if an error occurs. This allows an external 
device to check the CRC signature using Readback. If POST_CRC_ACTION=CONTINUE, 
then the CRC circuit continues to check for additional post-configuration CRC errors, even 
after detecting an error. The INIT_B pin stays Low after the first error, while additional 
CRC changes would indicate additional errors.

The FPGA-based system separately determines what action to take when a CRC error 
occurs. Most applications will simply decide to reconfigure the FPGA.

Verifying CRC Error Behavior

To verify the post-configuration CRC checking function, the user can force a change using 
the SRL16 logic. Instantiate at least one SRL16 and set the glutmask:No bitstream option. 
Write to the SRL16 to change its state and the post-configuration CRC feature should flag 
the CRC error. 

Preparing an Application to Use the Post-Configuration CRC Feature
• Enable the post-configuration CRC logic using the POST_CRC=ENABLE 

configuration constraint.

• The post-configuration CRC checker is clocked by one of three possible clock sources 
as described in “Clock Source”. Be sure that the application or system is providing the 
required clock input. In most applications, the CRC checker uses the FPGA’s internal 
oscillator as the clock source. Set the oscillator frequency using the POST_CRC_FREQ 
configuration constraint. By default, the oscillator is set at 1, which roughly equates to 
a 1 MHz clock. See Table 16-2 for available options.

• Using the POST_CRC_ACTION configuration constraint, define whether the CRC 
checker will continue to check for additional CRC errors or will halt checking.

• If any look-up tables (LUTs) in the FPGA application are used as distributed RAM or 
SRL16 shift registers, then leave the glutmask bitstream generator option at its default 
value. 

Example User Constraints File (UCF)
Figure 16-2 provides an example user constraints file to enable the post-configuration CRC 
checker.

Figure 16-2: UCF Constraints for Post-Configuration CRC

# Enable the post-configuration CRC checker
CONFIG POST_CRC = ENABLE ;

# Set clock frequency for CRC checker circuitry
CONFIG POST_CRC_FREQ = 1 ;

# Define if the CRC checker continues or halts after detecting an error
CONFIG POST_CRC_ACTION = CONTINUE ;
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CONFIG Constraints
Table 16-1 lists the available CONFIG constraints that control the post-configuration CRC 
feature.

Bitstream Generator Options
Table 16-2 lists the bitstream generator (BitGen) options associated with the post-
configuration CRC feature. The shaded fields are hidden because the CONFIG constraints 
are the preferred control mechanism, as described in “Preparing an Application to Use the 
Post-Configuration CRC Feature,” page 313. The glutmask option has no associated 
CONFIG constraint.

Table 16-1: Post-Configuration CRC CONFIG Constraints

CONFIG Constraint Setting Description

POST_CRC DISABLE Default. Disable the post-configuration CRC 
checker. INIT_B pin is available as a user-I/O pin.

ENABLE Enable the post-configuration CRC checker. 
INIT_B pin is reserved to flag CRC errors and not 
available as a user-I/O pin.

POST_CRC_FREQ 1, 3, 6, 7, 8, 10, 12, 
13, 17, 22, 25, 27, 

33, 44, 50, 100

Default value is 1. Sets the clock frequency used 
for the post-configuration CRC checker.

POST_CRC_ACTION CONTINUE Default. If a CRC mismatch is detected, continue 
reading back the bitstream, computing the 
comparison CRC, and making the comparison 
against the precomputed CRC. 

HALT If a CRC mismatch is detected, cease CRC check.

Table 16-2: Post-Configuration CRC Bitstream Generator Options

BitGen Option
Setting

(default)
Description

post_crc_en No Default. Disable the post-configuration CRC checker.

Yes Enable the post-configuration CRC checker. 

post_crc_freq 1, 3, 6, 7, 8, 10, 12, 
13, 17, 22, 25, 27, 
33, 44, 50, 100

Sets the clock frequency used for the post-
configuration CRC checker. The available options are 
the same as for the ConfigRate bitstream option.

post_crc_keep
No

Default. Stop checking when error detected. Allows 
CRC signature to be read back.

Yes
Continue to check for CRC errors after an error was 
detected.
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Design Considerations
While all flip-flop and latch values are automatically ignored, the initial values for each 
flip-flop and latch are included in the CRC calculation. Consequently, do not issue a 
Readback CAPTURE operation when the post-configuration CRC feature is enabled. The 
CAPTURE operation captures the current flip-flop and latch values and writes them back 
to the memory cells that originally contained the initial values.

Techniques to Check Distributed and Block RAM Contents
As described earlier, block RAM, LUT RAM, and SRL16 shift registers are not included as 
part of the CRC calculation. Any RAM errors, should they occur, are not flagged on the 
INIT_B pin. However, it is possible to check RAM contents during operation using simple 
parity, as shown in Figure 16-3.

Each block RAM has additional bit locations specifically to store parity values. The parity 
generator is a simple XOR gate, implemented using FPGA logic. Parity is generated for any 
data written to the block RAM. The parity checker is also a simple XOR gate, effectively 
with an additional input. Parity is generated for any data value read from block RAM. The 
generated parity value is compared against the parity bit also read from the RAM. If the 
values are different, then an odd number of bits changed within the RAM location between 
the time the value was written to the time it was read and checked.

Although Figure 16-3 shows a block RAM example, the same technique applies for 
distributed RAM.

Similarly, both block RAM and distributed RAM support dual-port read operations. The 
parity checker function can be moved to the second read port so that it can continuously 

glutmask

Yes

Default. Mask out the Look-Up Table (LUT) bits from 
the SLICEM logic slices. SLICEMs support writable 
functions such as distributed RAM and SRL16 shift 
registers, which generate CRC errors when bit 
locations are modified.

No

Include the Look-Up Table (LUT) bits from SLICEM 
logic slices. Use this option only if the application does 
not include any distributed RAM or SRL16 shift 
registers.

Table 16-2: Post-Configuration CRC Bitstream Generator Options (Cont’d)

BitGen Option
Setting

(default)
Description

Figure 16-3: Checking Block RAM Contents Using Simple Parity
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monitor the RAM contents without affecting normal operation. Similarly, if the block RAM 
contents are static, if used to store PicoBlaze™ processor code as an example, then FPGA 
logic can use the second block RAM port and continuously calculate a CRC signature for 
the block RAM contents. If the signature changes between subsequent checking 
operations, then the circuit flags an error. This is similar to the method used to 
continuously check the FPGA configuration memory cells.
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Chapter 17

Configuration Details

This chapter provides more extensive details on the configuration logic in the Extended 
Spartan®-3A family, including the Spartan-3A, Spartan-3AN, and Spartan-3A DSP 
platforms. The Spartan-3E family is similar, and details on the Spartan-3 family can be 
found in XAPP452.

All user-programmable features inside Extended Spartan-3A devices are controlled by 
volatile memory cells that must be configured at power-up. These memory cells are 
collectively known as configuration memory. They define the LUT equations, signal routing, 
IOB voltage standards, and all other aspects of the user design. 

To program configuration memory, instructions for the configuration control logic and 
data for the configuration memory are provided in the form of a bitstream. The bitstream 
is automatically generated by the Xilinx ISE® design tools and is delivered to the device 
through one of the configuration interfaces.

The composition of the bitstream is largely independent of the configuration method. A 
bitstream for the Slave Parallel (SelectMAP) interface can look exactly the same as a 
bitstream for the Master Serial interface. Certain configuration operations, however, such 
as readback, can only be performed through the SelectMAP and JTAG interfaces.

The user generally does not need to know the details of the configuration format and 
commands. However, this detail can be useful for debugging purposes. After initial 
configuration, the user can send configuration commands to the device through the 
permanent JTAG interface, through the SelectMAP port if Persist is selected, or through the 
Internal Configuration Access Port if ICAP_SPARTAN3A is included in the design. The 
easiest method for sending configuration commands using the JTAG interface is with an 
SVF file (see XAPP503 “SVF and XSVF File Formats for Xilinx Devices”).

Configuration Memory Frames
Extended Spartan-3A family configuration memory is arranged in frames that are tiled 
about the device. These frames are the smallest addressable segments of the Extended 
Spartan-3A configuration memory space, and all operations must therefore act upon 
whole configuration frames. 

The FPGA configuration memory can be visualized as a rectangular array of bits. The bits 
are grouped into vertical frames that are one-bit wide and extend from the top of the array 
to the bottom. A frame is the atomic unit of configuration. It is the smallest portion of the 
configuration memory that can be written to or read from. Frames do not directly map to 
any single piece of hardware. For instance, a single frame does not configure a single CLB 
or IOB, but actually configures a part of several logical resources, as well as some routing. 
Frames are grouped into larger units called columns. 

http://www.xilinx.com
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Extended Spartan-3A frame counts and configuration sizes are shown in Table 17-1. 
Depending on bitstream generator (BitGen) options, additional overhead exists in the 
configuration bitstream. The exact bitstream length is available in the .rbt (rawbits) file 
created by using the "-b" option with BitGen or selecting "Create ASCII Configuration File" 
in the Generate Programming File options popup in the ISE software. Bitstream length 
(words) are roughly equal to the configuration array size (words) plus configuration 
overhead (words). Bitstream length (bits) are roughly equal to the bitstream length in 
words times 16.

Configuration Control Logic
The Extended Spartan-3A family configuration logic consists of a packet processor, a set of 
registers, and global signals that are controlled by the configuration registers. The packet 
processor controls the flow of data from the configuration interface (Parallel, JTAG, or 
Serial) to the appropriate register. The registers control all other aspects of configuration.

Packet Types
The FPGA bitstream consists of two packet types: Type 1 and Type 2. These packet types 
and their usage are described below.

Type 1 Packet

The Type 1 packet is used for register writes and reads. Only 6 register address bits are 
used in Extended Spartan-3A FPGAs. The header section is always a 16-bit word.

Following the Type 1 packet header is the Type 1 Data section, which contains the number 
of 16-bit words specified by the word count portion of the header. See Table 17-2, 
Table 17-3, and Table 17-4.

Table 17-1: Extended Spartan-3A Frame Count and Length

Device Device 
Frames

Frame Length 
(words)(1)

Configuration Array 
Size (words)(2)

Configuration 
Overhead (words)(3)

XC3S50A/AN 367 74 147,600 174

XC3S200A/AN 540 138 243,048 238

XC3S400A/AN 692 170 381,792 270

XC3S700A/AN 844 202 552,352 302

XC3S1400A/AN 996 298 726,520 398

XC3SD1800A 1414 362 958,416 462

XC3SD3400A 1718 426 1,259,520 526

Notes: 
1. All Extended Spartan-3A family configuration frames consist of 16-bit words.
2. Configuration array size equals the number of configuration frames times the number of words per 

frame.
3. Configuration overhead consists of commands in the bitstream that are needed to perform 

configuration, but do not themselves program any memory cells. Configuration overhead contributes 
to the overall bitstream size.
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Type 2 Packet

The Type 2 packet, which must follow a Type 1 packet, is used to write long blocks. The 
header section is always a 16-bit word. See Table 17-5.

Following the Type 2 packet header is the Type 2 Word count section, which contains two 
16-bit words with the MSB in the first word.  See Table 17-6 and Table 17-7.

Following the Type 2 Word count section is the Type 2 Data section, which contains the 
number of 16-bit words specified by the Word count section. See Table 17-8.

Table 17-2: Type 1 Packet Header Format

Header Type Opcode Register Address Word Count

[15:13] [12:11] [10:5] [4:0]

001 xx xxxxxx xxxxx

Table 17-3: Type 1 Packet Data Format

Data [15:0]

Word 1 xxxxxxxxxxxxxxxx

... xxxxxxxxxxxxxxxx

Word [Word Count] xxxxxxxxxxxxxxxx

Table 17-4: Opcode Format

Opcode Function

00 NOOP

01 Read

10 Write

11 Reserved

Table 17-5: Type 2 Packet Header

Header Type Opcode Register Address Reserved

[15:13] [12:11] [10:5] [4:0]

010 xx xxxxx RRRRR

Notes: 
1. “R” means the bit is not used and is reserved for future use.

Table 17-6: Type 2 Packet Word Count 1

Word Count 1

[31:16]

0000xxxxxxxxxxxx
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Configuration Registers
All bitstream commands are executed by reading or writing to the configuration registers. 
Table 17-9 summarizes these registers. A detailed explanation of selected registers follows.

Table 17-7: Type 2 Packet Word Count 2

Word Count 2

[15:0]

xxxxxxxxxxxxxxxx

Table 17-8: Type 2 Packet Data

Data [15:0]

Word 1 xxxxxxxxxxxxxxxx

... xxxxxxxxxxxxxxxx

Word [Word Count] xxxxxxxxxxxxxxxx

Table 17-9: Configuration Registers

Reg. Name Read/Write Address Description

CRC Read/Write 00 0000 CRC Register (uses a 22-bit CRC checksum algorithm 
to verify bitstream integrity during configuration)

FAR_MAJ Write 00 0001 See Frame Address Registers (FAR_MAJ and 
FAR_MIN), Block and Major

FAR_MIN Write 00 0010 See Frame Address Registers (FAR_MAJ and 
FAR_MIN), Minor

FDRI Write 00 0011 Frame Data Register, Input (write configuration data 
by loading WCFG command and loading FDRI)

FDRO Read 00 0100

Frame Data Register, Output register (read 
configuration data and optionally captured flip-flop 
data by loading RCFG command and then 
addressing the FDRO)

CMD Read/Write 00 0101 See Command Register (CMD)

CTL Read/Write 00 0110 See Control Register (CTL)

MASK Read/Write 00 0111 Masking Register for CTL (1 allows bit to be written - 
default is all 0s)

STAT Read 00 1000 See Status Register (STAT)

LOUT Write 00 1001 Legacy Output Register (DOUT for serial daisy 
chain)

COR1 Read/Write 00 1010 See Configuration Options Registers (COR1 and 
COR2)

COR2 Read/Write 00 1011 See Configuration Options Registers (COR1 and 
COR2)

PWRDN_REG Read/Write 00 1100 See Suspend Options Register (PWRDN_REG)

FLR Write 00 1101 Frame Length Register (number of 16-bit words in 
the length of a frame; 16 bits with first 6 reserved at 0)

IDCODE Read/Write 00 1110 Device ID Register; includes 16 most significant bits 
of IDCODE (family and array codes) - see Table 12-4
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Command Register (CMD)

Configuration commands control the operation of the configuration state machine. Each 
command consists of five bits, and the MSB is always zero. The command code is written 
as part of a 16-bit value. Each 16-bit command is written as two bytes to the SelectMAP or 
ICAP interface, with the high byte presented first, followed by the low byte. Note that D0 
is the most-significant bit (MSB) for the ICAP interface, which is the opposite direction 
from most processors.

The Command Register is used to instruct the configuration control logic to strobe global 
signals and perform other configuration functions. The command present in the CMD 
register is executed each time the Frame Address Registers are loaded with new values. 
Table 17-10 gives the Command Register commands and codes.

SNOWPLOW Write 00 1111 Not supported; default is all 0s

HC_OPT_REG Read/Write 01 0000 See Housecleaning Options Register 
(HC_OPT_REG)

reserved - 01 0001 -

CSBO Write 01 0010 Asserts CSO_B Output for Parallel Daisy Chaining

GENERAL1 Read/Write 01 0011 16 LSBs of MultiBoot Address - see “MultiBoot 
Registers” in Chapter 14

GENERAL2 Read/Write 01 0100 16 MSBs of MultiBoot Address - see “MultiBoot 
Registers” in Chapter 14

MODE_REG Read/Write 01 0101 MultiBoot Mode - see “Configuration Mode Register 
(MODE_REG)” in Chapter 14

PU_GWE Write 01 0110 GWE Cycle Exiting Suspend Mode (10 bits)

PU_GTS Write 01 0111 GTS Cycle Exiting Suspend Mode (10 bits)

MFWR Write 01 1000 See Multiple Frame Write Register (MFWR)

CCLK_FREQ Write 01 1001
CCLK Frequency Select for Master Modes (16 bits); 6 
MSBs reserved and default to 000001; 10 LSBs default 
to 0110111110

SEU_OPT Write 01 1010 Post-Configuration CRC (POST_CRC) Options

EXP_SIGN Read/Write 01 1011 32-bit Expected CRC Signature for POST_CRC

RDBK_SIGN Read 01 1100 32-bit Calculated CRC Signature for POST_CRC

Table 17-9: Configuration Registers (Cont’d)

Reg. Name Read/Write Address Description

Table 17-10: Command Register Codes

Command Code Description

NULL 00000 Null Command

WCFG 00001 Write Configuration Data: used prior to writing configuration data to 
the FDRI. 

MFWR 00010 Multiple Frame Write: used to perform a write of a single frame of data 
to multiple frame addresses.

LFRM 00011 Last Frame: Deasserts the GHIGH_B signal, activating all interconnect. 
The GHIGH_B signal is asserted with the AGHIGH command.

RCFG 00100 Read Configuration Data: used prior to reading configuration data 
from the FDRO.
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Control Register (CTL)

The Control Register is used to set the configuration security level, the persist setting, and 
the Global Three-State signal. Writes to the CTL register are masked by the value in the 
MASK register (this allows the GTS_USR_B signal to be toggled without re-specifying the 
Security and Persist bits). The MASK register is cleared after each write to the CTL register, 
which prevents inadvertent changes to the Control Register.

The fields are defined in Table 17-11.

START 00101
Begin Startup Sequence: initiates the startup sequence. The startup 
sequence begins after a successful CRC check and a DESYNC 
command are performed.

RCAP 00110 Reset Capture: resets the CAPTURE signal after performing readback-
capture in single-shot mode (see “Readback Capture” in Chapter 18).

RCRC 00111 Reset CRC: resets the CRC register

AGHIGH 01000

Assert GHIGH_B Signal: places all interconnect in a high-Z state to 
prevent contention when writing new configuration data. This 
command is only used in shutdown reconfiguration. Interconnect is 
reactivated with the LFRM command.

reserved 01001 -

GRESTORE 01010 Pulse the GRESTORE Signal: sets/resets (depending on user 
configuration) IOB and CLB flip-flops.

SHUTDOWN 01011
Begin Shutdown Sequence: initiates the shutdown sequence, disabling 
the device when finished. Shutdown activates on the next successful 
CRC check or RCRC instruction (typically an RCRC instruction).

GCAPTURE 01100 Pulse GCAPTURE: loads the readback capture cells with the current 
register states (see “Readback Capture” in Chapter 18).

DESYNC 01101
Reset DALIGN Signal: used at the end of configuration to 
desynchronize the device. After de-synchronization, all values on the 
configuration data pins are ignored.

REBOOT 01110 MultiBoot operation (see “Extended Spartan-3A Family MultiBoot” in 
Chapter 14).

reserved 01111 -

Table 17-10: Command Register Codes (Cont’d)

Command Code Description

Table 17-11: Control Register Description

Name Bit Index Description

EN_MBOOT 7
Enable MultiBoot mode.

0: MultiBoot Disabled (default)
1: MultiBoot Enabled

Reserved 6 Reserved CTL register bit. Always leave this bit set to 0. 

SBITS 5:4

Security Level.

00: Read/Write OK (default) 
01: Readback disabled except through ICAP
10: All Readback disabled, writing disabled except CRC 

register
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Frame Address Registers (FAR_MAJ and FAR_MIN)

The Frame Address Registers set the starting block and column address for the next 
configuration data input. The typical bitstream starts at address 0 and increments to the 
final count. The command in the CMD register is executed each time the FAR registers are 
updated.

There are three types of write to the Frame Address Registers:

1. Write one word to FAR_MAJ (only update the FAR_MAJ)

2. Write one word to FAR_MIN (only update the FAR_MIN)

3. Write two words to FAR_MAJ (update FAR_MAJ with first data and FAR_MIN with 
second data)

Status Register (STAT)

The Status Register indicates the value of numerous global signals. The register can be read 
through the SelectMAP or JTAG interfaces. A detailed explanation of each bit position is 
given in Table 17-13.

PERSIST 3

The configuration interface defined by M2:M0 remains after 
configuration. Typically used only with the SelectMAP interface 
to allow reconfiguration and readback.

0: No (default)
1: Yes

ICAP 2
ICAP Port Enable.

0: ICAP Port Disabled (default)
1: ICAP Port Enabled

Reserved 1 Reserved CTL register bit. Always leave this bit set to 0. 

GTS_USER_B 0
Active Low high-Z state for I/Os.

0: I/Os placed in high-Z state
1: I/Os active (default)

Table 17-11: Control Register Description (Cont’d)

Name Bit Index Description

Table 17-12: Frame Address Register Description

Address Type Bit Index Description

FAR_MAJ Register

Reserved 15:13 Reserved FAR register bits. Always leave these bits set to 0.

Block Type 12:10 Block types include CLBs & I/O, block RAM, etc.

Reserved 9:8 Reserved FAR register bits. Always leave these bits set to 0. 

Major Address 7:0 Selects a major column. Column addresses start at 0 on the left 
and increase to the right.

FAR_MIN Register

Reserved 15:8 Reserved FAR register bits. Always leave these bits set to 0. 

Minor Address 7:0 Selects a memory-cell address line within a major column.
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Configuration Options Registers (COR1 and COR2)

The Configuration Options Registers are used to set certain configuration options for the 
device. The name of each bit position in COR1 and COR2 is described in Table 17-14.

Table 17-13: Status Register Description

Name Bit Index Description

SYNC_TIMEOUT 15
Configuration Watchdog Timer expired.

0: Default 
1: Failed to find SYNC word before counter time out

SEU_ERR 14
Post-configuration CRC check error.

0: Default
1: POST_CRC error

DONE 13 Value on DONE pin.

INIT 12 Value on INIT_B pin.

MODE 11:9 Status of the MODE pins (M2:M0).

VSEL 8:6 Value on SPI Variant Select pins (VS2:VS0).

GHIGH_B 5

Status of GHIGH_B, asserted during configuration to disable 
interconnect and prevent contention.

0: GHIGH_B asserted
1: GHIGH_B deasserted

GWE 4
Status of Global Write Enable.

0: Flip-flops and block RAM are write disabled
1: Flip-flops and block RAM are write enabled

GTS_CFG_B 3
Status of Global Three-State.

0: All I/Os are placed in high-Z state
1: All I/Os behave as configured

DCM_LOCK 2

0: DCMs not locked
1: DCMs are locked
This is a logical AND function of all DCM LOCKED signals. 
Unused DCM LOCKED signals = 1.

ID_ERROR 1
Attempt to write to FDRI without successful DEVICE_ID check.

0: No ID_ERROR 
1: ID_ERROR

CRC_ERROR 0
0: No CRC error
1: CRC error

Table 17-14: Configuration Options Register Description

Name
Bit 

Index
Description Default

COR1

DRIVE_AWAKE 15
0: Do not drive AWAKE pin (drive Low or 

disable)
1: Actively drive AWAKE pin (drive Low or High)

0

Reserved 14:5
Reserved COR register bits. Always leave these bits 
set to 0111111000.

0111111000
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CRC_BYPASS 4
0: CRC enabled.
1: CRC disabled.

0

DONE_PIPE 3

0: No pipeline stage for DONEIN
1: Add pipeline stage for DONEIN
The FPGA waits on DONE that is delayed by one 
StartupClk cycle. Use this option when StartupClk is 
running at high speeds.

0

DRIVE_DONE 2
0: DONE pin is open drain
1: DONE is actively driven High

0

SSCLKSRC 1:0

Startup-sequence clock source.

00: CCLK 
01: UserClk (per connection on the 

STARTUP_SPARTAN3A block)
1x: JTAGClk

00

COR2

RESET_ON_ERR 15
0: Do not fall back
1: On CRC error, fall back and retry first 

configuration file

0

Reserved 14
Reserved COR register bit. Always leave this bit set to 
0.

0

BPI_DIV8 13
0: Update BPI address at every bus_clk cycle
1: Update BPI address every 8th bus_clk cycle (for 

serial daisy chains)

0

SINGLE 12

0: Readback is not single-shot
New captured values are loaded on each successive 
CAP assertion on the CAPTURE_SPARTAN3A 
primitive. Capture can also be performed with the 
GCAPTURE instruction in the CMD register.

1: Readback is single-shot.
The RCAP instruction must be loaded into the CMD 
register between successive readbacks.

0

DONE_CYCLE 11:9

Startup cycle to release the DONE pin.

001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6

100

Table 17-14: Configuration Options Register Description (Cont’d)

Name
Bit 

Index
Description Default
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Suspend Options Register (PWRDN_REG)

The Suspend Options Register (PWRDN_REG) is used to set certain options for the device 
Suspend and Awake features. The name of each bit position in PWRDN_REG is described 
in Table 17-15.

LOCK_CYCLE 8:6

Startup cycle to stall in until DCMs lock.

000: Startup cycle 0
001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6
111: No Wait

111

GTS_CYCLE 5:3

Startup cycle to deassert the Global Three-State (GTS) 
signal.

001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6

101

GWE_CYCLE 2:0

Startup phase to deassert the Global Write Enable 
(GWE) signal.

001: Startup cycle 1
010: Startup cycle 2
011: Startup cycle 3
100: Startup cycle 4
101: Startup cycle 5
110: Startup cycle 6

110

Table 17-14: Configuration Options Register Description (Cont’d)

Name
Bit 

Index
Description Default

Table 17-15: Suspend Options Register Description

Name Bit Index Description Default

WAKE_DELAY2 13:9 Wakeup cycle delay 2. 00100

WAKE_DELAY1 8:6 Wakeup cycle delay 1. 010

FILTER_B 5
0: SUSPEND filter on.
1: SUSPEND filter off.

0

EN_PGSR 4
0: No GSR pulse during wakeup.
1: Generate GSR pulse during wakeup.

0

Unused 3 0

EN_PWRDN 2
0: Suspend disabled.
1: Suspend enabled.

0
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Housecleaning Options Register (HC_OPT_REG)

The Housecleaning Options Register (HC_OPT_REG) is used to set certain options for 
device housecleaning or reset of the configuration memory during initialization. The name 
of each bit position in HC_OPT_REG is described in Table 17-16.

Multiple Frame Write Register (MFWR)

The Multiple Frame Write (MFWR) Register is used with the BitGen -g Compress 
option. If more than one frame has identical data, it is possible to load that frame into the 
configuration logic, and instruct the logic to load the frame into multiple address locations. 
Depending on the utilization of the device, this may decrease the size of the bitstream 
considerably. This feature is only supported upon initial configuration. Therefore, to 
reconfigure the device with this feature, the part must be power-cycled or reset with 
PROG_B. To write multiple frames with the same data, the following steps need to be 
performed:

1. Write the WCFG command to the CMD register.

2. Write a desired frame to the FDRI register.

3. Write the FAR register with the first desired address.

4. Write the MFWR command to the CMD register.

5. Write two dummy words to the MFWR register.

6. Write the FAR register with the second desired address.

7. Write two dummy words to the MFWR register.

8. Repeat steps 6 and 7 until the last desired address is reached.

Bitstream Composition
Configuration can begin after the device is powered and initialization has finished, as 
indicated by the INIT pin being released. After initialization, the packet processor ignores 
all data presented on the configuration interface until it receives the synchronization word. 

EN_PORB 1
Allow power supply rails to be lowered.
0: Enable Power-On-Reset.
1: Disable Power-On-Reset. (not recommended)

0

KEEP_SCLK 0
Use Configuration Startup clock for Suspend Startup.

0: Use Master CCLK for Startup sequence.
1: Use SSCLKSRC for Startup sequence.

1

Table 17-15: Suspend Options Register Description (Cont’d)

Name Bit Index Description Default

Table 17-16: Housecleaning Options Register Description

Name Bit Index Description Default

BRAM_SKIP 5
0: Reset block RAM.
1: Skip reset of block RAM.

0

TWO_ROUND 4
0: 1 round of housecleaning.
1: 2 rounds of housecleaning.

1

HC_CYCLE 3:0 Number of housecleaning cycles. 1111
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After synchronization, the packet processor waits for a valid packet header to begin the 
configuration process.

Default Initial Configuration Process
Initial configuration using a default bitstream (a bitstream generated using the default 
BitGen settings) begins by pulsing the PROG_B pin for serial/parallel configuration 
modes or by issuing the JPROGRAM_B instruction for JTAG configuration mode. 
Configuration proceeds as shown in Table 17-17:

Table 17-17: Configuration Sequence

Configuration 
Data (hex)

Explanation

FFFF Dummy word 

AA99 Sync word

30A1 Type 1 write 1 word to CMD

0007 RCRC command

3321 Type 1 write 1 word CCLK_FREQ

05BE CCLK frequency

31A1 Type 1 write 1 word FLR

0XXX Frame length

3141 Type 1 write 1 word to COR1

3F00 Configuration Option Register 1

3161 Type 1 write 1 word to COR2

09EE Configuration Option Register 2

31C2 Type 1 write 2 words to IDCODE

XXXX MSB Device_ID

XXXX LSB Device_ID

30E1 Type 1 write 1 word to MASK

0000 Data word 0

30C1 Type 1 write 1 word to CTL

0001 Data word 0

3181 Type 1 write 1 word to PWRDN_REG

0881 Data word 0

3201 Type 1 write 1 word to HC_OPT_REG

001F Data word 0

32C1 Type 1 write 1 word to PU_GWE

0006 Data word 0

32E1 Type 1 write 1 word to PU_GTS

0005 Data word 0

32A1 Type 1 write 1 word to MODE_REG
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000E Data word 0

3261 Type 1 write 1 word to GENERAL1_REG

0000 Data word 0

3281 Type 1 write 1 word to GENERAL2_REG

0000 Data word 0

3301 Type 1 write 1 word to SEU_OPT_REG

3FF0 Data word 0

3362 Type 1 write 2 words to EXP_SIGN_REG

0000 Data word 0

0000 Data word 1

3022 Type 1 write 2 words to FAR_MAJ

0XXX FAR_MAJ

00XX FAR_MIN

30A1 Type 1 write 1 word to CMD

0001 WCFG command

5062 Type 2 write 0 words to FDRI

0XXX Word count 1 (MSB)

XXXX Word count 2 (LSB)

XXXX Data 1

... ...

XXXX Data (word count)

3001 Type 1 write 1 word to CRC

XXXX Data word 0

30A1 Type 1 write 1 word to CMD

000A GRESTORE command

30A1 Type 1 write 1 word to CMD

0003 LFRM command

2000 Type 1 NOOP

... Type 1 NOOPs

2000 Type 1 NOOP

30A1 Type 1 write 1 word to CMD

0005 START command

30C1 Type 1 write 1 word to CTL

0001 Data word 0 

3001 Type 1 write 1 word to CRC

Table 17-17: Configuration Sequence (Cont’d)

Configuration 
Data (hex)

Explanation

http://www.xilinx.com


330 www.xilinx.com Spartan-3 Generation Configuration User Guide
UG332 (v1.5) March 16, 2009

Chapter 17: Configuration Details
R

XXXX Data word 0

30A1 Type 1 write 1 word to CMD

000D DESYNC command

2000

Type 1 NOOP

2000

2000

2000

2000

2000

2000

2000

Table 17-17: Configuration Sequence (Cont’d)

Configuration 
Data (hex)

Explanation
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Chapter 18

Readback

This chapter provides more extensive details on the readback logic in the Extended 
Spartan®-3A family, including the Spartan-3A, Spartan-3AN, and Spartan-3A DSP 
platforms. The Spartan-3E family is similar, and details on the Spartan-3 family can be 
found in XAPP452.

Spartan®-3, Spartan-3E, and Extended Spartan-3A devices allow users to read back the 
configuration memory through the SelectMAP (slave parallel) or JTAG (IEEE 1149.1 
boundary scan) interfaces. There are two styles of readback: Readback Verify and 
Readback Capture. During Readback Verify, the user reads all configuration memory cells, 
including the current values on all user memory elements (distributed LUT RAM, SRL16 
shift registers, and block RAM). Readback Capture is a superset of Readback Verify—in 
addition to reading all configuration memory cells, the current state of all internal CLB and 
IOB registers is read, and is useful for design debugging. 

To read configuration memory, users must send a sequence of commands to the device to 
initiate the readback procedure; once initiated the device dumps the contents of its 
configuration memory to the SelectMAP or JTAG interface. The configuration memory 
read procedure sections for SelectMAP, IEEE 1149.1 JTAG, and IEEE 1532 JTAG describe 
the steps for reading configuration memory.

Users can send the readback command sequence from a custom microprocessor, CPLD, or 
FPGA-based system, or use iMPACT to perform JTAG-based readback verify. iMPACT, 
the device programming software provided with the Xilinx Integrated Software 
Environment (ISE® software), can perform all readback and comparison functions and 
report to the user whether there were any configuration errors. iMPACT cannot perform 
capture operations, although Readback Capture is seldom used for design debugging 
because the ChipScope™ Pro tool’s ILA core, sold separately through the Xilinx website, 
provides superior design debugging functionality in a user-friendly interface. 

Once configuration memory has been read from the device, the next step is to determine if 
there are any errors by comparing the readback bitstream to the configuration bitstream. 
The “Verifying Readback Data” section explains how this is done. 

Preparing a Design for Readback
To prepare a design for readback, the Bitstream Generator (BitGen) security setting must 
not prohibit readback (-g security:none). Additionally, if readback is to be performed 
through the SelectMAP interface, the port must be set to retain its function after 
configuration by setting the persist option in BitGen (-g Persist:Yes), otherwise the 
SelectMAP data pins revert to user I/O, precluding further configuration operations. 
Beyond the security requirement, no special considerations are necessary to enable 
readback through the Boundary-Scan port.

http://www.xilinx.com
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If capture functionality is needed, the CAPTURE_SPARTAN3A primitive can instantiated 
in the user design (see “Readback Capture (CAPTURE)” in Chapter 13). To capture the 
state of user registers, the user design triggers the CAP input on this primitive, storing the 
current register values in configuration memory. Alternatively, writing the GCAPTURE 
command to the CMD register can be used (see Readback Capture). The register values are 
later read out of the device along with all other configuration memory. 

Readback Command Sequences
Configuration memory is read from the FDRO (Frame Data Register - Output) 
configuration register and can be accessed from the JTAG and SelectMAP interfaces. 
Readback is possible while the FPGA design is active or in a shutdown state, although 
block RAMs cannot be accessed by the user design while they are being accessed by the 
configuration logic.

Accessing Configuration Registers through the SelectMAP Interface
To read configuration memory through the SelectMAP interface, the user must set the 
interface for write control to send commands to the FPGA, and then switch the interface to 
read control to read data from the device. Write and read control for the SelectMAP 
interface is determined by the RDWR_B input: the SelectMAP data pins (D0:7) are inputs 
when the interface is set for Write control (RDWR_B = 0); they are outputs when the 
interface is set for Read control (RDWR_B = 1). 

The CSI_B signal (CS_B in the Spartan-3 family) must be deasserted (CSI_B =1) before 
toggling the RDWR_B signal, otherwise the user causes an abort (refer to “SelectMAP 
ABORT” in Chapter 7 for details). 

The procedure for changing the SelectMAP interface from Write to Read control, or vice 
versa, is:

1. Deassert CSI_B.

2. Toggle RDWR_B.

RDWR_B = 0: Write control
RDWR_B = 1: Read control

3. Assert CSI_B.

4. This procedure is illustrated in Figure 18-1.

Figure 18-1: Changing the SelectMAP Port from Write to Read Control

RDWR_B

DATA[0:7]

UG332_48_030409

WRITE

Byte n Byte n

CCLK

Byte 0

READ

CSI_B

DOUT (BUSY)

Byte 0
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The Extended Spartan-3A family has a DOUT pin which operates like the BUSY pin in 
earlier families during readback. The BUSY signal goes Low to indicate when the DATA 
bus contains valid readback data. However, it is not necessary to monitor BUSY since the 
readback data is always valid three CCLK cycles after CSI_B is asserted.

Configuration Register Read Procedure (SelectMAP)
The simplest read operation targets a configuration register such as the COR or STAT 
register. Any configuration register with read access can be read through the SelectMAP 
interface, although not all registers offer read access. The procedure for reading the STAT 
register through the SelectMAP interface in the Extended Spartan-3A family follows (for 
the Spartan-3 and Spartan-3E families, refer to XAPP452):

1. Write the Synchronization word to the device.
2. Write the read STAT register packet header to the device.
3. Write two dummy words to the device to flush the packet buffer.
4. Read two bytes using SelectMAP; this is the Status register value.
5. Write the DESYNC command to the device
6. Write two dummy words to the device to flush the packet buffer.

The user must change the SelectMAP interface from write to read control between steps 3 
and 4, and back to write control after step 4, as illustrated in Figure 18-2.

Table 18-1: Status Register Readback Command Sequence (SelectMAP)

Step
SelectMAP Port 

Direction
Configuration 

Data
Explanation

1 Write AA99 Sync Word

2 Write 2901 Read 1 word from STAT register

3 Write
2000 NOOP

2000 NOOP

4 Read SSSS
Device writes 1 word from the STAT 
register to the configuration interface

5 Write
30A1 Type 1 write 1 word to CMD

000D Desync command

6 Write
2000 NOOP

2000 NOOP

http://www.xilinx.com
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To read registers other than STAT, the address specified in the Type 1 packet header in Step 
2 of Table 18-1 should be modified and the word count changed if necessary. Reading from 
the FDRO register is a special case that is described in the next section.

Configuration Memory Read Procedure (SelectMAP)
The process for reading configuration memory from the FDRO register is similar to the 
process for reading from other registers. Additional steps are needed to accommodate the 
configuration logic. Configuration data coming from the FDRO register passes through the 
frame buffer. The first frame of readback data should be discarded.

1. Write the Synchronization word to the device.

2. Write 1 NOOP command.

3. Write the RCRC command to the CMD register.

4. Write 2 NOOP commands.

5. Write the Shutdown command.

6. Write four NOOP instructions to ensure the shutdown sequence has completed. 
DONE goes Low during the shutdown sequence.

7. Write the RCFG command to the CMD register.

8. Write the Starting Frame Address to the FAR (typically 0x00000000)

9. Write the read FDRO register packet header to the device. The FDRO read length is 
given by:

FDRO Read Length = (words per frame) x (frames to read + 1) + 1

One extra frame is read to account for the frame buffer. The frame buffer produces one 
dummy frame at the beginning of the read and one at the end. Also, one extra word is 
read in SelectMAP mode.

10. Write two dummy words to the device to flush the packet buffer.

11. Read the FDRO register from the SelectMAP interface. The FDRO read length is the 
same as in step 9 above.

12. Write one NOOP instruction.

13. Write the START command.

14. Write the RCRC command.

15. Write the DESYNC command.

Figure 18-2: SelectMAP Status Register Read
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16. Write at least 32 bits of NOOP commands to flush the packet buffer. Continue sending 
CCLK pulses until DONE goes High.

Table 18-2 shows the readback command sequence.

Table 18-2: Shutdown Readback Command Sequence (SelectMAP)

Step SelectMAP Port Direction Configuration Data Explanation

1 Write AA99 Sync word

2 Write 2000 Type 1 NOOP word 0

3 Write
30A1 Type 1 write 1 word to CMD

0007 RCRC command

4 Write
2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

5 Write
30A1 Type 1 write 1 word to CMD

000B SHUTDOWN command

6 Write

2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

2000 Type 1 NOOP word 2

2000 Type 1 NOOP word 3

7 Write
30A1 Type 1 write 1 word to CMD

0004 RCFG command

8 Write

3022 Type 1 write 2 words to FAR_MAJ

0000 FAR_MAJ Address = 0000

0000 FAR_MIN Address = 0000

9 Write
2880 Type 1 read 0 words from FDRO

XXXX Type 2 read n words from FDRO

10 Write
2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

11 Read

0000 Packet data read FDRO word 0

...

0000 Packet data read FDRO word n

12 Write 2000 Type 1 NOOP word 0

13 Write
30A1 Type 1 write 1 word to CMD

0005 START command

14 Write
30A1 Type 1 write 1 word to CMD

0007 RCRC command
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Accessing Configuration Registers through the JTAG Interface
JTAG access to the configuration logic is provided through the JTAG CFG_IN and 
CFG_OUT registers. Note that the CFG_IN and CFG_OUT registers are not configuration 
registers, rather they are JTAG registers like BYPASS and BOUNDARY_SCAN. Data 
shifted in to the CFG_IN register go to the configuration packet processor, where they are 
processed in the same way commands from the SelectMAP interface are processed.

Readback commands are written into the configuration logic by going through the 
CFG_IN register; configuration memory is read out through the CFG_OUT register. The 
JTAG state transitions for accessing the CFG_IN and CFG_OUT registers are described in 
Table 18-3.

15 Write
30A1 Type 1 write 1 word to CMD

000D DESYNC command

16 Write
2000 Type 1 NOOP word 0

2000 Type 1 NOOP word 1

Table 18-2: Shutdown Readback Command Sequence (SelectMAP) (Cont’d)

Step SelectMAP Port Direction Configuration Data Explanation

Table 18-3: Shifting in the JTAG CFG_IN and CFG_OUT Instructions

Step Description
Set and Hold # of 

Clocks 
(TCK)TDI TMS

1
Clock five 1s on TMS to bring the device to the 
TLR state

X 1 5

2 Move into the RTI state X 0 1

3 Move into the Select-IR state X 1 2

4 Move into the Shift-IR State X 0 2

5
Shift the first 5 bits of the CFG_IN or CFG_OUT 
instruction, LSB first

00101 
(CFG_IN)

0 5
00100 

(CFG_OUT)

6
Shift the MSB of the CFG_IN or CFG_OUT 
instruction while exiting SHIFT-IR

0 1 1

7 Move into the SELECT-DR state X 1 2

8 Move into the SHIFT-DR state X 0 2

9
Shift data into the CFG_IN register or out of the 
CFG_OUT register while in SHIFT_DR, MSB first.

X 0 X

10 Shift the LSB while exiting SHIFT-DR X 1 1

11 Reset the TAP by clocking five 1s on TMS X 1 5
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Configuration Register Read Procedure - JTAG

The simplest read operation targets a configuration register such as the COR or STAT 
register. Any configuration register with read access can be read through the JTAG 
interface, although not all registers offer read access. The procedure for reading the STAT 
register through the JTAG interface follows:

1. Reset the TAP controller.

2. Shift the CFG_IN instruction into the JTAG Instruction Register through the Shift-IR 
state. The LSB of the CFG_IN instruction is shifted first; the MSB is shifted while 
moving the TAP controller out of the SHIFT-IR state.

3. Shift packet write commands into the CFG_IN register through the Shift-DR state:

a. Write the Synchronization word to the device.
b. Write one NOOP instruction to the device.
c. Write the read STAT register packet header to the device.
d. Write two dummy words to the device to flush the packet buffer.

The MSB of all configuration packets sent through the CFG_IN register must be sent 
first. The LSB is shifted while moving the TAP controller out of the SHIFT-DR state.

4. Shift the CFG_OUT instruction into the JTAG Instruction Register through the Shift-IR 
state. The LSB of the CFG_OUT instruction is shifted first; the MSB is shifted while 
moving the TAP controller out of the SHIFT-IR state.

5. Shift 16 bits out of the Status register through the Shift-DR state.

6. Reset the TAP controller.

Table 18-4: Status Register Readback Command Sequence (JTAG)

Step Description
Set and Hold # of 

Clocks 
(TCK)TDI TMS

1

Clock five 1s on TMS to bring the device to the TLR state. X 1 5

Move into the RTI state. X 0 1

Move into the Select-IR state. X 1 2

Move into the Shift-IR state. X 0 2

2

Shift the first 5 bits of the CFG_IN instruction, LSB first.
00101 

(CFG_IN)
0 5

Shift the MSB of the CFG_IN instruction while exiting 
SHIFT-IR.

0 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2
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The packets shifted in to the JTAG CFG_IN register are identical to the packets shifted in 
through the SelectMAP interface when reading the STAT register through SelectMAP. 

Configuration Memory Read Procedure (1149.1 JTAG)

The process for reading configuration memory from the FDRO register through the JTAG 
interface is similar to the process for reading from other registers. However, additional 
steps are needed to accommodate frame logic. Configuration data coming from the FDRO 
register pass through the frame buffer, therefore the first frame of readback data is dummy 
data and should be discarded. The 1149.1 JTAG readback flow is recommended for most 
users.

1. Reset the TAP controller.

2. Shift the CFG_IN instruction into the JTAG Instruction Register. The LSB of the 
CFG_IN instruction is shifted first; the MSB is shifted while moving the TAP controller 
out of the SHIFT-IR state.

3. Shift packet write commands into the CFG_IN register through the Shift-DR state:

a. Write a dummy word to the device.
b. Write the Synchronization word to the device.
c. Write a NOOP instruction to the device.

3

Shift configuration packets into the CFG_IN data 
register, MSB first.

a: 0xAA99
b: 0x2000
c: 0x2901
d: 0x2000

0x2000

0 79

Shift the LSB of the last configuration packet while 
exiting SHIFT-DR.

0 1 1

Move into the SELECT-IR state. X 1 3

Move into the SHIFT-IR state. X 0 2

4

Shift the first 5 bits of the CFG_OUT instruction, LSB 
first.

00100 
(CFG_OUT)

0 5

Shift the MSB of the CFG_OUT instruction while exiting 
Shift-IR.

0 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

5

Shift the contents of the STAT register out of the 
CFG_OUT data register.

0xSSSS 0 31

Shift the last bit of the STAT register out of the CFG_OUT 
data register while exiting SHIFT-DR.

S 1 1

Move into the Select-IR state. X 1 3

Move into the Shift-IR State. X 0 2

6 Reset the TAP Controller. X 1 5

Table 18-4: Status Register Readback Command Sequence (JTAG) (Cont’d)

Step Description
Set and Hold # of 

Clocks 
(TCK)TDI TMS
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d. Write the RCRC command to the device.
e. Write two dummy words to flush the packet buffer.

4. Shift the JSHUTDOWN instruction into the JTAG Instruction Register.

5. Move into the RTI state; remain there for 12 TCK cycles to complete the Shutdown 
sequence. The DONE pin goes Low during the Shutdown sequence.

6. Shift the CFG_IN instruction into the JTAG Instruction Register.

7. Move to the Shift-DR state and shift packet write commands into the CFG_IN register:

a. Write a dummy word to the device.
b. Write the Synchronization word to the device.
c. Write a NOOP instruction to the device.
d. Write the write CMD register header.
e. Write the RCFG command to the device.
f. Write the write FAR register header.
g. Write the starting frame address to the FAR register (typically 0x00000000).
h. Write the read FDRO register Type-1 packet header to the device.
i. Write a Type-2 packet header to indicate the number of words to read from the 

device.
j. Write two dummy words to the device to flush the packet buffer.

The MSB of all configuration packets sent through the CFG_IN register must be sent 
first. The LSB is shifted while moving the TAP controller out of the SHIFT-DR state.

8. Shift the CFG_OUT instruction into the JTAG Instruction Register through the 
Shift-DR state. The LSB of the CFG_OUT instruction is shifted first; the MSB is shifted 
while moving the TAP controller out of the SHIFT-IR state.

9. Shift frame data from the FDRO register through the Shift-DR state. 

10. Reset the TAP controller.

Table 18-5: Shutdown Readback Command Sequence (JTAG)

Step Description
Set and Hold # of Clocks 

(TCK)TDI TMS

1

Clock five 1s on TMS to bring the device to the 
TLR state.

X 1 5

Move into the RTI state. X 0 1

Move into the Select-IR state. X 1 2

Move into the Shift-IR State. X 0 2

2

Shift the first 5 bits of the CFG_IN instruction, 
LSB first.

00101 0 5

Shift the MSB of the CFG_IN instruction while 
exiting Shift-IR.

1 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2
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3

Shift configuration packets into the CFG_IN 
data register, MSB first.

a: 0xFFFF
b: 0xAA99
c: 0x2000
d: 0x30A1

0x0007
e: 0x2000

0x2000

0 111

Shift the LSB of the last configuration packet 
while exiting SHIFT-DR.

0 1 1

Move into the SELECT-IR State. X 1 3

Move into the SHIFT-IR State. X 0 2

4

Shift the first 5 bits of the JSHUTDOWN 
instruction, LSB first.

01101 0 5

Shift the MSB of the JSHUTDOWN 
instruction while exiting SHIFT-IR.

0 1 1

Move to RTI. X
1 1

0 1

5

Remain in RTI for 12 TCK cycles. X 0 12

Move into the Select-IR state. X 1 2

Move into the Shift-IR State. X 0 2

6

Shift the first 5 bits of the CFG_IN instruction, 
LSB first.

00101 0 5

Shift the MSB of the CFG_IN instruction while 
exiting SHIFT-IR.

1 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

7

Shift configuration packets into the CFG_IN 
data register, MSB first.

a: 0xFFFF
b: 0xAA99
c: 0x2000
d: 0x30A1
e: 0x0004
f: 0x3022
g: 0x0000

0x0000
h: 0x2880
i: 0xXXXX
j: 0x2000 

0x2000

0 191

Shift the LSB of the last configuration packet 
while exiting SHIFT-DR.

0 1 1

Move into the SELECT-IR State. X 1 3

Move into the SHIFT-IR State. X 0 2

Table 18-5: Shutdown Readback Command Sequence (JTAG) (Cont’d)

Step Description
Set and Hold # of Clocks 

(TCK)TDI TMS
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Configuration Memory Read Procedure (1532 JTAG)

The IEEE 1532 JTAG readback procedure differs slightly from the IEEE 1149.1 JTAG 
readback procedure in that readback commands are not sent to the configuration logic 
through the CFG_IN JTAG register, rather the ISC_READ JTAG register is used to read 
configuration memory directly.

At the end of 1532 JTAG readback, CRC Error status must be cleared by issuing the Reset 
CRC command or writing the correct CRC value to the CRC register. The 1532 JTAG 
readback procedure is illustrated in Figure 18-3.

8

Shift the first 5 bits of the CFG_OUT 
instruction, LSB first.

00100 
(CFG_OUT)

0 5

Shift the MSB of the CFG_OUT instruction 
while exiting Shift-IR.

0 1 1

Move into the SELECT-DR state. X 1 2

Move into the SHIFT-DR state. X 0 2

9

Shift the contents of the FDRO register out of 
the CFG_OUT data register.

… 0
number of 
readback 
bits – 1 

Shift the last bit of the FDRO register out of the 
CFG_OUT data register while exiting SHIFT-
DR.

X 1 1

Move into the Select-IR state. X 1 3

Move into the Shift-IR State. X 0 2

10
End by placing the TAP controller in the TLR 
state.

X 1 5

Table 18-5: Shutdown Readback Command Sequence (JTAG) (Cont’d)

Step Description
Set and Hold # of Clocks 

(TCK)TDI TMS
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Verifying Readback Data
Table 18-6 lists the readback files.

Figure 18-3: IEEE 1532 JTAG Readback Flow
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Table 18-6: Readback Files

File
Extension

File 
Type

BitGen 
Setting 

Description

.rba ASCII
-b and -g 
Readback

An ASCII file that contains readback commands, rather than 
configuration commands, and expected readback data 
where the configuration data normally is. This file must be 
used with the .msk file.

.rbb Binary
-g 

Readback
Binary version of .rba file. This file must be used with 
the .msk file. 

.rbd ASCII
-g 

Readback

An ASCII file that contains only expected readback data, 
including the initial pad frame. No commands are included. 
This file must be used with the .msd file.

.msk Binary -m

A binary file that contains the same configuration commands 
as a .bit file, but replaces the contents of the FDRI write 
packet with mask data that indicate whether the 
corresponding bits in the .bit file should be compared. If a 
mask bit is 0, the corresponding bits in the readback data 
stream should be compared. If a mask bit is 1, the 
corresponding bit in the readback data stream should be 
ignored.
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The design.rba and design.rbb files combine readback commands with expected 
readback data and the .rbd file contains only expected readback data. Systems that use 
an .rbd file for readback must store readback commands elsewhere. The actual readback 
data must be masked against an .msk or .msd mask file, as certain bits in the expected 
readback stream in the .rba, .rbb, and .rbd files should be ignored.

The readback command set files do not indicate when users must change the SelectMAP or 
JTAG interface from write to read control; the user must handle this based on the Readback 
Command Sequences described above.

The readback data stream contains configuration frame data that are preceded by one 
frame of pad data, as described in Configuration Memory Read Procedure (SelectMAP). 
The readback stream does not contain any of the commands or packet information found 
in the configuration bitstream and no CRC calculation is performed during readback. The 
readback data stream is shown in Figure 18-4.

The readback data stream is verified by comparing it to the original configuration frame 
data that were programmed into the device. Certain bits within the readback data stream 
must not be compared, because these can correspond to user memory or null memory 
locations. The location of don't care bits in the readback data stream is given by the mask 
files, the .msk and .msd files. These files have different formats although both convey 
essentially the same information. Once readback data have been obtained from the device, 
either of the following comparison procedures can be used:

1. Compare readback data to the .rbd golden readback file. Mask by using the .msd file.

.msd ASCII
-g 

readback

An ASCII file that contains only mask bits. The first bit in 
the .msd file corresponds to the first bit in the .rbd file. Pad 
data in the actual readback stream are accounted for in 
the .msd and .rbd files. If a mask bit is 0, that bit should be 
verified against the bit stream data. If a mask bit is 1, that bit 
should not be verified.

.ll ASCII -l

An ASCII file that contains information on each of the nodes 
in the design that can be captured for readback. The file 
contains the absolute bit position in the readback stream, 
frame address, frame offset, logic resource used, and name of 
the component in the design. 

Figure 18-4: Readback Data Stream

Table 18-6: Readback Files (Cont’d)

File
Extension

File 
Type

BitGen 
Setting 

Description

Pad Frame

Frame Data
Total

number
device
frames

1 frame

Readback Data

UG071_51_092807
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The simplest way to verify the readback data stream is to compare it to the .rbd golden 
readback file, masking readback bits with the .msd file. This approach is simple 
because there is a 1:1 correspondence between the start of the readback data stream 
and the start of the .rbd and .msd files, making the task of aligning readback, mask, 
and expected data easier. See Figure 18-5.

The .rbd and .msd files contain an ASCII representation of the readback and mask 
data along with a file header that lists the file name, etc. This header information 
should be ignored or deleted. The ASCII 1s and 0s in the .rbd and .msd files 
correspond to the binary readback data from the device. Take care to interpret these 
files as text, not binary sources. Users can convert the .rbd and .msd files to a binary 
format using a script or text editor, to simplify the verify procedure for some systems 
and to reduce the size of the files by a factor of eight.

The drawback to this approach is that in addition to storing the initial configuration 
bitstream and the .msd file, the golden .rbd file must be stored somewhere, increasing 
the overall storage requirement. 

2. Compare readback data to the configuration .bit file, mask using the .msk file.

Another approach for verifying readback data is to compare the readback data stream 
to the frame data within the FDRI write in the original configuration bitstream, 
masking readback bits with the .msk file. 

After sending readback commands to the device, comparison begins by aligning the 
beginning of the readback frame data to the beginning of the FDRI write in the .bit 
and .msk files. The comparison ends when the end of the FDRI write is reached. See 
Figure 18-6.

This approach requires the least in-system storage space, because only the .bit, .msk, 
and readback commands must be stored. 

Figure 18-5: Comparing Readback Data Using the .msd and .rbd Files
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The .rba and .rbb files contain expected readback data along with readback 
command sets. They are intended for use with the .msk file. 

Figure 18-6: Comparing Readback Data Using the .msk and .bit Files
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Readback Capture
The configuration memory readback command sequence is identical for both Readback 
Verify and Readback Capture. However, the Capture sequence requires an additional step 
to sample internal register values. 

Users can sample CLB and IOB registers by instantiating the CAPTURE_SPARTAN3A 
primitive in their design (Figure 18-7) and asserting the CAP input on that primitive while 
the design is operating. On the next rising clock edge on the CAPTURE_SPARTAN3A CLK 
input, the internal GRDBK signal is asserted, storing all CLB and IOB register values into 
configuration memory cells. These values can then be read out of the device along with the 
IOB and CLB configuration columns by reading configuration memory through the 
readback process. Register values are stored in the same memory cell that programs the 
register's initial state configuration. Therefore, sending the GRESTORE command to the 
configuration logic after the Capture sequence can cause registers to return to an 
unintended state.

Alternatively, the GRDBK signal can be asserted by writing the GCAPTURE command to 
the CMD register. This command asserts the GRDBK signal for two CCLK or TCK cycles, 
depending on the Startup clock setting. 

If the CAP signal is left asserted over multiple clock cycles, the Capture cell is updated 
with the new register value on each rising clock edge. To limit the capture operation to the 
first rising clock edge, the user can add the ONESHOT attribute to the 
CAPTURE_SPARTAN3A primitive. More information on the ONESHOT attribute can be 
found in the Constraints Guide.

Once the configuration memory frames have been read out of the device, the user can pick 
the captured register values out of the readback data stream. The capture bit locations are 
given in the logic allocation file (design.ll) as described in Figure 18-8. 

Figure 18-7: Extended Spartan-3A Library Primitive

Table 18-7: Capture Signals

Signal Description Access

GCAPTURE
Captures the state of all slice and 
IOB registers. Complement of 
GRESTORE.

GCAPTURE command through 
the CMD register or CAP input on 
capture block, user controlled.

GRESTORE Initializes all registers as 
configured.

CMD register and 
STARTUP_SPARTAN3A block.

UG332_54_xxxxx

CAP

CLK

CAPTURE_SPARTAN3A
Trigger with
external or

internal signal

Synchronize
to external or
internal clock
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Figure 18-8 shows a snippet from a logic allocation file for an example design. The line 
from the header comments explaining the line format has been moved to the start of the bit 
offset data for clarity. The <offset> field gives the absolute bit offset from the beginning of 
the readback frame data. The <frame address> field gives the frame address that the 
capture bit is located in, and the <frame offset> field gives the bit offset from the start of the 
frame. The <information> field gives the mapping between the bit and the user design—
for example, the DIR register (Figure 18-8) that is located in Slice X8Y15 is located at bit 
offset 100790. 

Note that captured flip-flop values, along with distributed RAM and SRL16 values, are 
stored in their inverted sense.

Figure 18-8: Logic Allocation File Format
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