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PREFACE

Thank you for your interest in the SCC, one of the most popular Serial Data ICs available
today. This manual is intended to provide answers to technical questions about the
Am8530H and Am85C30.  

If you have already used the Am8530H and are familiar with the previous editions of this
Technical Manual, you will find that some chapters are virtually unchanged. The
Am8030’s functionality, however, has been omitted from this revision since a CMOS
Am8030 was not developed. You can, however, consult the previous Am8030/8530 Tech-
nical Manual revision for information pertaining to Am8030 operation.  

Functional descriptions of enhancements added to the Am85C30 have been included in
this Technical Manual revision. These enhancements improve the Am85C30’s functional-
ity and allow it to be used more effectively in high-speed applications. These enhance-
ments include:  

■ a 10 x 19-bit SDLC/HDLC frame status FIFO array

■ a 14-bit SDLC/HDLC frame byte counter

■ automatic SDLC/HDLC opening flag transmission

■ automatic SDLC/HDLC Tx Underrun/EOM flag resetting

■ automatic SDLC/HDLC Tx CRC generator presetting

■ RTS pin synchronization to closing SDLC/HDLC flag

■ DTR/REQ deactivation delay significantly reduced

■ external PCLK to RxC or TxC synchronization requirement eliminated for PCLK divide-
by-four operation

■ complete SDLC/HDLC CRC character reception

■ reduced INT response time

■ Write data setup time to rising edge of WR requirement eliminated

■ Write Registers WR3, WR4, WR5, and WR10 made readable

Most users read only chapters that are of interest to them. If you are designing the micro-
computer hardware using the SCC as a peripheral, you will want to read the Applications
Section in Chapter 7.  Application notes covering the interfacing of the Am8530H (pre H-
step and CMOS versions only) to the 8086/80186, 68000 processors and Am7960 Data
Coded Transceiver have been included.  

As was the case with the NMOS SCC, some points to look out for when using the
Am85C30 are:

■ Follow the worksheet for initialization (Chapter 7). Unexplainable operations may occur if
this procedure is not followed.  

■ Watch out for the Write Recovery time violation. The specification for this (Trc) was
changed on both the H-step and CMOS version. It is now referenced from falling edge to
falling edge of the Read/Write pulse. Trc is spec’d at 4 PCLKs for the NMOS H-step and 3
PCLKs (best case)/3.5 PCLKs for the Am85C30.  

■ Ensure Mode bits are not changed when writing commands.  Each Mode bit affects only
one function and a Command bit entry requires a rewrite of the entire register; therefore,
care must be taken to insure the integrity of the Mode bits whenever a new command is
issued.

■ Any unused input pins should be tied high.
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General Information

CHAPTER 1

1.1 INTRODUCTION
The Am85C30 and Am8530H SCCs (Serial Communications Controller) are dual chan-
nel, multiprotocol data communications peripherals designed for use with 8- and 16-bit
microprocessors. The SCC functions as a serial-to-parallel, parallel-to-serial converter/
controller. The SCC can be software configured to satisfy a wide variety of serial commu-
nications applications, including: Bus Architectures (full- and half-duplex), Token Passing
Ring (SDLC Loop mode), and Star configurations (similar to SLAN).  

The SCC contains a variety of internal functions including on-chip baud rate generators,
digital phase-lock loops, and crystal oscillators, which dramatically reduce the need for
external logic. In addition, SDLC/HDLC enhancements have been added to the Am85C30
that allow it to be used more effectively in high speed applications.  

The SCC handles asynchronous formats, synchronous character-oriented protocols such
as IBM BISYNC, and Synchronous bit-oriented protocols such HDLC and IBM SDLC.
This versatile device supports virtually any serial data transfer application (telecommuni-
cations, cassette, diskette, tape drivers, etc.).

The device can generate and check CRC codes in any Synchronous mode. The SCC
also has facilities for Modem controls in both channels. In applications where these con-
trols are not needed, the Modem controls can be used for general purpose I/O.  

With access to the Write registers and Read registers in each channel, the user can con-
figure the SCC so that it can handle all asynchronous formats regardless of data size,
number of stop bits, or parity requirements. The SCC also accommodates all synchro-
nous formats including character, byte, and bit-oriented protocols.

Within each operating mode, the SCC also allows for protocol variations by handling odd
or even parity bits, character insertion or deletion, CRC generation and checking, break/
abort generation and detection, and many other protocol-dependent features.

Unless otherwise stated, the functional description in this Technical Manual applies to
both the NMOS Am8530H and CMOS Am85C30. When the enhancements in the
Am85C30 are disabled, it is completely downward compatible with the Am8530H.

1.2 CAPABILITIES
■ Two independent full-duplex channels

■ Synchronous data rates:

– Up to 1/4 of the PCLK (i.e., 4 Mbit/sec. maximum data rate with 16 MHz PCLK 
Am85C30)

– Up to 1Mbit/second with a 16 MHz clock rate (FM encoding using DPLL in
Am85C30)

– Up to 500 Kbit/second with 16 MHz clock rate (NRZI encoding using DPLL in
Am85C30)
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■ Asynchronous capabilities:

– 5, 6, 7, or 8 bits per character

– 1, 1-1/2, or 2 stop bits

– Odd or Even Parity

– x1, 16, 32, or 64 clock modes

– Break generation and detection

– Parity, Overrun and Framing Error detection

■ Character-Oriented synchronous capabilities:

– Internal or external character synchronization

– 1 or 2 sync characters in separate registers 

– Automatic CRC generation/detection 

■ SDLC/HLDC capabilities:

– Abort sequence generation and checking

– Automatic zero bit insertion and deletion

– Automatic flag insertion between messages

– Address field recognition

– I-Field residue handling

– CRC generation/detection

– SDLC Loop mode with EOP recognition/loop entry and exit

■ Receiver data registers quadruply buffered. Transmitter data register doubly buffered

■ NRZ, NRZI, or FM encoding/decoding and Manchester decoding

■ Baud-rate generator in each channel

■ A DPLL in each channel for clock recovery

■ Crystal oscillator in each channel

■ Local Loopback and Auto Echo modes

In addition, the Am85C30 provides enhancements which allow it to be used more effec-
tively in high speed SDLC/HDLC applications. These enhancements include: 

– 10 x 19-bit SDLC/HDLC frame status FIFO

– 14-bit SDLC/HDLC frame byte counter

– Automatic SDLC/HDLC opening Flag transmission

– Automatic SDLC/HDLC Tx Underrun/EOM Flag reset

– Automatic SDLC/HDLC CRC generator preset

– TxD forced High in SDLC NRZI mode when in mark idle

– RTS synchronization to closing SDLC/HDLC Flag

– DTR/REQ DMA request deactivation delay reduced

– External PCLK to RTxC or TRxC synchronization requirement removed for one fourth 
PCLK operation

– Reduced Interrupt response time

– Reduced Read/Write access recovery time (Trc) to 3 PCLK best case (3 1/2 PCLK 
worst case)

– Improved WAIT timing

Other enhancements which make the Am85C30 more user friendly include:

– Write data valid setup time to negative edge of write strobe requirement eliminated

– Write Registers WR3, WR4, WR5, WR10 and WR7′ are readable

– Complete reception of SDLC/HDLC CRC characters

– Lower priority interrupt masking without INTACK generation
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1.3 BLOCK DIAGRAM
Figure 1–1 depicts the block diagram of the Am8530H and Figure 1–2 the block diagram
of the Am85C30. Data being received enters the receive data pins and follows one of
several data paths, depending on the state of the control logic. The contents of the regis-
ters and the state of the external control pins establish the internal control logic. Transmit-
ted data follows a similar pattern of control, register, and external pin definition.
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1.4 Pin Functions
The SCC pins are divided into seven functional groups: Address/Data, Bus Timing and
Reset, Device Control, Interrupt, Serial Data (both channels), Peripheral Control (both
channels), and Clocks (both Channels). Figures  1–3 and 1–4 show the pins in each func-
tional group for the 40- and 44-pin SCC versions.  

The Address/Data group consists of the bidirectional lines used to transfer data between
the CPU and the SCC. The direction of these lines depends on whether the SCC is se-
lected and whether the operation is a Read or a Write.

The Timing and Control groups designate the type of transaction to occur and when this
transaction will occur. The Interrupt group provides inputs and outputs to conform to the
Z-Bus specifications for handling and prioritizing interrupts. The remaining groups are di-
vided into Channel A and Channel B groups for serial data (transmit or receive), peripher-
al control (such as DMA or Modem), and the input and output lines for the receive and
transmit clocks.
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1.5 PIN DESCRIPTIONS
Figure 1–4 designates the pin locations and signal names for the 40- and 44-pin SCC
versions.

1.5.1 System Interface Pin Descriptions
A/B — Channel A/Channel B Select (input, Channel A active High)

This signal selects the channel in which the Read or Write operation occurs and must be
valid prior to the read or write strobe.

CE — Chip Enable (input, active Low)

This signal selects the SCC for operation. It must remain active throughout the bus
transaction.

D0–D7 — Data Lines (bidirectional, 3-state)

These I/O lines carry data or control information to and from the SCC.

D/C — Data/Control (input, data active High)

This signal defines the type of information transfer performed by the SCC: data or control.
The state of this signal must be valid prior to the read or write strobe.

RD — Read (input, active Low)

This signal indicates a Read operation and, when the SCC is selected, enables the SCC
bus drivers. During the interrupt acknowledge cycle, this signal gates the interrupt vector
onto the bus provided that the SCC is the highest priority device requesting an interrupt.

WR — Write (input, active Low)

When the SCC is selected, this signal indicates a Write operation. On the NMOS
Am8530H data must be valid prior to the rising edge of write strobe. The Am85C30 does
not share this requirement. The coincidence of RD and WR is interpreted as a Reset.

IEI* — Interrupt Enable In (input, active High)

IEI is used with IEO to form an interrupt daisy chain when there is more than one inter-
rupt-driven device. A High on IEI indicates that no other higher priority device has an In-
terrupt Under Service (IUS) or is requesting an  interrupt.

IEO — Interrupt Enable Out (output, active High)

IEO is High only if IEI is High and the CPU is not servicing an SCC or SCC interrupt or
the controller is not requesting an interrupt (interrupt acknowledge cycle only). IEO is con-
nected to the next lower priority device’s IEI input and thus inhibits interrupts from lower
priority devices.

INTACK* — Interrupt Acknowledge (input, active Low)

This signal indicates an active interrupt acknowledge cycle. During this cycle, the interrupt
daisy chain settles. When RD becomes active, the SCC places an interrupt vector on the
data bus (if IEI is High). INTACK is latched by the rising edge of PCLK.

INT — Interrupt Request (output, open-drain, active Low)

This signal is activated when the SCC is requesting an interrupt.

Note: *Pull-up resistors are needed on INTACK and IEI inputs if they are not driven by the 
system and for the INT output. If INTACK or IEI are left floating, the Am85C30 will 
malfunction. INT is an open drain output and must be pulled up to keep a logical high 
level.
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1.5.2 Serial Channel Pin Descriptions
CTSA, CTSB — Clear to Send (inputs, active Low)

If the Auto Enable bit in WR3 (D5) is set, a Low on these inputs enables the respective
transmitter; otherwise they may be used as general-purpose inputs. Both inputs are
Schmitt-trigger buffered to accommodate slow rise-time inputs. The SCC detects transi-
tions on these inputs and, depending on whether or not other External/Status Interrupts
are pending, can interrupt the processor on either logic level transitions.

DCDA, DCDB — Data Carrier Detect (inputs, active Low)

These pins function as receiver enables if the Auto Enable bit in WR3 (D5) is set; other-
wise they may be used as general-purpose input pins. Both pins are Schmitt-trigger buff-
ered to accommodate slow rise-time signals. The SCC detects transitions on these inputs
and, depending on whether or not other External/Status Interrupts are pending, can inter-
rupt the processor on either logic level transitions.

DTR/REQA, DTR/REQB — Data Terminal Ready/Request (outputs, active Low)

These pins function as DMA requests for the transmitter if bit D2 of WR14 is set; other-
wise they may be used as general-purpose outputs following the state programmed into
the DTR bit.

PCLK — Clock (input)

This is the master clock used to synchronize internal signals. PCLK is not required to
have any phase relationship with the master system clock.  

RTSA, RTSB — Request to Send (outputs, active Low)

When the Request to Send (RTS) bit in WR5 is set, the RTS pin goes Low. When the
RTS bit is reset in the Asynchronous mode and the Auto Enable bit in WR3 (D5) is set,
the signal goes High after the transmitter is empty. In Synchronous mode or Asynchro-
nous mode with the Auto Enable bit reset, the RTS pins strictly follow the state of the RTS
bits. Both pins can be used as general-purpose outputs. Request to send outputs are not
affected by the state of the Auto Enable (D5) bit in WR3 in synchronous mode.

RTxCA, RTxCB — Receive/Transmit Clocks (inputs, active Low)

The functions of these pins are under program control. In each channel, RTxC may sup-
ply the receive clock, the transmit clock, the clock for the baud rate generator, or the clock
for the digital phase-locked loop. These pins can also be programmed for use with the
respective SYNC pins as a crystal oscillator. The receive clock may be 1, 16, 32, or 64
times the data rate in Asynchronous mode.

If a clock is supplied on these pins in NRZI or NRZ mode serial data on the RxD pin will
be sampled on the rising edge of these pins. In FM mode, RxD is sampled on both clock
edges.

RxDA, RxDB — Receive Data (inputs, active High)

Serial data is received through these pins.

SYNCA, SYNCB — Synchronization (inputs/outputs, active Low)

These pins can act as either inputs, outputs, or as part of the crystal oscillator circuit.  In
the Asynchronous mode (crystal oscillator option not selected), these pins are inputs simi-
lar to CTS and DCD. In this mode, transitions on these lines affect the state of the SYNC/
HUNT status bit in Read Register 0, but have no other function.

In External Synchronization mode, with the crystal oscillator not selected, these lines also
act as inputs. In this mode, SYNC must be driven Low two receive clock cycles after the
last bit of the sync character is received. Character assembly begins on the rising edge of
the receive clock immediately following the activation of SYNC.

In the Internal Synchronization mode (Monosync and Bisync), with the crystal oscillator
not selected, these pins act as outputs and are active only during the part of the receive
clock cycle in which sync characters are recognized. The sync condition is not latched, so
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these outputs are active each time a sync character is recognized (regardless of charac-
ter boundaries). In SDLC mode, these pins act as outputs and are valid on receipt of a
flag.

TRxCA, TRxCB — Transmit/Receive Clocks (inputs or outputs, active Low)

The functions of these pins are under program control. TRxC may supply the receive
clock or the transmit clock in the Input mode or supply the output of the digital phase-
locked loop, the crystal oscillator, the baud rate generator, or the transmit clock in the out-
put mode. If a clock is supplied on these pins in NRZI or NRZ mode serial data on the
TxD pin will be clocked out on the negative edge of these pins. In FM mode, TxD is
clocked on both clock edges.

TxDA, TxDB — Transmit Data (outputs, active High)

Serial data from the SCC is sent out these pins.

W/REQA, W/REQB — Wait/Request (outputs, open drain and switches from floating
to Low when programmed for Wait function, driven from High to Low when pro-
grammed for a Request function)

These dual-purpose outputs can be programmed as either transmit or receive request
lines for a DMA controller, or as Wait lines to synchronize the CPU to the SCC data rate.
The reset state is Wait.
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System Interface

CHAPTER 2

2.1 INTRODUCTION
The SCC internal structure provides all the interrupt and control logic necessary to inter-
face with non-multiplexed buses. Interface logic is also provided to monitor modem or
peripheral control inputs or outputs. All of the control signals are general-purpose and can
be applied to various peripheral devices as well as used for modem control.

The center for data activity revolves around the internal read and write registers. The pro-
gramming of these registers provides the SCC with functional “personality;” i.e. register
values can be assigned before or during program sequencing to determine how the SCC
will establish a given communication protocol.

This chapter covers the details of interfacing the SCC to a system. The general timing
requirements are described but the respective data sheets must be referred to for specific
A.C. numbers.

2.2 REGISTERS
All modes of communication are established by the bit values of the write registers. As
data are received or transmitted, read register values may change. These changed val-
ues can promote software action or internal hardware action for further register changes.

The register set for each channel includes several write and read registers. Ten write reg-
isters are used for control, two for sync character generation, and two for the on-chip
baud rate generator. Two additional write registers are shared by both channels; one is
used as the interrupt vector and one as the master interrupt control. Both registers are
accessed and shared by either channel.

Six read registers indicate status functions; two are used by the baud rate generator, and
one by the receiver buffer. The remaining two read registers are shared by both channels;
one for interrupt pending bits and one for the interrupt vector. On the Am85C30 three ad-
ditional registers are available. Refer to Chapter 4 and Chapter 6 for further details on
these registers.

Table 2–1 summarizes the assigned functions for each read and write register. Chapter 6
provides a detailed bit legend and description of each register.
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Table 2–1.  Register Set

Read Register Functions

RR0 Transmit/Receive buffer status, and External status

RR1 Special Receive Condition status, residue codes, error conditions

RR2 Modified (Channel B only) interrupt vector and Unmodified interrupt 
vector (Channel A only)

RR3 Interrupt Pending bits (Channel A only)

*RR6 14-bit frame byte count (LSB)

*RR7 14-bit frame byte count (MSB), frame status

RR8 Receive buffer

RR10 Miscellaneous XMTR, RCVR status parameters

RR12 Lower byte of baud rate generator time constant

RR13 Upper byte of baud rate generator time constant

RR15 External/Status interrupt control information

* Available only when Am85C30 is programmed in enhanced mode.

Write Register Functions

WR0 Command Register, (Register Pointers),  CRC initialization, resets 
for various modes

WR1 Interrupt conditions, Wait/DMA request control

WR2 Interrupt vector (access through either channel)

WR3 Receive/Control parameters, number of bits per character, Rx CRC 
enable

WR4 Transmit/Receive miscellaneous parameters and codes, clock rate, 
number of sync  characters, stop bits, parity

WR5 Transmit parameters and control, number of Tx bits per character, 
Tx CRC enable

WR6 Sync character (1st byte) or SDLC address

WR7 SYNC character (2nd byte) or SDLC flag

**WR7′ SDLC options; auto flag, RTS, EOM reset, extended read, etc.

WR8 Transmit buffer

WR9 Master interrupt control and reset (accessed through either 
channel), reset bits, control interrupt daisy chain

WR10 Miscellaneous transmitter/receiver control bits, NRZI, NRZ, FM 
encoding, CRC reset

WR11 Clock mode control, source of Rx and Tx clocks

WR12 Lower byte of baud rate generator time constant

WR13 Upper byte of baud rate generator time constant

WR14 Miscellaneous control bits:  baud rate generator, Phase-Locked 
Loop control, auto echo, local loopback

WR15 External/Status interrupt control information-control external 
conditions causing interrupts

** Only available in Am85C30.
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2.3 SYSTEM TIMINGS
Two control signals, RD and WR, are used by the SCC to time bus transactions. In addi-
tion, four other control signals, CE, D/C, A/B and INTACK are used to control the type of
bus transaction that will occur.

A bus transaction starts when the D/C and A/B pins are asserted prior to the negative
edge of the RD or WR signal. The coincidence of CE and RD or CE and WR latches the
state of D/C and A/B and starts the internal operation. The INTACK signal must have
been previously sampled High by a rising edge of PCLK for a read or write cycle to occur.
In addition to sampling INTACK, PCLK is used by the interrupt section to set the Interrupt
Pending (IP) bits.

The SCC generates internal control signals in response to a register access. Since RD
and WR have no phase relationship with PCLK, the circuitry generating these internal
control signals provide time for metastable conditions to disappear. This results in a re-
covery time related to PCLK. This recovery time applies only between transactions involv-
ing the Am8530H/Am85C30, and any intervening transactions are ignored. This recovery
time is four PCLK cycles, measured from the falling edge of RD or WR for a read or write
cycle of any SCC register on the Am8530H-step and 3 or 3.5 PCLK cycles for the
Am85C30.

Note that RD and the WR inputs are ignored until CE is activated. The falling edge of RD
and WR can be substituted for the falling edge of CE or vice versa for calculating proper
pulse width for RD or WR low. In other words, if CE goes active after RD or WR have
gone active for a read or a write cycle, respectively, CE must stay active as long as the
minimum pulse width for RD and WR.

2.3.1 Read Cycle
The Read cycle timing for the SCC is shown in Figure 2–1. The A/B and D/C pins are
latched by the coincidence of RD and CE active. CE must remain Low and INTACK must
remain High throughout the cycle. The SCC bus drivers are enabled while CE and RD are
both Low. A read with D/C High does not disturb the state of the pointers and a read cycle
with D/C Low resets the pointers to zero after the internal operation is complete.

2.3.2 Write Cycle
The Write cycle timing for the SCC is shown in Figure 2–2. The A/B and D/C pins are
latched by the coincidence of WR and CE active. CE must remain Low and INTACK must
remain High throughout the cycle. A write cycle with D/C High does not disturb the state
of the pointers and a write cycle with D/C Low resets the pointers to zero after the internal
operation is complete.

2.3.3 Interrupt Acknowledge Cycle
The Interrupt Acknowledge cycle timing for the SCC is shown in Figure 2–3. The state of
INTACK is latched by the rising edge of PCLK. While INTACK is Low, the state of the
A/B, D/C, and WR pins is ignored by the SCC. Between the time INTACK is first sampled
Low and the time RD falls, the internal and external IEI/IEO daisy chains settle; this is
A.C. parameter #38 TdlAi (RD).

If there is an interrupt pending in the SCC, and IEI is High when RD falls, the Interrupt
Acknowledge cycle is intended for the SCC. This being the case, the SCC sets the appro-
priate Interrupt Under Service (IUS) latch, and places an interrupt vector on D0–D7. If the
falling edge of RD sets an IUS bit in the SCC, the INT pin goes inactive in response to the
falling edge. Note that there should be only one RD per Acknowledge cycle. 

Another important fact is that the IP bits in the SCC are updated by a clock half the fre-
quency of PCLK, and this clock is stopped while the pointers point to RR2 and RR3; thus
the interrupt requests will be delayed if the pointers are left pointing at these registers.
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2.4 REGISTER ACCESS
The registers in the SCC are accessed in a two-step process, using a Register Pointer to
perform the addressing. To access a particular register, the pointer bits must be set by
writing to WR0. The pointer bits may be written in either channel because only one set
exists in the SCC. After the pointer bits are set, the next read or write cycle of the SCC
having D/C Low will access the desired register. At the conclusion of this read or write
cycle, the pointer bits are automatically reset to ‘0’, so that the next control write will be to
the pointers in WR0.

A read from RR8 (the Receive Buffer) or a write to WR8 (Transmit Buffer) may either be
done in this fashion or by accessing the SCC having the D/C pin High. A read or write
with D/C High accesses the receive or transmit buffers directly, and independently, of the
state of the pointer bits. This allows single-cycle access to the receive or transmit buffers
and does not disturb the pointer bits. The fact that the pointer bits are reset to ‘0’, unless
explicitly set otherwise, means that WR0 and RR0 may also be accessed in a single cy-
cle. That is, it is not necessary to write the pointer bits with ‘0’ before accessing WR0 or
RR0. There are three pointer bits in WR0, and these allow access to the registers with
addresses 0 through 7. Note that a command may be written to WR0 at the same time
that the pointer bits are written. To access the registers with addresses 8 through 15, a
special command (point high in WR0) must accompany the pointer bits. This precludes
concurrently issuing a command (point high in WR0) when pointing to these registers.
The SCC register map is shown in Table 2–2. PNT2, PNT1 and PNT0 are bits D2, D1 and
D0 in WR0, respectively.

If for some reason the state of the pointer bits is unknown, they may be reset to ‘0’ by per-
forming a read cycle with the D/C pin held Low. Once the pointer bits have been set, the
desired channel is selected by the state of the A/B pin during the actual read or write of
the desired register.

A/B, D/C

INTACK

CE

RD

Address Valid

Data ValidD0- D7

10216A-009A

Figure 2–1. SCC Read Cycle
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A/B, D/C

INTACK

CE

WR

Address Valid

Data ValidD0- D
7

10216A-010A

Figure 2–2. SCC Write Cycle

PCLK

D0 – D7

RD

INTACK

IEI

IEO

INT

Vector

Figure 2–3. Interrupt Acknowledge Cycle

2.5 Am85C30 Enhancement Register Access
SDLC/HDLC enhancements on the Am85C30 are enabled or disabled via bits D2 and D0
in WR15. Bit D2 determines whether or not the 10x19-bit SDLC/HDLC frame status FIFO
is enabled while bit D0 determines whether or not other SDLC/HDLC mode enhance-
ments are enabled via WR7’. Table 2–3 shows what functions on the Am85C30 are en-
abled when these bits are set.

When bit D2 of WR15 is set to ‘1’, two additional registers (RR6 and RR7) per channel
specific to the 10x19-bit frame status FIFO are made available. The Am85C30 register
map when this function is enabled is shown in Table 2–4.
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Table 2–2.  SCC Register Map

A/B PNT2 PNT1 PNT0 WRITE READ

0 0 0 0 WR0B RR0B

0 0 0 1 WR1B RR1B

0 0 1 0 WR2 RR2B

0 0 1 1 WR3B RR3B

0 1 0 0 WR4B (RR0B)

0 1 0 1 WR5B (RR1B)

0 1 1 0 WR6B (RR2B)

0 1 1 1 WR7B (RR3B)

1 0 0 0 WR0A RR0A

1 0 0 1 WR1A RR1A

1 0 1 0 WR2 RR2A

1 0 1 1 WR3A RR3A

1 1 0 0 WR4A (RR0A)

1 1 0 1 WR5A (RR1A)

1 1 1 0 WR6A (RR2A)

1 1 1 1 WR7A (RR3A)

Table 2–2.  SCC Register Map (Continued)

A/B PNT2 PNT1 PNT0 WRITE READ

With the Point High command: [D5–3 (WR0) = 001]

0 0 0 0 WR8B RR8B

0 0 0 1 WR9 (RR13B)

0 0 1 0 WR10B RR10B

0 0 1 1 WR11B (RR15B)

0 1 0 0 WR12B RR12B

0 1 0 1 WR13B RR13B

0 1 1 0 WR14B (RR10B)

0 1 1 1 WR15B RR15B

1 0 0 0 WR8A RR8A

1 0 0 1 WR9 (RR13A)

1 0 1 0 WR10A RR10A

1 0 1 1 WR11A (RR15A)

1 1 0 0 WR12A RR12A

1 1 0 1 WR13A RR13A

1 1 1 0 WR14A (RR10A)

1 1 1 1 WR15A RR15A
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Table 2–3.  Enhancement Options

WR15 bit D2 WR15 D0 WR7 ′ bit D6
10x19-bit SDLC/HDLC Extended

FIFO Enabled Enhance Enabled Read Enable Functions Enabled

1 0 x 10x19-bit FIFO enhancement 
enabled only

0 1 0 SDLC/HDLC enhancements 
enabled only

0 1 1 SDLC/HDLC enhancements 
enabled with extended read 
enabled

1 1 0 10x19-bit FIFO and SDLC/
HDLC enhancements enabled

1 1 1 10x19-bit FIFO and SDLC/
HDLC enhancements with 
extended read enabled

Bit D0 of WR15 determines whether or not other enhancements pertinent only to SDLC/
HDLC Mode operation are available for programming via WR7′ as shown below. Write
Register 7 prime (WR7′ ) can be written to when bit D0 of WR15 is set to ‘1’. When this
bit is set, writing to WR7 (flag register) actually writes to WR7′. If bit D6 of this register is
set to ‘1’, previously unreadable registers WR3, WR4, WR5, WR10 are readable by the
processor. In addition, WR7′  is also readable by having this bit set. WR3 is read when a
bogus RR9 register is accessed during a read cycle, WR10 is read by accessing RR11,
and WR7′  is accessed by executing a read to RR14. The Am85C30 register map with bit
D0 of WR15 and bit D6 of WR7′ set is shown in Table 2–5.
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Table 2–4. 10 x 19-Bit FIFO Enabled

A/B PNT2 PNT1 PNT0 WRITE READ

0 0 0 0 WR0B RR0B

0 0 0 1 WR1B RR1B

0 0 1 0 WR2 RR2B

0 0 1 1 WR3B RR3B

0 1 0 0 WR4B (RR0B)

0 1 0 1 WR5B (RR1B)

0 1 1 0 WR6B RR6B

0 1 1 1 WR7B RR7B

1 0 0 0 WR0A RR0A

1 0 0 1 WR1A RR1A

1 0 1 0 WR2 RR2A

1 0 1 1 WR3A RR3A

1 1 0 0 WR4A (RR0A)

1 1 0 1 WR5A (RR1A)

1 1 1 0 WR6A RR6A

1 1 1 1 WR7A RR7A

With the Point High command:

0 0 0 0 WR8B RR8B

0 0 0 1 WR9 (RR13B)

0 0 1 0 WR10B RR10B

0 0 1 1 WR11B (RR15B)

0 1 0 0 WR12B RR12B

0 1 0 1 WR13B RR13B

0 1 1 0 WR14B (RR10B)

0 1 1 1 WR15B RR15B

1 0 0 0 WR8A RR8A

1 0 0 1 WR9 (RR13A)

1 0 1 0 WR10A RR10A

1 0 1 1 WR11A (RR15A)

1 1 0 0 WR12A RR12A

1 1 0 1 WR13A RR13A

1 1 1 0 WR14A (RR10A)

1 1 1 1 WR15A RR15A
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Table 2–5.  SDLC/HDLC Enhancements Enabled

A/B PNT2 PNT1 PNT0 WRITE READ

0 0 0 0 WR0B RR0B

0 0 0 1 WR1B RR1B

0 0 1 0 WR2 RR2B

0 0 1 1 WR3B RR3B

0 1 0 0 WR4B RR4B(WR4B)

0 1 0 1 WR5B RR5B(WR5B)

0 1 1 0 WR6B (RR6B)

0 1 1 1 WR7B (RR7B)

1 0 0 0 WR0A RR0A

1 0 0 1 WR1A RR1A

1 0 1 0 WR2 RR2A

1 0 1 1 WR3A RR3A

1 1 0 0 WR4A RR4A(WR4A)

1 1 0 1 WR5B RR5A(WR5A)

1 1 1 0 WR6A (RR2A)

1 1 1 1 WR7A (RR3A)

With the Point High command:

0 0 0 0 WR8B RR8B

0 0 0 1 WR9 RR9(WR3B)

0 0 1 0 WR10B RR10B

0 0 1 1 WR11B RR11B(WR10B)

0 1 0 0 WR12B RR12B

0 1 0 1 WR13B RR13B

0 1 1 0 WR14B RR14B(WR7’B)

0 1 1 1 WR15B RR15B

1 0 0 0 WR8A RR8A

1 0 0 1 WR9 RR9A(WR3A)

1 0 1 0 WR10A RR10A

1 0 1 1 WR11A RR11A(WR10A)

1 1 0 0 WR12A RR12A

1 1 0 1 WR13A RR13A

1 1 1 0 WR14A RR14A(WR7’A)

1 1 1 1 WR15A RR15A

0
Ext.

Read
Enable

Rx
comp.
CRC

DTR/REQ
Fast

Mode

Force
Txd
High

Auto
RTS

Turnoff

Auto
EOM
Reset

Auto
Tx

Flag

D0D1D2D3D4D5D6D7

WR7′—SDLC/HDLC Enhancement
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If both bits D0 and D2 of WR15 are set to ‘1’ then the Am85C30 register map is as shown
in Table 2–6.

Table 2–6.  Register Set—All Enhancements Enabled

A/B PNT2 PNT1 PNT0 WRITE READ

0 0 0 0 WR0B RR0B

0 0 0 1 WR1B RR1B

0 0 1 0 WR2 RR2B

0 0 1 1 WR3B RR3B

0 1 0 0 WR4B RR4B(WR4B)

0 1 0 1 WR5B RR5B(WR5B)

0 1 1 0 WR6B RR6B

0 1 1 1 WR7B RR7B

1 0 0 0 WR0A RR0A

1 0 0 1 WR1A RR1A

1 0 1 0 WR2 RR2A

1 0 1 1 WR3A RR3A

1 1 0 0 WR4A RR4A(WR4A)

1 1 0 1 WR5B RR5A(WR5A)

1 1 1 0 WR6A RR6A

1 1 1 1 WR7A RR7A

With the Point High command:

0 0 0 0 WR8B RR8B

0 0 0 1 WR9 RR9B(WR3B)

0 0 1 0 WR10B RR10B

0 0 1 1 WR11B RR11B(WR10B)

0 1 0 0 WR12B RR12B

0 1 0 1 WR13B RR13B

0 1 1 0 WR14B RR14B(WR7’B)

0 1 1 1 WR15B RR15B

1 0 0 0 WR8A RR8A

1 0 0 1 WR9 RR9A(WR3A)

1 0 1 0 WR10A RR10A

1 0 1 1 WR11A RR11A(WR10A)

1 1 0 0 WR12A RR12A

1 1 0 1 WR13A RR13A

1 1 1 0 WR14A RR14A(WR7’A)

1 1 1 1 WR15A RR15A

2.6 RESET
The SCC may be reset by either hardware or software. A hardware reset occurs when
RD and WR are both Low, simultaneously regardless of the state of the CE input, which
is normally an illegal condition. As long as both RD and WR are Low, the SCC recognizes
the reset condition. Once this condition is removed, however, the reset condition is as-
serted internally for an additional four to five PCLK cycles. During this time, any attempt
to access the SCC will be ignored. However a hardware reset does not clear the receive
FIFO, therefore it may be necessary to perform a few dummy reads immediately after a
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hardware reset to ensure that the FIFO is completely flushed before the new data can be
received reliably. 

The SCC has three software resets encoded into command bits in WR9. There are two
channel resets, which affect only one channel in the device and some of the bits in the
write registers. The third command forces the same result as a hardware reset. As in the
case of a hardware reset, the SCC stretches the reset signal an additional four to five
PCLK cycles beyond the ordinary valid access recovery time. When the SCC is first pow-
ered up, performing a read with the D/C pin held Low will guarantee that the pointers are
reset to ‘0’; then a reset command can be issued by selecting WR9 and writing to it. The
bits in WR9 may be written at the same time as the reset command because these bits
are affected only by a hardware reset. The reset values of the various registers are
shown in Figure 2–4.

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0

. . . . . . . .

0 0

1 1

0 . . 0 0 0 0 . 0 . . 0 0 0 0 .

.

1 1 0 0 0 0 . . . . 0

0 0 0 0 0 0 0 0 0 . . 0 0 0 0 0

0 0 0 0 1 0 0 0

. . 1 0 0 0 0 0 . . 1 0 0 0 . .

1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0

0 1 . . . 1 0 0 0 1 . . . 1 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hardware Reset Channel Reset

WR0

WR1

WR2

WR3

WR4

WR5

WR6

WR7

WR9

WR10

WR11

WR12

WR13

WR14

WR15

RR0

RR1

RR3

RR10

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . . .

. . . . . . . . . . . . . . . .

. . . . .

. . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

Figure 2–4. SCC Register Reset Values
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I/O Programming Functional
Description

CHAPTER 3

3.1 INTRODUCTION
The SCC can work under one of the following three modes of I/O operations:  Polling,
Interrupts, and Block transfer. All three modes involve register manipulation during initiali-
zation and data transfer. Regardless of the communication mode selected, all three I/O
operating modes are available for use and must be programmed in the initialization
routine.

3.2 POLLING
Polling avoids interrupts and is the simplest mode to implement. In this mode, the soft-
ware must poll the SCC to determine when data are to be written or read from the SCC.
This mode is enabled when the Master Interrupt Enable (MIE) bit in WR9 (D3) and the
Wait/DMA Request Enable bit in WR1 (D7) are both set to ‘0’.

In this mode the software must poll RR0 to determine the status of the Receive Buffer,
Transmit Buffer and External/Status before jumping to the appropriate interrupt routine.

3.3 INTERRUPT SOURCES
When the MIE bit in WR9 (D3) is set to ‘1’ interrupts will be enabled and, the SCC as a
microprocessor peripheral, will request an interrupt by asserting the INT pin Low from its
open-drain state only when it needs servicing.

Each channel in the SCC contains three sources of interrupts making a total of six.
These three sources of interrupts are: 1) Receiver, 2) Transmitter, and 3) External/Status
conditions as shown in Figure 3–1. In addition, there are several conditions that may
cause these interrupts. Each interrupt source is enabled under program control, with
Channel A having a higher priority than Channel B and with Receive, Transmit, and Ex-
ternal/Status interrupts prioritized respectively within each channel as shown in 
Table  3–1.
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INT on 1st Rx Char. or
Special Condition

INT on All Rx Char. or
Special Condition

Rx Int on Special
Condition only

Parity

Transmit Buffer Empty

Zero Count

DCD

SYNC/HUNT

CTS

Tx Underrun/EOM

Break/Abort

SCC
Interrupt

External/Status
Interrupt
Sources

Transmitter
Interrupt
Source

Receiver
Interrupt
Sources

Figure 3–1. SCC Interrupts

Table 3–1.  Interrupt Source Priority

Receiver Channel A High

Transmit Channel A

External/Status Channel A ↓
Receiver Channel B  ↓
Transmit Channel B

External/Status Channel B Low

3.4 INTERRUPT CONTROL
In addition to the MIE bit that enables or disables all SCC interrupts, three control/status
bits are associated with each interrupt source internal to the SCC. These are the Interrupt
Enable (IE), the Interrupt Pending (IP), and the Interrupt Under Service (IUS) bits. Simi-
larly, lower-priority devices on the external daisy chain can be prevented from requesting
interrupts via the Disable Lower Chain bit in WR9 (D2). 

3.4.1 Interrupt Enable Bit
The Interrupt Enable (IE) bits are written by the processor and serve to control interrupt
requests from each interrupt source on the SCC. If the IE bit is set to ‘1’ for an interrupt
source, then that source may cause an interrupt request providing all of the necessary
conditions are met. If the IE bit is reset, no interrupt request will be generated by that
source. The IE bits are write-only and are programmed in WR1 as follows.
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D7

W/DMA
REQ

Enable

D6

W/DMA
REQ

Funct.

D5

W/DMA
REQ on
Rx/Tx

D4 D3 D2

Parity
INT

Enable

D1

Tx
INT

Enable

D0

Ext/Sta
INT

Enable

0

0


1


1

0

1


0


1

—   Rx INT Disable

—   Rx INT on 1st Char. or
        Special Condition

—   INT on All Rx Char. or
        Special Condition

—   Rx INT on Special Only

WR1—Interrupt Source IE

3.4.2 Interrupt Pending Bit
The Interrupt Pending (IP) bit for a given source of interrupt may be set by the presence
of an interrupt condition in the SCC and is reset directly by the processor, or indirectly by
some action that the processor may take. If the corresponding IE bit is not set, the IP for
that source of interrupt will never be set. The IP bits in the SCC are read-only via RR3 as
shown above. 

D7


0

D6


0

D5

Ch. A
Rx
IP

D4

Ch. A
Tx
IP

D3

Ch. A
Ext/Sta

IP

D2

Ch. B
Rx
IP

D1

Ch. B
Tx
IP

D0

Ch. B
Ext/Sta

IP

RR3—Interrupt Pending

3.4.3 Interrupt Under Service Bit
The Interrupt Under Service (IUS) bits are not observable by the processor.  An IUS bit is
set during an Interrupt Acknowledge cycle for the highest-priority IP. The IUS bit is used
to control the operation of internal and external daisy chain interrupts. The internal daisy
chain links the six sources of interrupt in a fixed order, chaining the IUS bits for each
source. While an internal IUS bit is set, all lower-priority interrupt requests are masked
off; during an Interrupt Acknowledge cycle the IP bits are also gated into the daisy chain.
This insures that the highest-priority IP selected will have its IUS bit set. At the end of an
interrupt service routine, the processor must issue a Reset Highest IUS Command in
WR0 to re-enable lower-priority interrupts. This is the only way, short of a software or
hardware reset, that an IUS bit may be reset.

3.4.4 Disable Lower Chain Bit
The Disable Lower Chain (DLC) bit in WR9 (D2) is used to disable all SCCs in a lower
position on the external daisy chain.  If this bit is set to ‘1’, the IEO pin is driven Low and
prevents lower-priority devices from generating an interrupt request. Note that the IUS bit,
when set, will have the same effect but is not controllable through software, and the point
where lower-priority interrupts are masked off may not correspond to the chip boundary.
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3.5 INTERRUPT OPERATIONS
Interrupts from the SCC may be acknowledged with a vector, acknowledged without a
vector, or not acknowledged at all. WR2 is used to hold the interrupt vector returned dur-
ing an interrupt acknowledge cycle. This vector register can be shared among multiple
interrupt sources; some bits of the vector can be encoded with information that identifies
the interrupt source.

Three bits in WR9 determine whether or not a vector is placed on the bus and whether or
not status is included. The Vector Includes Status (VIS) bit (D0) enables status informa-
tion to be included in the vector, the Status High/Status Low bit (D4) determines which
bits of the vector are encoded as shown in Figure 3–2, and the No Vector (NV) bit (D1)
enables or disables placing the vector on the bus in response to an interrupt acknowledge
cycle.

V3 V2 V1 Status High/Status Low = 0

V4 V5 V6 Status High/Status Low = 1

0 0 0 Ch B Transmit Buffer Empty

0 0 1 Ch B External/Status Change

0 1 0 Ch B Receive Character Available

0 1 1 Ch B Special Receive Condition

1 0 0 Ch A Transmit Buffer Empty

1 0 1 Ch A External/Status Change

1 1 0 Ch A Receive Character Available

1 1 1 Ch A Special Receive Condition

Figure 3–2.  Interrupt Vector Modification

In addition, the SCC can share a common interrupt request line to the processor. An ex-
ternal interrupt priority daisy chain, constructed using IEI and IEO on each SCC, is used
to resolve contention when multiple SCC devices share an interrupt request line. This ca-
pability eliminates the need for separate interrupt controllers. An interrupt acknowledge
cycle that includes the generation of an explicit Interrupt Acknowledge signal (INTACK) is
used to select the highest priority SCC asserting INT. Figure 3–3 shows a typical arrange-
ment for four SCCs, labeled A through D, on the daisy chain, where A has the highest
priority and D has the lowest priority.

3.5.1 Multiple Interrupt Priority Resolution
The SCC has an internal priority resolution method to allow the highest priority interrupt to
be serviced first. It uses a daisy chain technique of priority interrupt control whereby other
SCC devices are connected together via an external interrupt daisy chain formed with
their Interrupt Enable Input (IEI) and Interrupt Enable Output (IEO) pins. The six interrupt
sources within each SCC are similarly chained together as shown in Figure 3–4 with
Channel A interrupts being higher-priority than any Channel B interrupts, and with the Re-
ceiver, Transmitter, and External/Status interrupts prioritized in that order within each
channel. The overall effect is a daisy chain connecting all internal and external interrupt
sources that allows higher priority interrupt sources to pre-empt lower priority sources
and, in the case of simultaneous interrupt requests, determines which request will be ac-
knowledged.
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IEI IEO 

INT INTACK 

IEI IEO 

INT INTACK 

IEI IEO 

INT INTACK 

IEI IEO 

INT INTACK 

5 V SCC
A

SCC
B

SCC
C

SCC
D

Figure 3–3. External Daisy Chain

INTERRUPT VECTOR

RECEIVER CHANNEL A
INTERRUPT

IEI INTACK INT IEO 

TRANSMIT CHANNEL A
INTERRUPT

IEI INTACK INT IEO 

EXTERNAL/STATUS
CHANNEL B INTERRUPT

IEI INTACK INTIEO

INTACK

IP IE IUS IP IE IUS IP IE IUS 

NV

DLC

MIE
VIS

Figure 3–4. Internal Daisy Chain

Each SCC on the daisy chain uses PCLK to latch the state of the Interrupt Acknowledge
signal, INTACK. If a Low INTACK is latched, then the present cycle is an interrupt ac-
knowledge cycle and the daisy chain determines which interrupt source is being acknowl-
edged in the following way.  Any interrupt source that has an interrupt pending and is not
masked from the chain will hold its IEO line low. Similarly, sources that are currently un-
der service will also hold their IEO lines low.

All other interrupt sources make IEO follow IEI. The result is that only the highest priority,
unmasked source with an interrupt pending will have a high IEI input. This SCC will be
allowed to transfer its vector to the system bus when the RD strobe is issued during the
interrupt acknowledge cycle.

To ensure that the daisy chain has settled by the time RD gates the vector onto the bus,
the SCC requires a delay between falling edge of INTACK and the falling edge of RD (AC
timing parameter #38, TdlAi(RD)). The internal daisy chain may be controlled by the MIE
bit in WR9. This bit, when reset, has the same effect as pulling the IEI Low, thus disabling
all interrupt requests. 
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The interrupt protocol is diagrammed in Figure 3–5. In the quiescent state (i.e. no inter-
rupts pending or under service) each SCC on the daisy chain passes its IEI input through
to its IEO output. An interrupt source that requires servicing requests an interrupt by pull-
ing the INT pin Low if the following conditions exist: 1) interrupt source is enabled (i.e., IE
and MIE bits are set to ‘1’), 2) interrupt source is not already under service (i.e., internal
IUS bit set to ‘0’), 3) no higher priority interrupt is under service (i.e., internal IUS bit set to
‘1’), and 4) an interrupt acknowledge cycle is not currently being executed (i.e., INTACK
is High).  

When the processor responds with an Interrupt Acknowledge cycle all SCCs that have
enabled interrupt sources with an interrupt pending or already under service, hold their
IEO outputs lines Low. When RD goes Low, only the highest priority SCC with an inter-
rupt pending will have a high IEI input; this is the interrupt being acknowledged, and that
source’s internal IUS bit will be set to ‘1’. 

When servicing of the SCC has completed, the Reset Highest IUS Command in WR0
must be issued to unlock the daisy chain, reset the IUS bit, and enable lower-priority in-
terrupt requests.

3.5.2 Interrupt Without Acknowledge
In this mode, INTACK does not have to be generated, and the INTACK input pin must be
tied High. This allows a simpler hardware design that does not have to meet the Interrupt
Acknowledge timing (AC timing parameter #38,TdlAi(RD)). Soon after the SCC’s INT pin
goes active, an external interrupt controller will jump to the interrupt routine. In the inter-
rupt routine, the code must read RR2 from Channel B to read the vector including status.
When the vector is read from Channel B, it always includes the status regardless of the
VIS bit in WR9 (D0). The status given will decode the highest priority interrupt pending at
the time RR2 is read. Note that the vector is not latched in RR2 so that the next read of
RR2 could produce a different vector if another interrupt occurs; however, accessing RR2
disables it from change during the read operation to prevent an error if a higher interrupt
occurs exactly during the read operation.

Once RR2 is read, the interrupt routine must decode the interrupt pending, and clear the
condition. For example, writing a character to the Transmit Buffer will clear the Transmit
Buffer Empty IP. Removing the interrupt condition clears the IP bit and deactivates
INT, but only if there are no other IP bits set.  When the interrupt IP is cleared, RR2
can be read again. This allows the interrupt routine to clear all IPs with one interrupt re-
quest to the processor.

3.5.3 Interrupt With Acknowledge With Vector
In this mode of operation, the processor must respond to the activation of INT by activat-
ing INTACK. After enough time has elapsed to allow the daisy chain to settle (AC timing
parameter #38,TdlAi(RD)), the SCC sets the IUS bit for the highest priority IP. If the No
Vector bit in WR9 (D1) is reset to ‘0’, the SCC will then place the interrupt vector on the
data bus during the read strobe. 

To speed the interrupt response time, the SCC can also modify 3 bits in the vector to indi-
cate status. If it is programmed to include status information in the vector, this status may
be encoded and placed in either bits 1–3 or in bits 4–6 as programmed by the Status
High/Status Low bit in WR9. To include status, the VIS bit in WR9 (D0) must be set to ‘1’.
The service routine must then clear the interrupting condition. For example, writing a
character to the Transmit Buffer will clear the Transmit Buffer empty IP. After the inter-
rupting condition is cleared, the routine can read RR3 to determine if any other IP bits are
set and clear them. At the end of the interrupt routine, a Reset IUS command must then
be issued via WR0 to unlock the daisy chain and enable lower-priority interrupt requests.
This is the only way, short of a software or hardware reset, that an IUS bit may be reset.



I/O Programming Functional Description AMD

3–9

Start

Condition
Exits

?

Interrupt

Interrupt Enable
(IEx = 1)

?

Specific

Interrupt Pending
Set (IP = 1)

Interrupt Enables
(MIE = 1)

?

Master

Peripheral
Enable Pin Active

(IEI = H)

IS

Peripheral Requests

Interrupt (INT = L)

CPU Initiates Status
Decode (INTACK = L)

IEI/IEO Daisy Chain

Settles (Wait for DS)

Priority Peripheral
Disabled Unit?

Has Higher
Unit Selected for

CPU Service (IUS = 1)

Routine
Complete

?

Service

(Option) Check Other
Internal IP, Bits,

Still Pending
(IP = 1)

?

Interrupt

CPU Services Higher
Priority Peripheral

Service
Complete

?

Priority

Yes

No

No

Yes

Yes

No

Yes

No

No

Yes

Yes

?

(IEI = L)

No

No

Yes

Yes

No

Reset IUS and EXIT

Figure 3–5. Interrupt Protocol
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3.5.4 Interrupt With Acknowledge Without  Vector
If the No Vector bit in WR9 (D1) is set to ‘1’, the SCC will not place the vector on the data
bus during the Interrupt Acknowledge cycle. An external interrupt controller must then
vector the code to the interrupt routine. The interrupt routine must then read RR2 from
Channel B to read the status. This is the same as the case of an interrupt without an ac-
knowledge except that INTACK needs to be generated. The IUS is set as before, and the
vector read in RR2 will not change until the Reset IUS command in WR0 is issued.

3.5.5 Lower Priority Interrupt Masking
The NMOS SCC’s ability to mask lower priority interrupts is done via the IUS bit. This bit
is internal to the SCC and is not observable by the processor. Being able to automatically
mask lower priority interrupts allows a modular approach to coding interrupt routines.
However, using the masking capabilities of the NMOS SCC requires that the INTACK cy-
cle be generated. In applications where an external interrupt controller is being used to
supply the vector, having to generate INTACK through external hardware, in order to use
this capability, is an unnecessary expense.  

On the CMOS SCC if bit D5 in WR9 is set to ‘1’, the INTACK cycle does not need to be
generated in order to have the IUS bit set and must be tied High. When this bit is set and
an interrupt occurs, reading RR2 will cause the IUS bit to be set for the highest priority IP.
After the interrupting condition is cleared, the routine can then read RR3 to determine if
any other IPs are set and clear them. At the end of the interrupt routine, a Reset IUS
command must be issued to unlock the internal daisy chain, and reset the IUS bit. Note
that in this mode the No Vector and Vector Includes Status bits in WR9 are ignored.

3.6 RECEIVE INTERRUPTS
Four receive interrupt modes are available on the SCC. These four modes are: 1) Re-
ceive Interrupts Disabled, 2) Interrupt on First Character or Special Condition, 3) Interrupt
on All Received Characters or Special Condition, and 4) Receive Interrupt on Special
Condition Only.

The mode selected is controlled by bits D4 and D3 of WR1. The Special Condition inter-
rupts are: Receive FIFO Overrun, CRC/Framing Error, EOF, and Parity. The Parity condi-
tion can either be included as a Special Condition or not depending on bit D2 in WR1.
The Special Condition status can be read via RR1.

3.6.1 Receive Interrupts Disabled
This mode prevents the receiver from requesting an interrupt.  It is used in a polled envi-
ronment where either RR0 or the modified vector in RR2 (Channel B) is read for status.  

When either RR0 or RR2 indicates that a received character has reached the top of the
Receive Data FIFO, the status should be read first and then RR8 because reading RR8
moves the next character in the Receive Data FIFO and Error FIFO up one location. If
status is read after the data are read, the error data belonging (if any) to the next charac-
ter in the FIFO will also be included. If, however, operations are being performed rapidly
enough so that the next character has not yet been received, then the status will remain
valid.

Although the Receiver interrupts are disabled, a Special Condition can still provide a
unique vector status in RR2.

3.6.2 Receive Interrupt on First Character or Special 
Condition

This mode is designed for use with an external DMA Controller. After this mode is se-
lected, the first character received, or the first character already stored in the Receive
Data FIFO, will set the Receiver IP. This IP will be reset when this character is removed
from the SCC, and no further receive interrupts will occur until the processor issues an
Enable Interrupt on Next Receive Character command in WR0 or until a Special Condi-
tion interrupt occurs.
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The SCC recognizes several Special Conditions during data reception. A Receiver Over-
run, where a character in the Data FIFO is overwritten, is a Special Condition, as is a
Framing Error in Asynchronous mode, or the EOF condition in SDLC mode. In addition, if
bit D2 of WR1 is set to ‘1’, any character with a Parity Error will generate a Special Condi-
tion interrupt.  

The correct sequence of events when using this mode is to first select the mode and wait
for the receive character available interrupt. When the interrupt occurs, the processor
should read the character and then enable the DMA to transfer the remaining characters.

A Special Condition interrupt may occur at any time after the first character is received
but is guaranteed to occur after the character having the Special Condition has been read
from the Receive Data FIFO. The status is not lost in this case, however, because the
Data FIFO will be locked by the Special Condition preventing further data from becoming
available in the Receive Data FIFO until the Error Reset command is issued. In the serv-
ice routine the processor should read RR1 to obtain the status and may read the data
again if necessary before unlocking the FIFO by issuing an Error Reset command in
WR0. If the Special Condition detected was EOF, the processor should then issue the
Enable Interrupt on Next Receive Character command to prepare for the next frame. The
first character and Special Condition interrupt are distinguished by the status included in
the interrupt vector. In all other respects they are identical, including sharing the IP and
IUS bits.

In the Am85C30, if the 10x19 Frame Status FIFO is enabled, the 3 byte receive (Rx)
FIFO never locks. However, the DMA is disabled (only on overrun special condition), i.e.
overruns do not lock the Rx FIFO, but do disable DMA. Interrupts are generated and re-
main active until the RESET ERROR COMMAND is issued.

3.6.3 Receive Interrupt on All Receive Characters or 
Special Conditions

This mode is designed for an interrupt-driven system. In this mode, the SCC will set the
Receiver IP on every received character, whether or not it has a Special Condition. This
includes characters already in the FIFO when this mode is selected. In this mode of op-
eration, the Receiver IP is reset when the character is removed from the FIFO, so if the
processor requires status for any character, this status must be read before the data is
removed from the FIFO.  

The Special Conditions are identical to those previously mentioned, and as before, the
only difference between a “receive character available” interrupt and a “Special Condition”
interrupt is the status encoded in the vector. In this mode, a Special Condition does not
lock the Receive Data FIFO so that the service routine must read the status in RR1 be-
fore reading the data. At moderate to high data rates, where the interrupt overhead is sig-
nificant, time can usually be saved by checking for another received character before exit-
ing the service routine. This technique eliminates the Interrupt Acknowledge and the proc-
essor-state-saving time, but care must be exercised because this receive character must
be checked for special receive conditions before it is removed from the SCC.

3.6.4 Receive Interrupt on Special Conditions
This mode is designed for use with DMA transfers of the receive characters. In this mode,
only receive characters with Special Conditions will cause the Receive IP to be set. All
other characters are assumed to be transferred via DMA. No special initialization se-
quence is needed in this mode. Usually the DMA is initialized and enabled, and then this
mode is selected in the SCC. A Special Condition interrupt may occur at any time after
this mode is selected, but the logic guarantees that the interrupt will not occur until after
the character with the Special Condition has been read from the SCC. The Special Condi-
tion locks the FIFO so that the status will be valid when read in the interrupt service rou-
tine, and it guarantees that the DMA will not transfer any characters until the Special Con-
dition has been serviced. In the service routine, the processor should read RR1 to obtain
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the status and unlock the FIFO by issuing an Error Reset command. DMA transfer of the
receive characters will then resume.

If Receive Interrupts on Special Condition Only is enabled and a Special Condition occurs
then, if a modified vector is read from RR2 or as the output of an INTACK cycle, that vec-
tor may indicate Receive Character Available instead of Receive Special Condition. The
reason is that if a character is received and simultaneously the Special condition occurs,
the priority circuitry gives Receive Character Available the highest priority and thus over-
rides the Special Condition. Note that a Receive Character Available itself does not gen-
erate an interrupts if Receive Interrupts on Special Condition Only is enabled. It is the
Special Condition that generates the interrupt.

In Am85C30, if the 10 x 19 Frame Status FIFO is enabled, the 3 byte Receive (Rx) FIFO
never locks. However, the DMA is disabled (only on overrun special condition), i.e. over-
runs do not lock the Rx FIFO, but do disable DMA. Interrupts are generated and remain
active until RESET ERROR command is issued.

3.7 TRANSMIT INTERRUPTS
The transmit interrupt request has only one source; it can be set only when WR8 (Trans-
mit Buffer) goes from full to empty. Note that this means that the transmit interrupt will not
be set until after the first character is written to the SCC.

Transmit Interrupt occurs, if enabled, when the transmit buffer goes from a full to an
empty state, which happens when the buffered character is loaded into the transmit shift
register from the transmit buffer. In SDLC or other synchronous modes with the CRC gen-
erator enabled, the two CRC bytes that are attached to the data forces the transmit shift
register to be full. When the second byte of the CRC is loaded into the transmit shift regis-
ter, a Transmit Interrupt is generated if it is enabled.  

Transmit interrupts are controlled by the Transmit Interrupt Enable bit in WR1 (D1). If the
interrupt capabilities of the SCC are not required, polling may be used. This is selected by
disabling the transmit interrupts and polling the Transmit Buffer Empty bit in RR0. When
the Transmit Buffer Empty bit is set, a character may be written to the SCC without fear of
writing over previous data. Another way of polling the SCC is to enable the transmit inter-
rupt and then reset the MIE bit in WR9. The processor may then poll the IP bits in RR3A
to determine when the Transmit Buffer is empty. Transmit interrupts should also be dis-
abled in the case of DMA transfer of the transmitted data.

While the transmit interrupts are enabled, the SCC will set the Transmit IP whenever the
Transmit Buffer becomes empty. This means that the Transmit Buffer must have been full
before the Transmit IP can be set. Thus, when the transmit interrupts are first enabled,
the Transmit IP will not be set until after the first character is written to the SCC.  

In SDLC and Synchronous modes, one other condition can cause the Transmit IP to be
set. This occurs at the end of the CRC transmission. When the last bit of CRC has
cleared the Transmit Shift Register and the flag or sync character is loaded into the
Transmit Shift Register, the SCC will set the Transmit IP. Data for the new frame or mes-
sage to be transmitted may be written at this time. The Transmit Buffer Empty bit will be
set after each Transmit IP. At the end of a frame or message block of data where CRC is
to be sent next, no data will be written to the SCC (a Reset Tx IP command can be issued
to clear the Transmit IP). The Transmitter will then underflow, the CRC will be sent and
the Transmit Buffer Empty bit will be reset (indicating that data should not be written to
the SCC at this time). The Transmit Underrun/EOM bit will be set when the CRC is
loaded to indicate that the transmitter has underflowed. After the last bit of CRC has
cleared the Transmit Shift Register and the flag or sync character is loaded into the
Transmit Shift Register the SCC will set the Transmit IP. The Transmit Buffer Empty bit
will be set at this time, indicating that data for the new frame should be written. The
Transmit IP is reset either by writing data to WR8 or by issuing the Reset Transmit IP
Command in WR0. Ordinarily, the response to a transmit interrupt is to write more data to
the SCC; however, at end of a frame or meassage block of data where CRC is to be sent
next, the Reset Transmit IP command should be issued in lieu of data.
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3.8 EXTERNAL/STATUS INTERRUPTS
The External/Status Interrupts are globally enabled via WR1 and may be individually en-
abled via WR15 as shown below. The External/Status interrupt sources are: 1) Zero
Count, 2) DCD, 3) SYNC/HUNT, 4) CTS, 5) Tx Underrun/EOM, and 6) BREAK/ABORT.

D7

BREAK/
ABORT

IE

D6

Tx
Undr/

EOM IE

D5

CTS
IE

D4

SYNC/
HUNT

IE

D3

DCD
IE

D2 D1

Zero
Count

IE

D0

D7 D6 D5 D4 D3 D2 D1 D0

Ext/
Status
MIE

WR15 and WR1—Register Layout

The individual External/Status Interrupt enable bits in WR15 control whether or not
latches will be present in the path from the source of interrupt to the status bit in RR0. If
an individual enable bit in WR15 is set to ‘0’, the latches are not present in the signal path
and the value read in RR0 reflects the current status. An interrupt source whose individ-
ual enable bit in WR15 is set to ‘0’ is not a source of External/Status interrupts even
though the External/Status Master Interrupt Enable bit is set to ‘1’ in WR1 (D0). When an
individual enable bit in WR15 is set to ‘1’, the latch is present in the signal path.

The latches for the sources of External/Status interrupts are not independent. Rather,
they all close at the same time as a result of a state change by one of the sources of in-
terrupt.  Thus, a read of RR0 returns the current status for any bits whose individual en-
able bit in WR15 is set to ‘0’, and either the current state or the latched state of the re-
mainder of the bits. To guarantee the current status, the processor should issue a Reset
External/Status Interrupts Command in WR0 to open the latches.

The External/Status IP in RR3 is set by the closing of the latches and remains set for as
long as they are closed. If the master External/Status Interrupt enable bit is not set, the IP
will never be set, even though the latches may be present in the signal paths and working
as described. Because the latches close on the current status but give no indication of
change, the processor must maintain a copy of RR0 in memory. When the SCC gener-
ates an External/Status interrupt, the processor should read RR0 and determine which
condition changed state and take the appropriate action. The copy of RR0 in memory
must then be updated and the Reset External/Status Interrupt Command issued.

Care must be taken in writing the interrupt service routine for the External/Status inter-
rupts because it is possible for more than one status condition to change state at the
same time. All of the latched bits in RR0 should be compared to the copy of RR0 in mem-
ory. If none have changed and the ZC interrupt is enabled, the Zero Count condition
caused the interrupt.

3.8.1 Sync/Hunt 
The SYNC/HUNT status bit reports the Hunt state of the receiver in SDLC and Synchro-
nous modes. This bit is set to ‘1’ when the processor issues the Enter Hunt Command,
and is reset to ‘0’ when character synchronization is established by the receiver. If the
SYNC/HUNT IE bit in WR15 is set to ‘1’, the External/Status latches close, and an Exter-
nal/Status interrupt will be generated on both the Low-to-High and High-to-Low transitions
of the SYNC/HUNT status bit.
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In External Sync Mode, the SYNC/HUNT status bit, as in Asynchronous mode, reports
the state of the SYNC pin. If there are no other External/Status interrupts pending, then
any transition on the SYNC pin will cause the latches to close and generate an External/
Status interrupt. However, only an odd number of transitions on SYNC, while another Ex-
ternal/Status interrupt is pending, will close the latches and generate an External/Status
Interrupt.

3.8.2 Break/Abort
The BREAK/ABORT status bit is used in Asynchronous and SDLC modes but is always
set to ‘0’ in Synchronous modes. Both a Low-to-High and High-to-Low transition are guar-
anteed to cause the External/Status latches to close, and if the BREAK/ABORT IE bit in
WR15 is set to ‘1’, generate an External/Status interrupt regardless of whether another
External/Status interrupt is pending at the time the transitions occur. If BREAK/ABORT is
detected while the latches are closed, the status will be saved and generate an interrupt
for BREAK/ABORT detection upon issuing the Reset External/Status Interrupts. A second
interrupt is generated for End of BREAK/ABORT after issuig the next Reset External/
Status Interrupts. In the first case, the BREAK/ABORT bit will be set to ‘1’, and in the sec-
ond case to ‘0’. This will guarantee that the BREAK/ABORT sequence is detected cor-
rectly. A BREAK/ABORT occurrence will clear an End of BREAK/ABORT that is waiting
to generate an interrupt. Therefore, multiple Break/Abort sequences while the latches are
closed will generate only two interrupts, one for BREAK/ABORT detection, and one for
End of BREAK/ABORT.

In Asynchronous mode, this bit will be set to ‘1’ when a break sequence (null character
plus Framing Error) is detected (i.e., RxD is Low for more than one full character time) in
the receive data stream, and remains set for as long as ‘0’s continue to be received. It is
reset when a ‘1’ is received. Note that a single null character is left in the Receive Data
FIFO each time a break condition is terminated. This character should be read and dis-
carded.

In SDLC mode, this status bit is set to ‘1’ when an abort sequence is detected in the re-
ceive data stream and is reset when a ‘0’ is received. Note that the receiver detects an
abort pattern whether it is “in frame” or “out of frame,” so to avoid confusion, the BREAK/
ABORT IE bit in WR15 should be set to ‘1’ in the SYNC/HUNT interrupt routine when the
SYNC/HUNT status bit indicates that the receiver is “in frame” (i.e., SYNC/HUNT status
bit transitions from High-to-Low), and should be reset to ‘0’ early in the EOF interrupt rou-
tine.  

3.8.3 Zero Count
The Zero Count (ZC) status bit reflects when the Baud Rate Generator counter reaches a
count of ‘0’. The ZC status bit will be set to ‘1’ when the zero count is reached and will be
reset to ‘0’ when the counter is re-loaded. The External/Status latches will close only on
the Low-to-High transition of this bit and, if the Zero Count IE bit is set in WR15, generate
an External/Status interrupt. This status bit is not latched in RR0 even though the Exter-
nal/Status latches close as a result of the transition.

If there are no other External/Status interrupt conditions pending at the time the ZC status
bit is set, an External/Status interrupt will be generated. However, if there is another Ex-
ternal/Status interrupt pending at the time ZC is set, no interrupt will be generated until
the current interrupt service is complete. If the zero count condition does not persist be-
yond the end of the current interrupt service routine no interrupt will be generated. The
interrupt service routine should check the other External/Status conditions for changes. If
none changed, the ZC was the source of interrupt. In polled applications, the IP bits in
RR3A should be checked for a status change before proceeding as in the interrupt serv-
ice routine.

Note that while the Zero Count IE bit in WR15 is reset, the ZC status bit will always read
‘0’.  
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3.8.4 Tx Underrun/EOM
The Tx Underrun/EOM status bit is used in SDLC and Synchronous modes of operation
to control the transmission of CRC characters. This bit is set to ‘1’ when the Transmit
Buffer and Transmit Shift Register go empty and is reset to ‘0’ by issuing the Reset
Transmit Underrun/EOM command in WR0. Only the Low-to-High transition of this bit will
cause the latches to close and, if  the Tx Underrun/EOM IE bit in WR15 (D6) is set to ‘1’,
cause an External/Status Interrupt to be generated.  

This status bit is always set to ‘1’ in Asynchronous mode unless a Reset Transmit Under-
run/EOM command is erroneously issued. In this case, the Send Abort Command can be
used to set this bit to ‘1’ and, at the same time, cause an External/Status Interrupt.

Note that this bit will be set to ‘1’ when either of the following occurs; 1) a Send Abort
command is issued, 2) the transmitter is disabled, or 3) a Channel or Hardware Reset is
executed.

3.8.5 Clear to Send
The CTS Status bit reports the state of the CTS input pin the last time any of the enabled
External/Status bits changed.  Any transition on the CTS pin, while no other interrupts are
pending, latches the state of the CTS pin and generates an External/Status interrupt if the
CTS IE bit in WR15 is set to ‘1’. However, only an odd number of transitions on the CTS
pin while another External/Status is pending will cause an External/Status interrupt after
the Reset External/Status Interrupt command is issued.

If the CTS IE bit is reset, the CTS status merely reports the current inverted unlatched
state of the CTS pin; that is, if the CTS pin is Low, the CTS status bit will be High.

Note that after the Reset External/Status Interrupt command is issued, if the latches were
closed, they will close again if there was an odd number of transitions on the CTS pin;
they will remain open if there was an even number of transitions on the input pin.

3.8.6 Data Carrier Detect
The DCD Status bit reports the state of the DCD input pin the last time any of the enabled
External/Status bits changed.  Any transition on the DCD pin, while no other interrupts are
pending, latches the state of the DCD pin and generates an External/Status interrupt if
the DCD IE bit in WR15 is set to ‘1’. However, only an odd number of transitions on the
DCD pin while another External/Status is pending will cause an External/Status interrupt
after the Reset External/Status Interrupt command is issued.

If the DCD IE bit is reset, the DCD status merely reports the current inverted unlatched
state of the DCD pin; that is, if the DCD pin is Low, the DCD status bit will be High.

Note that after the Reset External/Status Interrupt command is issued, if the latches were
closed, they will close again if there was an odd number of transitions on the DCD pin;
they will remain open if there was an even number of transitions on the input pin.

If careful attention is paid to details, the interrupt service routine for External/Status inter-
rupts is straightforward. To determine which bit or bits changed state, the routine should
first read RR0 and compare it to a copy from memory. For each changed bit, the appro-
priate action should be taken and the copy in memory updated. The service routine
should close with a Reset External/Status Interrupts command to re-open the latches.
The copy of RR0 in memory should always have the Zero Count bit set to ‘0’, since this
will be the state of the bit after the Reset External/Status Interrupts command at the end
of the service routine.

3.9 BLOCK TRANSFERS
The SCC offers several alternatives for the block transfer of data. The various options are
selected via WR1 and WR14 as follows.
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D7 D6 D5 D4 D3 D2 D1 

DTR/
REQ

Funct.

D0

Wait/
DMA REQ

Funct.

Wait/
DMA REQ

Enable

Wait/
DMA REQ

Rx/Tx

D7 D6 D5 D4 D3 D2 D1 D0 

WR14 Register Layout

WR1 Register Layout

Each channel in the SCC has two pins, DTR/REQ and W/REQ, which may be used to
control the block transfer of data. Both pins in each channel may be programmed to act
as DMA Request signals, and one pin (W/REQ) in each channel may be programmed to
act as a Wait signal for the CPU. In either mode, it is advisable to select and enable the
mode in two separate accesses of the appropriate register. The first access should select
the mode and the second access should enable the function. This procedure prevents
glitches on the output pins. Reset forces Wait mode, with W/REQ open-drain.

3.9.1 Wait on Transmit
The Wait function on transmit is selected by programming WR1 as shown below.  

1 0 0 ? ? ? ? ?

D7 D6 D5 D4 D3 D2 D1 D0

WR1—Wait on Transmit Function Selection

In this mode, the W/REQ pin carries the Wait signal, and is open-drain when inactive and
Low when active. When the processor attempts to write to WR8 (Transmit Buffer) and it is
full, the SCC will assert W/REQ until the buffer is empty. This allows the use of a block-
move instruction to transfer the transmit data. W/REQ will go active in response to WR
going active but only if WR8 (Transmit Buffer) is being accessed, either directly or via the
pointers. The W/REQ pin is released in response to the falling edge of PCLK. Details of
the timing are shown in Figure 3–6.

3.9.2 Wait on Receive
The Wait function on receive is selected by programming WR1 as shown below.  

1 0 1 ? ? ? ? ?

D7 D6 D5 D4 D3 D2 D1 D0

WR1—Wait on Receive Function Selection
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In this mode, the W/REQ pin carries the Wait signal, and is open-drain when inactive and
Low when active. When the processor attempts to read data from the Receive Data FIFO
and it is empty, the SCC will assert W/REQ until a character has reached the top of the
FIFO. This allows the use of a block-move instruction to transfer the receive data. W/REQ
will go active in response to RD going active, but only if RR8 (Receive Buffer) is being
accessed, either directly or via the pointers. The W/REQ pin is released in response to
the falling edge of PCLK. Details of the timing are shown in Figure 3–7.  

3.9.3 DMA Requests
The two DMA request pins, W/REQ and DTR/REQ, can be programmed to be used as
DMA requests. The W/REQ pin can be used as either a transmit or a receive request, but
the DTR/REQ pin can be used only as a transmit request. Hence, for full-duplex opera-
tion, the W/REQ pin should be used for receive and the DTR/REQ pin used for transmit.
These modes are described below.

3.9.3.1 DMA Request on Transmit (Using W/REQ)
The DMA Request on Transmit function using the W/REQ pin is enabled by programming
WR1 as shown below.  

1 1 0 ? ? ? ? ?

D7 D6 D5 D4 D3 D2 D1 D0

WR1—DMA on Transmit Function Selection

ASYNC Modes

SYNC Modes

TRxC

PCLK

WAIT

Figure 3–6. Wait on Transmit Timing

ASYNC Modes

SYNC Modes

RTxC

PCLK

WAIT

1 2 3 4 5...8 9 10 11 12 13

Figure 3–7. Wait on Receive Timing
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In this mode the W/REQ pin carries the DMA Request signal, which is active Low. When
this mode is selected, but not yet enabled, the W/REQ pin is driven High. When the en-
able bit is set, W/REQ will go Low if WR8 is empty at the time or will remain High until
WR8 becomes empty. Note that the W/REQ pin will follow the state of WR8 even though
the transmitter is disabled. Thus, if bit D7 of WR1 is set to ‘1’ (i.e., W/REQ pin is enabled)
before the transmitter is enabled, the DMA may write data to the SCC prematurely. This
will not cause a problem in Asynchronous mode but may cause problems in SDLC and
Synchronous modes, because on enabling the transmitter the SCC will send data in pref-
erence to flags or sync characters. It also may complicate the CRC initialization, which
cannot be done until after the transmitter is enabled.

With only one exception, the W/REQ pin directly follows the state of WR8 in this mode.
W/REQ goes Low when WR8 goes empty and remains Low until the WR8 is filled. The
SCC generates only one falling edge on the W/REQ pin per character requested. The
timing for this is shown in Figure 3–8.

The one exception occurs at the end of CRC transmission when the SCC is programmed
in either SDLC or Synchronous Modes. At the end of CRC transmission, when the closing
flag or sync character is loaded into the Transmit Shift Register, the W/REQ pin is pulsed
High for one PCLK cycle. The DMA may use this falling edge on W/REQ to write the first
character of the next frame or block to the SCC. W/REQ will go High in response to the
falling edge of WR, but only when the appropriate WR8 in the SCC is accessed. This is
shown in Figure 3–9.

3.9.3.2 DMA Request on Transmit (Using  DTR/REQ)
A second Request on Transmit function is available on the DTR/REQ pin. This mode is
selected by programming WR14 as shown below.

? ? ? ? ? 1 ? ?

D7 D6 D5 D4 D3 D2 D1 D0

WR14—DMA Request on Transmit Using DTR/REQ

When this bit is set to ‘1’, the DTR/REQ pin will go Low if WR8 is empty at the time, or will
go High until WR8 becomes empty. While bit D2 of WR14 is set to ‘0’, the DTR/REQ pin
is used as a general-purpose output pin and follows the inverted state of bit D7 in WR5.
This pin will be High after a channel or hardware reset and in the DTR mode.

In the DMA Request mode, DTR/REQ will follow the empty/non-empty state of WR8 even
though the transmitter is disabled. Thus, if the DMA Request function is enabled before
the transmitter is enabled, the DMA may write data to the SCC prematurely. This will not
cause a problem in Asynchronous mode but may cause problems in SDLC and Synchro-
nous modes because the SCC will send data in preference to flags or sync characters. It
also may complicate the CRC initialization, which cannot be done until after the transmit-
ter is enabled and idling. With only one exception, the DTR/REQ pin directly follows the
state of WR8 in SDLC and Synchronous modes. DTR/REQ goes Low when WR8 be-
comes empty and remains Low until WR8 is filled. The SCC generates only one falling
edge on the DTR/REQ pin per character requested and the timing for this is shown in
Figure 3–8.

The one exception occurs in SDLC and Synchronous modes at the end of CRC transmis-
sion. At the end of CRC transmission, when the closing flag or sync character is loaded
into the Transmit Shift Register, DTR/REQ is pulsed High for one PCLK cycle. The DMA
may use this falling edge on DTR/REQ to write the first character of the next frame or
block to the SCC.
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3.3.9.3 DTR/REQ Deactivation Timing
On the NMOS SCC, the DMA Request function on DTR/REQ differs from the one on
W/REQ in that it does not go High immediately in response to the access which writes to
WR8. This is because the registers in the SCC are not written during the actual access,
but are delayed by some number of PCLK cycles. The DMA Request signal on DTR/REQ
follows the state of WR8 exactly while the Request signal on W/REQ goes inactive in an-
ticipation of WR8 becoming full. The timing of the Request signal on both pins is shown in
Figure 3–9.

This deactivation delay of DTR/REQ is unacceptable in applications where slower data
rates are involved relative to the processor. This delay can result in overwriting the Trans-
mit Buffer because the DMA Controller may recognize the continued active state of
DTR/REQ as a request for more data. On the CMOS SCC an option is provided that en-
ables the deactivation delay of DTR/REQ to be identical to that of the W/REQ pin. If
SDLC mode operation is selected and bit D0 of WR15 is set to ‘1’, then bit D4 of WR7’
can be used to alter the deactivation delay. While bit D4 of WR7’ is set to ‘1’, the deacti-
vation of DTR/REQ will be identical to W/REQ.

ASYNC Modes

SYNC Modes

TRxC

PCLK

REQ 
(DTR/REQ)

REQ 
(W/REQ)

Figure 3–8. DMA Request on Transmit Activation

WR

D0 – D7

PCLK

REQ 
(DTR/REQ)

REQ 
(W/REQ)

Figure 3–9. DMA Request on Transmit Deactivation
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3.3.9.4 DMA Request on Receive (Using W/REQ)
The DMA Request on Receive function using the W/REQ pin is selected by programming
WR1 as shown below.

1 1 1 ? ? ? ? ?

D7 D6 D5 D4 D3 D2 D1 D0

WR1—DMA Request on Receive Using W/REQ

In this mode, the W/REQ pin carries the DMA Request signal, which is active Low. When
this mode is selected, but not yet enabled, the W/REQ pin is driven High. When the en-
able bit is set, W/REQ will go Low if RR8 contains a character at the time, or will remain
High until a character enters RR8. Note that the W/REQ pin will follow the state of RR8
even though the receiver is disabled. Thus, if the receiver is disabled but the DMA Re-
quest function is enabled, the DMA will transfer the previously received data correctly. In
this mode the W/REQ pin directly follows the state of RR8 with only one exception. The
W/REQ pin goes Low when a character enters RR8 and remains Low until this character
is removed from the receive buffer. The SCC generates only one falling edge on W/REQ
per character transfer requested and the timing for this is shown in Figure 3–10.

The one exception occurs in the case of a special receive condition in the Receive Inter-
rupt on First Character or Special Condition mode, or the Receive Interrupt on Special
Condition Only mode. In these two interrupt modes any receive character with a special
receive condition is locked at the top of the FIFO until an Error Reset command is issued.
This character in the receive FIFO would ordinarily cause additional DMA Requests after
the first time it is read. However, the logic in the SCC guarantees only one falling edge on
W/REQ by holding the W/REQ pin High from the time the character with the special re-
ceive condition is read, and the FIFO locked, until after the Error Reset command has
been issued. Once the FIFO is unlocked by the Error Reset Command, W/REQ again
follows the state of the receive buffer. W/REQ will go High in response to the falling edge
of RD, but only when the receive buffer in the SCC is accessed. This is shown in Figure
3–11.
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Figure 3–10. DTR/REQ Activation
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Figure 3–11. DTR/REQ Deactivation
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Data Communication Modes
Functional Description

CHAPTER 4

4.1 INTRODUCTION
The SCC provides two independent full-duplex channels programmable for use in any
common asynchronous or synchronous data communication protocol. This includes:
Asynchronous, Synchronous MONOSYNC (8-bit sync character), Synchronous BISYNC
(16-bit sync character), normal SDLC, and SDLC Loop Mode.

4.2 PROTOCOLS
A communication protocol defines a set of rules for the orderly transfer of information be-
tween two communicating devices. All communication line protocols in the industry today
exchange data in either an asynchronous or synchronous manner. Asynchronous trans-
mission is used in several protocols including the TTY protocol while synchronous trans-
mission is used in protocols which include: IBM BISYNC, Synchronous Data Link Control
(SDLC), High-Level Data Link Control (HDLC), and Advance Data Communication Con-
trol Procedures (ADCCP).

This section provides a brief overview of these protocols; however, if further information is
desired the book titled “Technical Aspects of Data Communications” by John E.
McNamara, published by Digital Press (DEC) 1982, is a good reference.

4.2.1 Asynchronous
In Asynchronous transmission, as the name implies, each character is transmitted as an
independent entity; that is, the time between the last bit of one character and the first bit
of another character can be variable.

Since the receiver must be able to detect the beginning of each character transmitted,
this mode requires that at least one bit be added at the start and end of each character
for synchronization purposes.

Synchronization at the receiver is accomplished by sensing the transition of the Start-bit
for each character transmitted. The first data bit of the character is typically sampled one
and one-half bit times after the High-to-Low transition of the Start-bit, and each subse-
quent bit is sampled one bit time thereafter. The sampling of the bit occurs near the cen-
ter of each bit to allow correct data recovery and typically occurs at some multiple of the
data rate. Larger multiples allow a closer approximation to the middle sampling.

Figure 4–1 depicts a typical Asynchronous 11-bit format. Each 8-bit character is preceded
by a Start-bit and followed by a Parity check bit and one Stop-bit. The Start-bit of the next
character can occur anytime after the first character’s Stop-bit. The idle state of the trans-
mission line between characters is always in a mark idle condition (i.e., TxD pulled High).

Asynchronous communication channels are found in most distributed computer systems
for terminal-to-computer comunications. The common “serial port” found on personal
computers is an asynchronous port. It is used to attach external modems and printers,
and to interface the personal computer to a minicomputer for use as a terminal.
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StopStart
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Figure 4–1. Asynchronous Format
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4.2.2 Synchronous Transmission
Synchronous transmission requires that clocking information be transmitted along with
the data, either by a method of encoding data that contains clocking information, or by a
modem that encodes clock information in the modulation process. In either case, data are
sent at a defined rate which is controlled by a timing source at the transmitter.

Synchronous communication channels send data faster with less overhead than asyn-
chronous channels but are more expensive to design than asynchronous channels. In
synchronous communication, a timing reference, or “clock”, is used to control the transfer
of information. This clock specifies to the receiver when to sample the data (bit synchroni-
zation) in order to ascertain which data value (‘0’ or ‘1’) was transmitted. The optimum
sample times usually correspond to the middle of the bit cell to minimize error. This clock
signal is encoded along with the data sent so the receiver must be able to decode the
Figure 4–1. Asynchronous Format incoming clock signal. A circuit called a “phase-locked
loop” is typically used for this purpose.

In addition, since data rates are usually higher and data are typically sent with no gaps
between characters, synchronous communication requires some level of buffering at both
the transmitter and receiver.

Once bit synchronization has been established, the next phase for the receiver is to know
what group of bits constitute a character (character synchronization). This requires that
the receiver search the receive bit stream on a bit-by-bit basis for a character synchroniz-
ing pattern in order to determine which set of bits in the bit stream defines the first char-
acter transmitted.

Synchronous communication channels are found in many mainframe data networks. The
greater throughput of the synchronous channel is required in mainframe environments
where many terminals are connected to the computer and multiplexed onto one channel.
The synchronous protocols used may be either character-oriented or bit-oriented.

4.2.2.1 Synchronous Character-Oriented Protocol
In a Character-Oriented Protocol (COP) data are transmitted in message blocks and re-
quire that each block be preceded by either an 8- or 16-bit predefined “sync character”.
In addition, COPs are typically restricted to half-duplex operation and depend heavily on
special control characters or character sequences, such as SOH or DLE STX and ETX, to
determine the start and end of a particular field within a message block. IBM BISYNC is
an example of a COP. MONOSYNC, on the other hand, is a character count protocol
where both ends of the communication link keep track of the number of characters sent
and received. This solves the problem of having to use special control characters for field
delineation as used in the BISYNC protocol. The DDCMP (Digital Data Communication
Message Protocol) from DEC is another example of a character count protocol in use to-
day. MONOSYNC and BISYNC message formats are shown in Figures 4–2 and 4–3, re-
spectively.

Since sync characters are only appended to the start of a message block, additional sync
characters may be inserted within a transmission at distinct time intervals or during a
pause in order to maintain synchronization.  

4.2.2.2 Synchronous Bit-Oriented
Bit-Oriented Protocols (BOP) may be used in half- or full-duplex operation and are less
dependent on special control characters. BOPs rely instead on the position of bits within
specific fields.

The most common BOPs in use today are High-Level Data Link Control (HDLC) and Syn-
chronous Data Link Control (SDLC). These two protocols are nearly identical except for
minor differences in the use of the Address and Control fields.

All SDLC information is sent in frames and follow a standard format as shown in Figure
4–4. SDLC frames begin and end with the 8-bit flag sequence, “01111110.” All stations
on the link search continuously for this flag sequence which indicates the start of a frame
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and provides the mechanism by which character synchronization is established at a re-
ceiver. Since data between flags may contain the flag pattern, the sequence of six con-
secutive one bits is prevented from occurring through a process called zero-bit insertion,
in which the transmitter inserts a zero bit after any five consecutive one bits. Likewise, the
receiver deletes any zero bit that follows five consecutive one bits in the bit stream be-
tween the opening and closing flag of a frame.

SYNC DATA CRC

Figure 4–2. MONOSYNC Format

SYN HEADER TEXT
EXT
OR
ETB

BCCSYN SOH STX

DIRECTION OF SERIAL DATA FLOW

BCC = Block Checking Calculation

Figure 4–3. BISYNC Format

BEGINNING
FLAG

01111110
8 BITS

ADDRESS
8 BITS

FRAME
CHECK
16 BITS

CONTROL
8 BITS

INFORMATION
ANY NUMBER

OF BITS

FRAME

ENDING
FLAG

01111110
8 BITS

Figure 4–4. SDLC/HDLC Frame Format

The Frame Check Sequence (FCS) is 16 bits long and contains the generated CRC for
the frame. All data transmitted between the opening and closing flags (excluding inserted
zeros) are included in the CRC calculation. The generator polynomial used in SDLC is the
CCITT polynomial, X16 + X12 + X5 + 1.  

Since the information field may contain any number of bits and not necessarily an integral
number of 8-bit characters, the end of a frame is determined by counting back 16 bits
from the closing flag of a frame.  

In the sections that follow, the term “Synchronous mode(s)” will be used to refer to either
BISYNC and/or MONOSYNC modes, and SDLC mode will be used when referring to nor-
mal SDLC operation. SDLC Loop mode will be referred to as either Loop mode or SDLC
Loop mode.

4.3 MODE SELECTION
The mode that an SCC channel operates in is selected by programming WR4 as shown
below.  Note that the ‘x’s indicate a don’t care condition (i.e., bit setting are ignored by
SCC) and ‘?’s indicate programmable settings.

Note that bits D7 and D6 of WR4 are ignored in SDLC and Synchronous modes because
the x1 clock is forced internally.
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WR4—Mode Settings

4.4 RECEIVER OVERVIEW
The receiver performs all the functions necessary to convert serial data back to parallel
for the processor. The receiver block diagram is shown in Figure 4–5.

Serial data on the RxD pin is sampled on the rising edge of RTxC and passes through a
one bit delay before either passing to the NRZI decode logic, or, depending on the mode,
the Receive SYNC Register, 3-bit delay, or Receive Shift Register. Once a character has
been assembled in the Receive Shift Register it is transferred to the 3 x 8-bit Receive
Data FIFO, and the Receive Character Available status bit in RR0 (D0) is set to alert the
processor that a character is available. This arrangement creates a 3-byte delay time
which allows the CPU time to service an interrupt at the beginning of a block of high-
speed data.

Every character transferred to the Receive Data FIFO is checked for errors, or Special
Conditions, by the Receive Error Logic. This status is loaded into the Receive Error FIFO
so that the status associated with each character can be read with that character through
RR1. If receive interrupts are disabled then reading a character from the Receive Data
FIFO moves the next character and its status to the top of the FIFO; so if status is needed
for a character received, RR1 must be read prior to reading RR8 (Receive Buffer). If
status is read after the data is read, the error data, if any, for the next character in the Er-
ror FIFO will be included also. If, however, operations are being performed rapidly
enough before the next character is received, then the status will be valid. However, if
certain receive interrupts are enabled, the interrupt will not be generated until the charac-
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ter with the Special Condition is read from the Data FIFO. Because under these condi-
tions the FIFO is locked, and prevented from being updated, the status pertinent to the
character read will be valid until an Error Reset command is issued via WR0.

4.4.1 Rx Character Length
The number of consecutive bits assembled in the Receive Shift Register that form a char-
acter in all modes of operation is controlled by bits D7 and D6 of WR3. Five, six, seven,
or eight bits per character may be selected via these two bits. The data plus parity bit (if
enabled) received are right-justified in the receive buffer as shown in Figure 4–6. The
SCC merely takes a snapshot of the receive data stream at the appropriate times, so the
“unused” bits in the receive buffer are only the bits following the character in the data
stream.  

Upper Byte
Time Constant

Lower Byte
Time Constant

16-Bit Down CounterBR Generator
Input

+2

10 x 19-Bit
Frame
Status
FIFO

Receive

Data

FIFO

Receive

Error

FIFO

BR Generator
Output

Receive
Error Logic

Receive
Shift Register

(8 Bits)

14-Bit Counter

3 Bits
Sync Register
& Zero Delete

Hunt Mode (Disync)

CRC Delay
Register
(8 Bits)

CRC Checker
CRC Result

Sync-
CRC

SDLC-CRC

MUX

NRZI Decode

Internal
TxD

MUX1 BitRxD

DPLL
DPLL

DPLL Output

I/O Data Buffer

CPU I/O

Internal Data Bus

To
Transmi
Section

Figure 4–5. SCC Receiver
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D1 D0 P D4 D3 D2 D1 D0

Figure 4–6. Five Bits/Character with Parity

The character length may be changed at any time before the new number of bits have
been assembled by the receiver. Care should be exercised, however, as unexpected re-
sults may occur if not properly timed. A representative example of switching from five bits
to eight bits and back to five bits is shown in Figure 4–7.

8 7 6 5 4 3 2 1

13 12 11 10 9 8 7 6

21 20 19 18 17 16 15 14

29 28 27 26 25 24 23 22

34 33 32 31 30 29 28 27

39 38 37 36 35 34 32 31

5 BITS

8 BITS

8 BITS

5 BITS

5 BITS

RECEIVE DATA BUFFER

Time

Change From Five to Eight

Change From Eight to Five

Figure 4–7. Changing Character Length

4.4.2 Rx Parity
In all modes of operation bit D0 (Parity Enable) of WR4 determines whether a Parity
check is done. If this bit is set to ‘1’, the receiver calculates a parity check on every char-
acter received, as selected by bit D1 (Parity Even/Odd) of WR4, and compares it with
parity check bit transmitted. If a discrepancy is found the Parity Error status bit in the Re-
ceive Error FIFO is set at the same time that the character is transferred to the Receive
Data FIFO; otherwise, the character received will be assumed to be error free.

The additional bit per character will be visible in the Receive Data FIFO if the data plus
parity is eight bits or less. The parity bit will not be visible when there are eight data bits
per character.
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The Parity Error bit in the Receive Error FIFO may be programmed to cause a Special
Condition interrupt by setting bit D2 of WR1 to ‘1’. If this interrupt mode is programmed,
and a Parity Error is detected, an interrupt will not be generated until the character asso-
ciated with the Parity Error is read from the Receive Data FIFO. This, or any, Special
Condition interrupt locks up the Data FIFO, and the Parity Error bit remains latched until
an Error Reset command is issued by the processor via WR0.

If interrupts are not being used to transfer data (i.e., Receive Interrupts Disabled mode)
an interrupt will not be generated and any error status must be obtained by polling RR0,
or reading RR2 (channel B). In this case, if status is to be checked, it must be done be-
fore the data are read, because the act of reading the data moves the next character and
status to the top of the Data and Error FIFOs. Note that Parity is normally not used in
SDLC modes.

4.4.3 Rx Modem Control
The SCC provides up to three Modem control signals associated with the receiver in
Asynchronous mode, and two in SDLC and Synchronous modes.

In Asynchronous Mode, the SYNC pin is a general-purpose input whose state is reported
via the SYNC/HUNT status bit in RR0; however, if the crystal oscillator is enabled, this pin
is not available and the SYNC/HUNT status bit is forced to ‘0’. Otherwise, the SYNC pin
may be used to carry the Ring Indicator signal. In SDLC and Synchronous modes, except
for External SYNC mode, the SYNC pin is configured as an output.

The DTR/REQ pin carries the inverted state of the DTR bit in WR5 (D7) unless this pin
has been programmed to carry a DMA Request signal. The DCD pin is ordinarily a gen-
eral purpose input to the DCD status bit in RR0. However, if the Auto Enables mode is
selected (by setting D5 of WR3 to ‘1’), this pin becomes an enable for the receiver. That
is, if Auto Enables is on and the DCD pin is HIGH the receiver will be disabled; while the
DCD pin is LOW the receiver will be enabled. Note, however, that in all modes of opera-
tion, the Receiver Enable bit must be set before the DCD pin can be used in this manner.

4.5 TRANSMITTER OVERVIEW
The transmitter performs all the necessary functions to convert parallel data from the
processor into the appropriate serial bit streams. The transmit data path is shown in Fig-
ure 4–8.

The transmitter has an 8-bit Transmit Data register (WR8) which is loaded from the inter-
nal data bus, and a Transmit Shift Register which is loaded from either WR6, WR7, or the
Transmit Data Register (WR8).

Serial data transitions on the falling edge of TRxC begin when data written to WR8 are
transferred to the Transmit Shift Register. Each time a character is transferred from WR8
into the Transmit Shift Register a Transmit Buffer Empty indication is given via bit D2 of
RR0. This double buffering allows the processor one full character time to respond with
the next character without interrupting data transmission.

In all modes of operation, data will be sent low-order bits first (i.e. D0 before D1, etc.) for
as many bits as programmed.  This requires that data written to the Transmit Buffer be
right-justified if character length is less than eight bits.

4.5.1 Tx Character Length
The number of bits transmitted per character and the way the data are formatted within
the transmit buffer is controlled by bits D6 and D5 of WR5. These bits provide the option
of five, six, seven, or eight bits per character. Being able to transmit less than five bits per
character is possible on the SCC if the five bits per character length is programmed and
the data are formatted before being written to the transmit buffer, as shown in Table 4–1,
to inform the SCC of the actual number of bits to be transmitted.
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WR7 Sync
Register

WR6 Sync
Register Transmit Data

20-Bit Transmit Shift Register Start Bit

Transmit MUX
& 2-Bit Delay

Zero Insert
(5 Bits)

CRC 
Generator

NRZI 
Encode

Final
Tx MUX

TxD

Internal TxD

Transmit
Clock

To Other Channel

ASYNC

SYNC

SDLC

CRC-SDLC

Internal Data Bus

Figure 4–8. SCC Transmitter

Table 4–1. Data Format—Five Bits or Less

 Bits
D7 D6 D5 D4 D3 D2 D1 D0 Transmitted

1 1 1 1 0 0 0 D0 1 bit

1 1 1 0 0 0 D1 D0 2 bits

1 1 0 0 0 D2 D1 D0 3 bits

1 0 0 0 D3 D2 D1 D0 4 bits

0 0 0 D4 D3 D2 D1 D0 5 bits

The serial data stream sent by the transmitter for the six bits/character with parity case is
shown below in Figure 4–9. All the unused bits are ignored by the transmit logic except in
the case of five bits per character.

D0 P D5 D4 D3 D2 D1 D0 P

Data Flow

Figure 4–9. Six Bits/Character with Parity
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The character length may be changed at any time, but the desired length must be se-
lected before the character in the transmit buffer is transferred to the the Transmit Shift
Register. The easiest way to ensure this is to write to WR5 to change the character length
before writing the data to the transmit buffer.

4.5.2 Tx Parity
In all modes of operation bit D0 (Parity Enable) of WR4 determines whether an additional
bit will be appended to each character sent as an indication of the “oddness” or “even-
ness” of the number of ‘1’ bits transmitted in the character. If this bit is set to ‘1’ an addi-
tional bit will be sent in addition to the number of bits specified in WR4, or by the data for-
mat used when transmitting less than five bits per character.

Bit D1 of WR4 determines the even/odd sense of this additional bit when Parity is en-
abled.  If this bit is set to ‘1’, the transmitter adds a bit that makes the total number of ‘1’
bits in the character being transmitted even; if set to ‘0’, a bit will be added to make the
sum of ‘1’ bits in the character being transmitted odd.

4.5.3 Break Generation
The transmitter may be programmed to send a break condition (i.e., the TxD pin is pulled
Low) in all modes of operation via bit D4 of WR5. When this bit is set to ‘1’, the transmit-
ter suspends any data being transmitted at the time and sends continuous ‘0’s from the
first transmit clock edge after this command is issued, until the first transmit clock edge
after this bit is reset, at which point the transmitter continues to send the contents of the
Transmit Shift Register. The transmit clock edges referred to here are those that define
transmitted bit cell boundaries. Note that the TxD pin will be pulled Low whether or not
the transmitter is enabled.

4.5.4 Transmit Modem Control
There are two modem control signals associated with the transmitter on the SCC. The
RTS pin is a general-purpose output that carries the inverted state of the RTS bit in WR5
(D1), and the CTS pin is a general-purpose input to the CTS status bit in RR0 (D5). How-
ever, if the Auto Enables Mode is selected (by setting D5 of WR3 to ‘1’), CTS becomes
an enable for the transmitter. That is, if Auto Enables is on and the CTS pin is HIGH the
transmitter will be disabled; while the CTS pin is LOW the transmitter will be enabled.
Note, however, that in all modes of operation, the Transmitter Enable bit must be set be-
fore the CTS pin can be used in this manner.

If the SCC channel is programmed in Asynchronous mode, and the Auto Enable bit is set
to ‘1’, RTS will remain Low until the transmitter is completely empty and the last stop bit
has left the TxD pin. In SDLC and Synchronous modes, the RTS pin is just a general-
purpose output.

4.5.5 Auto RTS Reset
On the CMOS SCC, if bits D0 of WR15 and D2 of WR7’ are set to ‘1’ and the channel is
in SDLC Mode, the RTS pin may be reset early in the Tx Underrun routine and the RTS
pin will remain active until the last zero bit of the closing flag leaves the TxD pin as shown
in Figure 4–10.

Note that in order for this to function properly, bits D3 and D2 of WR10 must be set to ‘1’
and ‘0’, respectively.



Data Communication Modes Functional DescriptionAMD

4–12

CRC CRC flag 

Data being sent

Tx Underrun/EOM

RTS bit D1 WR5

RTS pin (active low)

Data

Figure 4–10. RTS Deactivation

4.6 ASYNCHRONOUS MODE OPERATION

4.6.1 Receiver Operation
In Asynchronous mode, the receiver establishes bit and character synchronization by
sensing the High-to-Low transition of the Start-bit for each character. When the Start-bit is
detected a clock circuit is initiated and the receiver waits one-half a bit time before sam-
pling RxD again to ensure that RxD is still Low. If RxD is Low, the receiver assumes that
it is the middle of the Start-bit and one bit time later begins to assemble the specified
number of data and Parity (if enabled) bits. During reception, the Start and Stop bits are
stripped leaving only the data and Parity (if enabled and with less than 8 bits/character
option selected). Once the character is assembled, the receiver samples RxD one more
bit time. If RxD is Low, the Framing Error bit is set and is passed to the Receive Error
FIFO at the same time the character is transferred to the Receive Data FIFO. If the RxD
is High, the receiver returns to the quiescent marking state until the next High-to-Low
transition is detected on the RxD pin.

In this mode, serial data enters the 3-bit delay if the character length of seven or eight bits
is selected. If a character length of five or six bits is selected, data enters the Receive
Shift Register directly.

4.6.1.1 Receiver Initialization
The initialization sequence for the receiver in Asynchronous mode is: WR4 first to select
the mode, then WR3 and WR5 to select the various options. At this point, the other regis-
ters should be initialized as necessary. When all of this is complete the receiver may be
enabled by setting bit D0 of WR3 to ‘1’.

4.6.1.2 Framing Error
If after assembling the selected number of bits per character the Receiver finds the Stop
bit to be a ‘0’, the Framing Error bit in the Receive Error FIFO is set at the same time that
the character is transferred to the Receive Data FIFO. This error bit accompanies the
data to the top of the FIFO, where it generates a Special Condition interrupt (if enabled).
This Framing Error bit is not latched, and so must be read in RR1 before the accompany-
ing data is read in the Receive Data FIFO. Detection of a Framing Error adds an addi-
tional one-half bit to the character time so that the Framing Error is not interpreted as a
new Start bit.
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4.6.1.3 Break Detection
A break condition is recognized when a null character (all ‘0’s) plus a Framing Error is
detected by the receiver. Upon recognizing this sequence, the BREAK/ABORT status bit
in RR0 will be set and remains set until a ‘1’ is received indicating that a break condition
is no longer present. Note that at the termination of a break, the Receive Data FIFO con-
tains a single null character, which should be read and discarded. The Framing Error bit
will not be set for this null character, but if odd parity has been selected, the Parity Error
bit will be set. Caution should be exercised if the receive data line contains a switch that
is not debounced to generate breaks. Switch bounce may cause multiple breaks, recog-
nized by the receiver to be additional characters assembled in the Receive Data FIFO. It
may also cause a Receiver Overrun condition to be latched.

4.6.1.4 Clock Selection
When an SCC channel is programmed in Asynchronous mode it may be programmed to
accept a transmit/receive clock that is 1, 16, 32, or 64 times the data rate. This is selected
by bits D7 and D6 in WR4. The clock factor chosen will be common to both the transmit-
ter and receiver.

The x1 mode in Asynchronous mode is a combination of both synchronous and asynchro-
nous transmission. The data are clocked by a common timing base, but characters are
still framed with Start and Stop bits. Because the receiver waits for one clock period after
detecting the first High-to-Low transition before beginning to assemble characters, the
data and clock must be synchronized externally. The x1 mode is the only mode in which a
data encoding method other than NRZ may be used.

In SDLC and Synchronous modes bits D7 and D6 of WR4 are ignored because the x1
clock is forced internally.

4.6.2 Transmitter Operation
In Asynchronous mode, WR6 and WR7 are not used and the Transmit Shift Register is
formatted with Start and Stop bits before data are shifted out to the transmit multiplexer at
the selected clock rate. Asynchronous data leaves the Transmit Shift Register and goes
directly to the Transmit Multiplexer. CRC generation is not supported in this mode.   

4.6.2.1 Transmitter Initialization
The initialization sequence for the transmitter in Asynchronous mode is: WR4 first to se-
lect the mode, then WR3 and WR5 to select the various options. At this point the other
registers should be initialized as necessary. When all of this is complete, the transmitter
may be enabled by setting bit D3 of WR5 to ‘1’.

At this point, the transmitter is enabled and the TxD pin will remain in the marking (High)
state. When the first character is written to WR8, it is transferred to the Transmit Shift
Register and the Transmit Buffer Empty bit is set to ‘1’. A Parity bit (if enabled), Start-bit,
and the selected number of Stop bits are then appended to the character. After the char-
acter has been completely sent, the next character is transferred to the Transmit Shift
Register and the process continues. When no more characters are to be transmitted (i.e.,
the transmitter is completely empty), the All Sent status bit in RR1 (D0) will be set when
the last Stop bit reaches the TxD pin. This bit can be used by the processor as an indica-
tion that the transmitter may be safely disabled. The TxD pin then remains in the marking
state until the next character is written to WR8.

4.6.2.2 Stop Bit Selection
The SCC provides three Stop-bit options via bits D3 and D2 in WR4. The options avail-
able are one, one-and-a-half, or two stop bits per character. These two bits in WR4 select
only the number of Stop bits for the transmitter, as the receiver always checks for one
Stop bit. Note that the selected clock factor may restrict the number of Stop bits that may
be transmitted. In particular, when the clock rate and data rate are the same (i.e., x1
mode), one-and-a-half Stop bits are not allowed. If any length other than one Stop bit is
desired in the x1 mode, only two Stop bits can be used.
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4.7 SDLC MODE OPERATION

4.7.1 Receiver Operation
Receiver operation in SDLC mode begins in a Hunt mode where the communications line
is monitored for a synchronizing pattern on a bit-by-bit basis. The receiver may be placed
in Hunt mode by having the processor issue the Enter Hunt Mode command via bit D4 in
WR3, but will always start out in Hunt mode when it is enabled. The Enter Hunt Mode bit
in WR3 is a command so writing a ‘0’ to it has no effect.

The Hunt status of the receiver is reported by the SYNC/HUNT status bit in RR0. In SDLC
mode, this status bit will be set to ‘1’ when either; 1) the processor issues the Enter Hunt
Mode command, 2) the processor disables the receiver, or 3) an abort is detected. It will
be reset to ‘0’ when the receiver leaves Hunt mode, or when the abort condition goes
away. Unlike BISYNC or MONOSYNC mode, once the SYNC/HUNT status bit is reset it
does not need to be set again in between frames because the Receiver always maintains
synchronization.

This SYNC/HUNT status bit is one of the possible sources of External/Status interrupts,
with both transitions causing an interrupt. This is true even if the SYNC/HUNT bit is set as
a result of the processor issuing the Enter Hunt Mode command.

While in Hunt mode the Receive SYNC Register and WR7 are used in establishing char-
acter synchronization. As data are received, the receiver searches for the bit pattern,
‘01111110’, programmed in WR7. This sequence of six consecutive ‘1’ bits is prevented
from occurring randomly elsewhere in the frame through a process called zero-bit inser-
tion in which the transmitter inserts a ‘0’ bit after five consecutive ‘1’ bits, irrespective of
character boundaries. In turn, the receiver always searches the receive data stream on a
bit-by-bit basis for five consecutive ‘1’s. When the receiver detects a ‘0’ bit followed by
five ‘1’ bits, it inspects the following bit. If it is a ‘0’, the one bits are passed as data and
the zero bit is deleted. If the sixth bit is a ‘1’, the receiver inspects the seventh bit. If it is a
‘0’, a flag has been encountered and the receiver is synchronized to that flag; if it is a ‘1’
an abort or an EOP (End of Poll) has been encountered.

When a flag is detected and Address Search mode is not enabled, the receiver leaves
Hunt mode and character assembly begins with the first non-flag character. Once charac-
ter assembly begins characters are assembled according to the number of bits per char-
acter specified until: 1) an end of frame flag is detected, 2) an abort pattern is detected, 3)
the receiver is disabled, or 4) a channel or hardware reset is executed.

All data passes through the Receive Sync Register and the 3-bit delay before entering the
Receive Shift Register once synchronization is achieved. Ordinarily, the receiver transfers
all data between flags to the Receive Data FIFO, but while it is in Hunt mode no flags will
be transferred.

4.7.1.1 Flag Detect Output
In SDLC mode, if bit D7 of WR11 is set to ‘0’, the SYNC pin will be configured as an out-
put and the SCC will drive it Low every time a flag pattern is detected in the data stream.
The timing for the SYNC signal is shown in Figure 4–11.

4.7.1.2 Receiver Initialization
The initialization sequence for the receiver in SDLC mode is:  WR4 first, to select the
mode, then WR10 to modify it if necessary, WR6 to program the address, WR7 to pro-
gram the flag and WR3 and WR5 to select the various options. At this point the other reg-
isters should be initialized as necessary. When all of this is complete, the receiver may be
enabled by setting bit D0 of WR3 to ‘1’.

4.7.1.3 10x19-Bit Frame Status FIFO
In addition to the 8-bit Receive Data and Error FIFO’s, the CMOS SCC Receiver incorpo-
rates a 14-bit receive byte counter and a 10x19-bit FIFO array for storing frame status for
up to ten frames. This FIFO enhances the SCC’s ability to receive high speed back-to-
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back SDLC frames by minimizing frame overruns due to CPU latencies in responding to
interrupts. The block diagram of the 10x19-bit FIFO is shown in Figure 4–12.

4.7.1.3.1 FIFO Enabling/Disabling
This Frame Status FIFO is enabled through WR15 bit D2 but only when the SCC is pro-
grammed in SDLC mode. Since each channel incorporates this FIFO, each can be en-
abled and disabled independently.

Resetting bit D2 of WR15 disables and resets the FIFO. Table 4–2 tabulates the ena-
bling/disabling of channel FIFOs. Note that the FIFO pointer logic is reset when D2 of
WR15 is reset or after a power-on reset.

When the Frame Status FIFO is disabled, the CMOS SCC is completely downward com-
patible with the NMOS SCC, and the status register contents bypass the FIFO and go
directly to the bus interface as shown in Figure 4–12.

The status of the FIFO Enable signal can be obtained by reading bits D2 of RR15 through
their respective channels. If the FIFO is enabled, this bit will be set to ‘1’; otherwise, it will
be set to ‘0’.

4.7.1.3.2 FIFO Read Operation
To facilitate the use of these FIFOs, two new registers were added. These registers, RR6
and RR7, are accessible only when bit D2 of WR15 is set to ‘1’, and the SCC is pro-
grammed in SDLC mode.

Table 4–2.  Frame Status FIFO Enabling

WR15A(D2) WR15B(D2) Operation

0 0 Ch.A and Ch.B FIFOs disabled and reset

1 0 Ch.A and Ch.B FIFOs enabled but not independent 
(resetting D2 or WR15A resets both FIFOs 
simultaneously)

1 1 Ch.A and Ch.B FIFOs enabled and independent 
(resetting D2 in either channel resets only pertinent
FIFO)

0 1 Ch.B FIFO enabled only

RTxC

RxD

SYNC

FLAGLAST–1 FLAGLAST DATA0 DATA1 DATA2

Figure 4–11. Flag Detect Timing
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FIFO Enable

End of Frame Signal
Status Read Comp

RR1

Figure 4–12. 10x19-Bit Frame Status FIFO

When this FIFO is enabled, RR6 accommodates the LSB byte count from the 14-bit byte
counter and RR7 accommodates the MSB byte count along with FIFO availability and
Overflow status. Figure 4–13 shows the details of these registers including WR15.

If frame status is to be acquired from the 10x19-bit FIFO, it must be enabled and not
empty, and the registers must be read in the following order: RR7, RR6, and RR1 (read-
ing RR6 is optional). Accessing RR7 latches the FIFO Empty/Full status bit (D6 of RR7)
and steers the status multiplexer to read from the 10x19-bit FIFO array instead of from
the 8-bit Status FIFO.

Reading RR1 immediately after RR7 causes one location of the FIFO to be emptied, so
status should be read after reading the byte count; otherwise, the count will be incorrect.
If the FIFO goes empty when RR1 is read, the FIFO is disabled and the next read of RR1
will be directly from the 8-bit status FIFO, and reads from RR7 and RR6 will contain bits
that are undefined. To determine if status data is coming from the 10x19-bit FIFO or di-
rectly from the status register the user should check bit D6 of RR7. If this bit is set to ‘1’
the FIFO is not empty; if set to ‘0’ the FIFO is empty.
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Since not all status bits of RR1 are stored in the Frame Status FIFO, the All Sent, Parity,
and EOF bits bypass the FIFO and are stored in the 8-bit Status FIFO. The status bits
stored in the 10x19-bit FIFO will be the Residue, Overrun, and CRC status bits. Note that
the EOF interrupt is generated the same way as before.

4.7.1.3.3 FIFO Write Operation
When an EOF is detected, and the FIFO is enabled, the five status bits and byte-count
are loaded into the FIFO, and the FIFO pointer is incremented. If the FIFO overflows, bit
D7 of RR7 (FIFO Overflow) is set to indicate the overflow. This bit and the FIFO control
logic is reset by disabling and re-enabling the FIFO control bit (WR15 bit D2). For details
of FIFO control timing during an SDLC frame, refer to Figure 4–14.

When a packet is completely received, then a Receive Interrupt on Special Condition is
generated upon receipt of the End of Frame Flag. If the clock is temporarily stopped after
the receipt of the flag, the Frame Status FIFO may not be updated even though the inter-
rupt was generated. At least two receive clocks are needed to update the Frame Status
FIFO. The Frame Status information is not lost and will be put into the Frame Status FIFO
when the clock is enabled again.

4.7.1.3.4 14-Bit Byte Counter
The 14-bit byte counter allows for data frames of up to 16K bytes to be received. It is en-
abled when bit D2 of WR15 is set to ‘1’ and the SCC is in SDLC mode. It is reset when-
ever an SDLC flag character is received. The reset is timed so that the contents of the
byte counter are successfully written into the FIFO.

The byte counter is incremented by writes to the 8-bit receive Data FIFO. The counter
represents the number of bytes received by the SCC, rather than the number of bytes
transferred from the SCC. (These counts may differ by up to the number of bytes in the
receive data FIFO contained in the SCC.)

FOY FDA BC
13

6 5 7

FIFO Data Available Status
1 = Status Reads Will Come From FIFO
0 = Status Reads Will Come From SCC

FIFO Overflow Status
1 = FIFO Overflowed During Operation
0 = Normal

RR7

0

BC
0

Read From FIFO
LSB Byte CountRR6

4

BC
12

3
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11

2

BC
10

1

BC
9

0
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8

7
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7

6

BC
6

5

BC
5

4

BC
4

3
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3

2
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2

1
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1

0
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Status FIFO Enable Control Bit
1 = 

WR16

7

*

6

*

5

*

4

*

3

*

2

FEN

1

*

Status and Byte Count Will be
Held in the Status FIFO Until Read

0 =  Status Will Not be Held (SCC)t 
(Emulation Mode)

* =  No Change From NMOS SCC DFN 

10216A-013A

Figure 4–13. Frame Status FIFO Registers
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Reset
Byte Counter
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Reset 
Byte Counter

Reset
Byte Counter
Load Counter
Into FIFO and
Increment PTR

10216A-012A

Figure 4–14. Frame Status FIFO Control Timing

4.7.1.3.5 Am85C30 Frame Status FIFO Operation Clarification
In an effort to make the 10x19 Frame Status FIFO (FSF) useful for high-speed reception
of packets, the lock on the 3-byte receive FIFO that occurs after special conditions in two
of the receive interrupt modes was removed. The benefit of this operation is that the user
can receive multiple frames of SDLC data before having to service the interrupt. Competi-
tion 85C30 freezes the Rx FIFO after every frame, so the user could lose frames of data
between the end of the first frames and Reset Error command. In this case the user must
service interrupts for every frame of data on the competition 85C30, defeating the pur-
pose of the FIFO. AMD allows the user to receive up to 10 frames of data before having
to service the interrupt, thus obtaining the maximum (desired) utilization of the FSF.

A clarification of the enhanced operation is given below.  the removal of the lock on the
Receive Data 3-byte FIFO affects the device when it is programmed in the “Interrupt on
First Receive Character of Special Condition” or “Interrupt on Special Condition Only”
modes.

1. When the 10x19 Frame Status FIFO (FSF) is not enabled, the 3-byte Receive FIFO 
(Rx FIFO) locks when a special condition is received until the Reset Error command is
issued. DMA is disabled when the Rx FIFO locks until the Reset Error command is 
issued (same as old operation).

2. When the FSF is enabled:

a. The 3-byte Receive FIFO never locks.
b. DMA is disabled only  on overrun (i.e. overruns do not lock the Rx FIFO, but do 

disable DMA).

To reenable DMA after an overrun, the following sequence must be used:

i. Read and discard ALL entries in the Receive Data 3-byte FIFO.

ii. Issue the Error Reset command.

iii. Note that if an additional byte of data is received between the time that the 
Receive Data FIFO is emptied and the ERROR RESET command is issued. 
DMA will NOT unlock. This signals the user that corrupt data remains in the 
Receive Data FIFO. The user must read and discard all entries in the Receive 
Data 3-byte before DMA will reenable. Note that an additional ERROR RESET 
is not required.

c. Interrupts are generated and remain active until the RESET ERROR command 
is issued.

d. Interrupt vectors (in Read Register 2B) are modified as follows. There are two
bit patterns for Receiver Interrupts, x11-Special Receive condition, and x10 
Receive Character Available. Refer to Figure 3–2 (page 3–6) and Table 6–4 
(page 6–19) of this manual.
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i. The Status x11 will be reported when the first special conditions is received.

ii. As more data is received, the status will switch to x10 to reflect that a Receiver 
interrupt has been received, but that the present data in the Receive Data 3-byte 
FIFO does not contain a special condition.

iii. when a special condition resides at the top of the Receive Data FIFO, the status 
x11 will be reported.

4.7.1.3.6 Am85C30 Aborted Frame Handling When Using The 10x19 Frame 
Status FIFO

Field feedback on the Am85C30 Frame Status FIFO has revealed that neither AMD nor
competition create an entry in the Frame Status FIFO when a frame being received is
aborted (seven or more consecutive 1s appear in the receive Data stream). An aborted
frame indicates to the receiver that synchronization has been lost.  the receiver then en-
ters “Hunt Mode” where it monitors the input data stream until a SDLC flag is recognized.
After an SDLC flag is received, the receiver is capable of receiving additional data
frames.

Because of the lack of an entry in the Frame Status FIFO for aborted frames, the receiver
cannot look only at the Frame Status FIFO to determine the exact nature of all data re-
ceived. To properly recognized and recover from aborted frames, the following practice is
recommended:

1. The receiver must enable an external/status interrupt on ABORT.

2. When an interrupt due to an ABORT is received, all frames contained in the Frame 
Status FIFO should be considered to be corrupted and discarded. The processor 
should request re-transmission of these frames.

3. Note that an external/status interrupt will be generated both when an ABORT is 
received and when the ABORT condition disappears. Either transition of the ABORT 
status will cause the ABORT bit in Read Register 0 to latch until a “Reset External/
Status Interrupt” command is issued through Write Register 0.

This behavior is identical on both competition and AMD product and is not revision de-
pendent.

4.7.1.4 Address Search Mode
The first 8-bit non-flag character following the opening flag of a frame is assumed by the
SCC to be the address of the station for which the frame is intended. The SCC provides
several options for handling this address via bits D2 (Address Search mode) and D1
(SYNC Character Load Inhibit) of WR3.

If the Address Search mode is enabled, the receiver’s address recognition logic will be
enabled and the receiver will compare the first 8-bit non-flag character with the contents
of WR6. If these two characters match, or if the received character is the global address
(all ‘1’s), data are passed to the Receive Shift Register and character assembly begins. If
no match is detected the receiver remains in Hunt mode and no data are passed to the
Receive Shift Register. The global address is used in applications where a specific station
address is not known, as might be the case in a switched connection, or when a broad-
cast frame is sent to all stations. Address Search mode will be enabled when WR3 is pro-
grammed as shown below.

? ? ? ? X 1 0 ?

D7 D6 D5 D4 D3 D2 D1 D0

WR3—Register Layout
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The address comparison will be across all eight bits of WR6 when the Sync Character
Load Inhibit bit (D1 in WR3) is set to ‘0’. This comparison may be modified so that only
the four most significant bits of WR6 must match the received address. This mode is se-
lected by programming WR3 as shown below.

? ? ? ? X 1 1 ?

D7 D6 D5 D4 D3 D2 D1 D0

WR3—Register Layout

In this mode, however, the address field is still eight bits wide. Regardless of the mode
enabled, the address field is not treated differently than data and is always transferred to
the Receive Data FIFO in the same manner as data. Note that Address Search mode is
available only in SDLC mode.

SDLC address search mode (bit D2 in Write Register 3 is set) and Receive Full CRC
mode (bit D5 of Write Register 7′) should not be used in conjunction with each other. If
these modes are used together, the Am85C30 will accept all packets with addresses that
match the address programmed into Register 6 and will accept only the address byte of
the packet with addresses that do not match the Register 6 address. Proper operation of
address search mode calls for the complete rejection of packets with addresses that do
not match the Register 6 address.

4.7.1.5 Abort Detection
In addition to monitoring the data stream for flags, the receiver also monitors the line for
an abort pattern. An abort is detected when seven consecutive ‘1’s are found in the data
stream. This is usually an indication sent by the transmitter alerting the receiver that the
frame currently being received has been aborted and should be discarded.

The detection of an abort is reported in the BREAK/ABORT status bit in RR0 (D7). This
status bit is one source of External/Status interrupts, so transitions of this status bit may
be programmed to cause interrupts.

An abort automatically forces the receiver into Hunt mode and sets the SYNC/HUNT
status bit in RR0 (D4) to ‘1’. Because this status bit is also a possible External/Status con-
dition, its transition may also be programmed to cause an interrupt. Thus transitions on
both the BREAK/ABORT and SYNC/HUNT status bits may occur very close together, and
either one or two External/Status interrupts may result.

The BREAK/ABORT status bit will be reset when a ‘0’ is received, either by the abort it-
self going away or as the leading ‘0’ of a flag. In either case, the SYNC/HUNT status bit
will remain set until the receiver leaves Hunt mode. Because both transitions on the
BREAK/ABORT status bit are guaranteed to cause an interrupt, two discrete External/
Status Interrupts will occur; one when the abort is detected and one when the abort goes
away.

Note that the SCC does not discriminate between an in-frame (between opening and
closing flags) and an out-of-frame (after EOF) abort. An abort detected while the receiver
is In-Frame terminates frame reception, but not in an orderly manner, because the char-
acter being assembled is lost and the Receive Data FIFO is not flushed. An out-of-frame
abort interrupt will be generated approximately seven bit times after EOF has been de-
tected if the transmitter mark idles. If an ABORT is detected by the receiver after the clos-
ing flag and eight 1s have been received, the ABORT will persist until another flag is de-
tected at which time the receiver exits from Hunt Mode. If an out-of-frame interrupt is to
be avoided it should be disabled early in the EOF interrupt routine. Because the BREAK/
ABORT status bit is not latched in RR0, it may happen that this status bit will be reset by
the time the software responds to the interrupt, causing yet another interrupt. In this case,
unless the DCD pin has been programmed as the receiver Auto Enable, the SYNC/HUNT
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status bit may be able to provide the indication that an abort pattern was received, since
an abort condition places the receiver in Hunt mode.

4.7.1.6 Residue Bits
Since the information field of an SDLC/HDLC frame can contain any number of bits and
not necessarily an integral number of 8-bit characters, the end of data is determined by
counting back 16 bits from the closing flag of a frame. The SCC provides three Residue
bits that can be used to indicate the boundary between the data and CRC characters in
the last few bytes read from the Receive Data FIFO. The meaning of these Residue bits
with each character length option is shown in Table 4–3. In this table “previous byte” re-
fers to the character received prior to the end of frame flag being detected.

The Residue Code bits are not loaded through the top of the Receive Error FIFO. They
change in RR1 when the last character of the frame is loaded into the Receive Data
FIFO. If there are any characters already in the Data FIFO, the Residue Code will not be
valid until the EOF status bit is set in RR1.

4.7.2 SDLC Mode CRC Polynomial Selection
CRC error checking is done with a 16-bit CRC character inserted between the end of the
data field and the end of frame flag. In Synchronous modes, a control character is usually
used to signify when an end of message has been received (i.e., ETX, EOT, etc.). This
control character comes before the CRC characters; so on reception, the CRC calculation
can be stopped and the transmitted CRC characters are compared with the CRC charac-
ters generated by the receiver. This cannot be done in SDLC mode, since the end of
frame flag is after the CRC characters. In order to use the same core hardware configura-
tion already used in Synchronous modes, SDLC mode requires that the transmit CRC
generator be preset to all ‘1’s, and the complement of the CRC result be transmitted. On
reception, the receive CRC generator must also be preset to all ‘1’s and, when the end of
frame flag is detected, the result is checked against the bit pattern ‘0001110100001111’
to ascertain frame integrity. This is consistent with other bit-oriented protocols, such as
HDLC and ADCCP.

Table 4–3. Residue Codes

0 1 2 8B/C 7B/C 6B/C 5B/C 8B/C 7B/C 6B/C 5B/C 8B/C 7B/C 6B/C 5B/C

1 0 0 0 0 0 0 3 1 0 2 8 8 5 7

0 1 0 0 0 0 0 4 2 0 0 8 8 6 3

1 1 0 0 0 0 0 5 3 1 0 8 8 7 4

0 0 1 0 0 0 0 6 4 2 0 8 8 8 5

1 0 1 0 0 0 0 7 5 3 1 8 8 8 6

0 1 1 0 0 0 – 0 6 4 – 8 8 8 –

1 1 1 0 0 – – 1 0 – – 8 7 – –

0 0 0 0 – – – 2 – – – 8 – – –

Residue
code

Data Bits in Previous
Byte

Data Bits in Second
Byte

Data Bits in Third
Byte
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Because the bit pattern used by the receiver for CRC error checking is based on an in-
dustry standard polynomial, only the CRC-CCITT polynomial (X16+X12+X5+1) can be
used in SDLC mode.

The CRC transmission and CRC-CCITT polynomial are enabled by programming WR5 as
shown below.

? ? ? ? ? 0 ? 1

D7 D6 D5 D4 D3 D2 D1 D0

WR3—Register Layout

4.7.2.1 Rx CRC Initialization
Bit D7 of WR10 controls the initial state of both the transmit and receive CRC generators.
Although the transmit and receive generators may be preset to either all ‘0’s or all ‘1’s,
SDLC operation requires that this bit be set to ‘1’ for proper error detection.

The receive CRC generator will be automatically preset whenever the receiver is in Hunt
mode, or a flag is detected so a Reset CRC Checker command should not be necessary.
It may, however, be preset whenever necessary by issuing this command in WR0.

4.7.2.2 Rx CRC Enabling
In SDLC Mode, the SCC always calculates CRC on all bits, except inserted zeros, be-
tween the opening and closing flags of a frame, so the Rx CRC Enable bit in WR3 (D3) is
ignored.

4.7.2.3 CRC Error
When the end of frame flag is detected, the CRC Error bit is loaded into the Receive Error
FIFO at the same time the character in the Receive Shift Register is transferred to the
Receive Data FIFO. Since this CRC Error status bit is not latched internally, it will usually
always be set to ‘1’ in RR1, since most bit combinations, except for a correctly completed
frame, result in a non-zero CRC. Hence, the CRC Error bit should not be considered valid
until the EOF status bit is set to ‘1’ in RR1, and should be ignored at all other times. 

4.7.2.4 CRC Character Reception
On the NMOS SCC, when the end of frame flag is detected the contents of the Receive
Shift Register are transferred to the Receive Data FIFO regardless of the number of bits
accumulated. Because of the 3-bit delay between the Receive SYNC Register and Re-
ceive Shift Register, the last two bits of the CRC check character received are never
transferred to the Receive Data FIFO. Thus, the received CRC characters are unavailable
for use.

On the CMOS SCC, the option of being able to receive the complete CRC characters
generated by the transmitter is provided when both bits D0 of WR15 and bit D5 of WR7’
are set to ‘1’. When these two bits are set and an end of frame flag is detected, the last
two bits of the CRC will be clocked into the Receive Shift Register before its contents are
transferred to the Receive Data FIFO. The data-CRC boundary and CRC character bit
formats for each Residue Code provided are shown in Figures 4–15 through 4–18 for
each character length selected.
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D

C0

D D D D C 0 C1 C2

C1 C2 C3 C4 C5 C6 C7

C5 C6 C7 C8 C9 C10 C11 C12

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
0 0 1

D D D D D C 0 C1

C0 C1 C2 C3 C4 C5 C6

C4 C5 C6 C7 C8 C9 C10 C11

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 0 1

D

D D D D D C 0

C0 C1 C2 C3 C4 C5

C3 C4 C5 C6 C7 C8 C9 C10

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 0 0

D D D D D 

C0 C1 C2 C3 C4

C2 C3 C4 C5 C6 C7 C8 C9

C7 C8 C9 C10 C11 C12 C13 C14

Residue
Code
0 1 2
0 1 0

DD D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D D D D D 

C0 C1 C2 C3

C1 C2 C3 C4 C5 C6 C7 C8

C6 C7 C8 C9 C10 C11 C12 C13

Residue
Code
0 1 2
1 1 0

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D D D 

D D D 

D

10216A-015A

Figure 4–15.  Five Bits/Character
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D

C0

D D D D C 0 C1

C1 C2 C3 C4 C5 C6 C7

C6 C7 C8 C9 C10 C11 C12 C13

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
0 1 0

D D D D D C 0

C0 C1 C2 C3 C4 C5 C6

C5 C6 C7 C8 C9 C10 C11 C12

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 1 0

D

D D D D D 

C0 C1 C2 C3 C4 C5

C4 C5 C6 C7 C8 C9 C10 C11

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
0 0 1

D D D D D 

C0 C1 C2 C3 C4

C3 C4 C5 C6 C7 C8 C9 C10

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 0 1

DD D D D 

D D D D D 

C0 C1 C2 C3

C2 C3 C4 C5 C6 C7 C8 C9

Residue
Code
0 1 2
0 1 1

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D D D 

D D D 

D D D 

D

D D D D D 

C0 C1 C2

C1 C2 C3 C4 C5 C6 C7 C8

Residue
Code
0 1 2
1 0 0

D D D 

C C C C C C C C 7 8 9 10 11 12 13 14 

D

D D D 

D

C C C C C C C C 8 9 10 11 12 13 14 15 

10216A-016A

Figure 4–16.  Six Bits/Character
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D

C0

D D D D C 0
C1 C2 C3 C4 C5 C6 C7

C7 C8 C9 C10 C11 C12 C13 C14

C8 C 9 C 10 C11 C 12 C13 C14 C15

Residue
Code
0 1 2
1 1 1

D D D D D 

C0 C1 C2 C3 C4 C5 C6

C6 C7 C8 C9 C10 C11 C12 C13

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 0 0

D

D D D D D 

C0 C1 C2 C3 C4 C5

C5 C6 C7 C8 C9 C10 C11 C12

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
0 1 0

D D D D D 

C0 C1 C2 C3 C4

C4 C5 C6 C7 C8 C9 C10 C11

C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 1 0

DD D D D 

D D D D D 

C0 C1 C2 C3
C3 C4 C5 C6 C7 C8 C9 C10

Residue
Code
0 1 2
0 0 1

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D D D 

D D D 

D D D 

D

D D D D D 

C0 C1 C2
C2 C3 C4 C5 C6 C7 C8 C9

Residue
Code
0 1 2
1 0 1

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D 

D

D D

D D D D D 

C0 C1

C1 C2 C3 C4 C5 C6 C7 C8

Residue
Code
0 1 2
0 1 1

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D 

D D 

10216A-017A

Figure 4–17.  Seven Bits/Character
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10216A-018A

D

C0

D D D D 

C1 C2 C3 C4 C5 C6 C7
C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
0 1 1

D D D D D 

C0 C1 C2 C3 C4 C5 C6
C7 C8 C9 C10 C11 C12 C13 C14
C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 1 1

D

D D D D D 

C0 C1 C2 C3 C4 C5
C6 C7 C8 C9 C10 C11 C12 C13
C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
0 0 0

D D D D D 

C0 C1 C2 C3 C4
C5 C6 C7 C8 C9 C10 C11 C12
C8 C9 C10 C11 C12 C13 C14 C15

Residue
Code
0 1 2
1 0 0

DD D D D 

D D D D D 

C0 C1 C2 C3
C4 C5 C6 C7 C8 C9 C10 C11

Residue
Code
0 1 2
0 1 0

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D D D 

D D D 

D D D 

D

D D D D D 

C0 C1 C2
C3 C4 C5 C6 C7 C8 C9 C10

Residue
Code
0 1 2
1 1 0

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D 

D

D D 

D D D D D 

C0 C1

C2 C3 C4 C5 C6 C7 C8 C9

Residue
Code
0 1 2
0 0 1

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D 

D D 

D

(No Residue) (One Residue Bit) 

(Two Residue Bits) (3 Residue Bits) 

(4 Residue Bits) (5 Residue Bits) 

(6 Residue Bits)

D D D D D 

C0
C1 C2 C3 C4 C5 C6 C7 C8

Residue
Code
0 1 2
1 0 1

D D D 

C C C C C C C C 8 9 10 11 12 13 14 15 

D

D D D 

D D 

(7 Residue Bits)

D

Figure 4–18.  Eight Bits/Character

4.7.3 End of Frame (EOF)
Once character assembly begins characters are assembled according to the number of
bits per character specified until an end of frame flag is detected. When this condition is
detected, the receiver transfers the contents of the Receive Shift Register into the Re-
ceive Data FIFO regardless of the number of bits assembled, and the Residue Code, the
CRC Error bit, and EOF Status bit are latched in the Receive Error FIFO.

If either the Rx Interrupt on Special Condition Only or Rx Interrupt on First Character or
Special Condition mode is selected, an interrupt will be generated when the EOF Status
bit reaches the top of the Error FIFO, but only after its associated character is read from
the Receive Data FIFO. When the character is read the FIFO will be locked, that is, the
EOF Status bit remains set for all subsequent characters received until reset by the Error
Reset Command. The processor may then read RR1 to determine the CRC status and
Residue Code of the frame and issue an Error Reset command in WR0 to unlock the Re-
ceive Data FIFO.
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4.8 TRANSMITTER OPERATION
In SDLC Modes, the transmitter automatically envelopes the data written to the Transmit
Buffer Register (WR8) with the flag character in WR7. Because the SCC transfers the flag
character eight bits at a time, zero-suppressed flags (i.e., where the ending zero bit of
one flag is the beginning zero bit of the succeeding flag) are not supported. The receiver,
however, can receive either zero-suppressed or fully-formed flags. While flags are trans-
mitted the zero insertion logic is inhibited.

When transmitting data in SDLC modes, note that all data passes through the zero inser-
ter, which adds an extra five bit times of delay between the Transmit Shift Register and
the Transmit Data (TxD) pin.

4.8.1 Transmitter Initialization
The initialization sequence for the transmitter in SDLC modes is: WR4 first, to select the
mode, then WR10 to modify it if necessary, WR7 and WR6 to program the flag and ad-
dress field (if used), and then WR3 and WR5 to select the various options. At this point,
the other registers should be initialized as necessary. Once all of this is complete the
transmitter will be idle with the TxD pin pulled high until the transmitter is enabled via bit
D3 in WR5. When this bit is set to ‘1’, the transmitter starts mark idling (i.e., a pattern of
all one bits are sent eight bits at a time), and continues to mark idle until the MARK/FLAG
Idle bit in WR10 (D3) is set to ‘0’. When this bit is reset to ‘0’ and the current mark idle
pattern has left the Transmit Shift Register, the transmitter will begin sending flag charac-
ters and will continue to send flag characters until a character is written to the Transmit
Buffer. During this flag idle time the CRC generator may be initialized by issuing the Re-
set Tx CRC Generator Command in WR0.

When a character is written to WR8 and the current flag character has been sent, the
transmitter starts sending data and continues to send data until an underrun condition
occurs. The Tx Buffer Empty status bit in RR0 (D2) will be set to ‘1’ each time the con-
tents of WR8 are transferred to the Transmit Shift Register. It will be reset to ‘0’ each time
the Transmit Buffer is written to, and while the CRC is being sent in SDLC and Synchro-
nous modes. If the Transmitter Interrupt Enable bit in WR1 is set to ‘1’ then the Low-to-
High transition of the Tx Buffer Empty status bit will generate an interrupt.

4.8.2 MARK/FLAG Idle Generation
The Transmitter may be programmed to either mark or flag idle when no data are being
transmitted. If the MARK/FLAG idle bit in WR10 (D3) is set to ‘1’, the transmitter will mark
idle by transmitting continuous ‘1’s; otherwise, it will flag idle by transmitting continuous
flags. The state of this bit determines the idle pattern transmitted after the closing flag of
the frame is sent and not before.

On the NMOS SCC, if the transmitter is actively mark idling, and a frame of data is ready
to be transmitted, the MARK/FLAG idle bit must be set to ‘0’ before data are written to
WR8; otherwise, the opening flag will not be sent properly. However, care must be exer-
cised in doing this because the mark idle pattern (eight ‘1’ bits) is transmitted eight bits at
a time, and all eight bits must have transferred from the Transmit Shift Register before a
flag may be loaded and sent. If data are written into the Transmit Buffer (WR8) before the
flag is loaded into the Transmit Shift Register, the data character written to WR8 will su-
persede flag transmission and the opening flag will not be transmitted.

4.8.3 Auto Flag Mode
On the CMOS SCC, if bit D0 of WR15 is set to ‘1’, and the SCC is programmed for SDLC
operation, an option is provided via bit D0 of WR7’ that eliminates this requirement. If bit
D0 of WR7’ is set to ‘1’ and a character is written to the Transmit Buffer while the Trans-
mitter is mark idling, the Mark/Flag Idle bit in WR10 need not be reset to ‘0’ in order to
have the opening flag sent because the transmitter will automatically send it before com-
mencing to send data.

In addition, as long as bit D0 of WR15 and bit D1 of WR7’ are set to ‘1’, the CRC transmit
generator will be automatically preset to the initial state programmed by bit D7 of WR10
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(so the Reset Tx CRC Generator command is also not necessary), and the Tx Underrun/
EOM latch will be reset automatically on every new frame sent. This ensures that an
opening flag and proper CRC generation and transmission will always be sent without
processor intervention under varying bus latency conditions.

4.8.4 Abort Generation
The premature termination of a frame is called an “abort”. A properly transmitted SDLC
frame will be terminated by appending the CRC characters and a closing flag, but the
SCC may be programmed to terminate the frame by sending an abort and a flag instead.
This option allows the SCC to abort the transmission of a frame in progress and at the
same time signify to the receiver that another frame will follow.

This is controlled by the ABORT/FLAG on Underrun bit in WR10 (D2).  When this bit is
set to ‘1’, and an underrun occurs, the transmitter will transmit an abort immediately fol-
lowed by a flag instead of the normal CRC. If this bit is set to ‘0’, the frame will be termi-
nated normally.

The processor is also able to send an abort by issuing the Send Abort command via
WR0. This command, when issued, will send eight consecutive ‘1’s. After this pattern is
transmitted, the transmitter will idle as programmed via bit D3 of WR10. Since up to five
consecutive ‘1’s may have been sent prior to the command being issued, a Send Abort
may cause a sequence of from eight to thirteen ‘1’s to be transmitted. The Send Abort
command also empties the transmit buffer register and sets the Tx Underrun/EOM bit in
RR0.

4.8.5 Auto Transmit CRC Generator Preset
The NMOS SCC does not automatically preset the CRC generator prior to frame trans-
mission. This must be done in software, usually during the initialization routine. This is
accomplished by issuing the Reset Tx CRC Generator Command via WR0. For proper
results, this command must be issued while the transmitter is enabled and idling and be-
fore any data are written to the Transmit Buffer.  

In addition, if CRC is to be used, the transmit CRC generator must be enabled by setting
bit D0 of WR5 to ‘1’. CRC is normally calculated on all characters between opening and
closing flags, so this bit should be set to ‘1’ at initialization and never changed. Note that
a Channel Reset will not initialize the CRC generator so a Reset Tx CRC Generator com-
mand must be issued some time after a Channel Reset is executed.

On the CMOS SCC, setting bit D0 of WR15 ‘1’ will cause the transmit CRC generator to
be preset automatically every time an opening flag is sent, so the Reset Tx CRC Genera-
tor command is not necessary.

4.8.6 CRC Transmission
The transmission of the CRC check characters is controlled by the Transmit CRC Enable
bit in WR5 (D0) and the Tx Underrun/EOM bit in RR0 (D6). However, if the Transmit CRC
Enable bit is set to ‘0’ when a transmit underrun (i.e., both the Transmit Buffer and Trans-
mit Shift Register go empty) occurs, the CRC check characters will not be sent regardless
of the state of the Tx Underrun/EOM bit.

If the Transmit CRC Enable bit is set to ‘1’ when an underrun occurs, then the state of the
Tx Underrun/EOM bit and the Abort/Flag on Underrun bit in WR10 (D2) determine the
action taken by the transmitter. The Abort/Flag on Underrun bit may be set or reset by the
processor, whereas, the Tx Underrun/EOM bit is set by the transmitter and can be reset
only by the processor via the Reset Tx Underrun/EOM command in WR0.

If the Tx Underrun/EOM bit is set to ‘1’ when an underrun occurs, the transmitter will
close the frame by sending a flag; however, if this bit is set to ‘0’, the frame data will be
appended with either the accumulated CRC characters followed by a flag or an abort pat-
tern followed by a flag, depending on the state of the Abort/Flag on Underrun bit in the
WR10 (D2). In either case, after the closing flag is sent, the Transmitter will idle the trans-
mission line as specified by the Mark/Flag Idle bit D3 in WR10.
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The Tx Underrun/EOM status bit in RR0 will be set to ‘1’ by the SCC to indicate that an
underrun has occurred, and that either the CRC, or abort character, has been loaded into
the Transmit Shift Register for transmission. The Low-to-High transition of this bit may be
programmed to generate an External/Status interrupt or, if interrupts are disabled, may be
polled in RR0.

Hence, if the CRC check characters are to be properly appended to a frame, the Abort/
Flag on Underrun bit must be set to ‘0’, and the Reset Tx Underrun/EOM Command must
be issued after the first but before the last character is written to the Transmit Buffer. This
will ensure that either an abort or the CRC will be transmitted if an underrun occurs.  Nor-
mally, the Abort/Flag on Underrun bit in WR10 should be set to ‘1’ around the same time
that the Tx Underrun/EOM bit is reset so that an abort will be sent if the transmitter acci-
dentally underruns, and then set to ‘0’ near the end of the frame to allow the correct trans-
mission of CRC.

Note that the Reset Tx Underrun/EOM command will not reset the status bit latch if the
transmitter is disabled. However, if no External/Status interrupts are pending, or if a Reset
External/Status Interrupt command accompanies this command while the transmitter is
disabled, an External/Status interrupt will be generated with the Tx Underrun/EOM bit
reset in RR0.

4.8.7 Auto Tx Underrun/EOM Latch Reset
On the CMOS SCC, if bit D0 of WR15 is set to ‘1’, the option of having the Tx Underrun/
EOM bit be reset automatically at the start of every frame is provided via bit D1 of WR7’.
This helps alleviate the software burden of having to respond within one character time
when high speed data are being sent.

4.8.8 Transmitter Disabling
The transmitter is enabled/disabled via bit D3 of WR5. Data transmission from the SCC
does not begin until this bit is set to ‘1’. Disabling the transmitter can be done at any time,
but if disabled during transmission of a character, that character will be “completely sent.”
This applies to both data and flags. However, if the transmitter is disabled during the
transmission of CRC, the 16-bit transmission will not be completed and the remaining bits
will be from WR7 (flag character).

In the paragraph above, the term “completely sent” means shifted out the Transmit Shift
Register, not shifted out the zero-bit Inserter which adds an additional 5-bit delay.

On the NMOS SCC, if NRZI encoding is being used and the Transmitter is disabled the
state of the TxD pin will depend on the last bit sent. That is, the TxD pin may either idle in
a Low or High state as shown below in Figure 4–19. Although, in full-duplex applications
this may not be a problem, in half-duplex applications the TxD pin must be pulled high in
order to allow proper reception of data.  

4.8.9 NRZI Mode Transmitter Disabling
On the CMOS SCC, an option is provided that allows setting the TxD pin High when oper-
ating in SDLC Mode with NRZI encoding enabled. If bit D0 of WR15 is set to ‘1’, then bit
D3 of WR7’ can be used to set the TxD pin High.  Note that the operation of this bit is in-
dependent of the Tx Enable bit in WR5. The Tx Enable bit in WR5 is used to disable and
enable the transmitter, whereas bit D3 of WR7’ acts as a pseudo transmitter disable and
enable by just forcing the TxD pin High when set even though the transmitter may actu-
ally be mark or flag idling. Care must be used when setting this bit because any character
being transmitted at the time this bit is set will be “chopped off,” and data written to the
transmit buffer while this bit is set will be lost.

When the transmit underrun occurs and the CRC and closing flag have been sent, bit D3
can be set to pull TxD High. When ready to start sending data again this bit must be reset
to ‘0’ before the first character is written to the transmit buffer.  Note that resetting this bit
causes the TxD pin to take whatever state the NRZI encoder is in at the time so synchro-
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nization at the receiver may take longer because the first transition seen on the TxD pin
may not coincide with a bit boundary.

Note that in order for this to function properly, bits D3 and D2 of WR10 must be set to ‘1’
and ‘0’ respectively.

4.9 SDLC LOOP MODE
The SCC supports SDLC Loop mode in addition to normal SDLC. SDLC Loop mode is
very similar to normal SDLC. It is usually used in applications where a point-to-point net-
work is not appropriate (for example, point-of-sale terminals).

In an SDLC Loop there is a primary station, called the controller, that manages the mes-
sage traffic flow on the loop. SDLC Loop is a special type of configuration in which one or
more stations are connected in a serial fashion; each station is a repeater of the up-loop
data to the next down-loop station.

SDLC loop operation requires the transmission link operate in a half-duplex, one direction
only, mode. Data transmitted on the loop by the primary station are relayed from station
to station.

4.9.1 Going On Loop
There are certain restrictions as to when and how a secondary station physically be-
comes part of the loop. A secondary station that has just powered up must monitor the
loop, without the one-bit-time delay, until it recognizes an EOP. While waiting for an EOP,
the SCC ties TxD to RxD with only the internal gate delays in the signal path. When the
first EOP is recognized by the SCC, the BREAK/ABORT status bit is set in RR0, generat-
ing an External/Status interrupt (if so enabled). At the same time, the On-Loop bit in
RR10 (D4) is set to indicate that the SCC is indeed on-loop, and a one-bit time delay is
inserted in the TxD to the RxD patch. This does not disturb the loop because the line is
marking idle between the time that the controller sends the EOP and the time that it re-
ceives the EOP back. The secondary station that has gone on-loop cannot transmit a
message until a flag and the next EOP are received. The requirement that a flag be re-
ceived ensures that the SCC cannot erroneously send messages until the controller ends
the current polling sequence and starts another one. A secondary station goes off\loop in
a similar manner.

1 1 0 0 1 1 1 1 1 1 0 0

Transmitter Disabled Here

TxD Pin Output (NRZI Encoded)

High

Low

10216A-019A

Figure 4–19. Transmitter Disabling with NRZI Encoding

A secondary station in an SDLC Loop is always listening to the messages being sent
around the loop and must pass these messages to the rest of the loop by re-transmitting
them with a one-bit-time delay. When given a command to go off-loop, the secondary sta-
tion waits until the next EOP to remove the one-bit-time delay.
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4.9.1.1 On-Loop Program Sequence
SDLC Loop mode is similar to SDLC mode except that two additional control bits are
used. They are the Loop mode bit (D1) and the Go Active on Poll bit (D4) in WR10. In
addition to these two extra control bits, there are also two status bits in RR10. They are
the On Loop bit (D1) and the Loop Sending bit (D4). Before Loop mode is selected, both
the receiver and transmitter must be completely initialized for SDLC operation. Once this
is done, Loop mode is selected by setting bit D1 of WR10 to ‘1’. At this point the SCC
connects TxD to RxD with only gate delays in the path. At the same time a flag is loaded
into the Transmit Shift register and is shifted to the end of the zero-bit inserter, ready for
transmission. The SCC will remain in this state until the Go Active On Poll bit (D4) in
WR10 is set to ‘1’. When this bit is set to ‘1’, the receiver begins looking for a sequence of
seven consecutive ‘1’s, indicating either an EOP or an idle line. When the receiver de-
tects this condition, the BREAK/ABORT status bit in RR0 is set to ‘1’ and a one-bit time
delay is inserted in the path from RxD to TxD. The On Loop bit in RR10 is also set to ‘1’
at this time, and the receiver enters Hunt Mode. The SCC cannot transmit on the loop
until a flag is received, causing the receiver to leave Hunt mode, and another EOP (bit
pattern ‘11111110’) is received. The SCC is now on the loop and capable of transmitting
on the loop. As soon as this status is recognized by the processor, the Go Active On Poll
bit in WR10 should be set to ‘1’ to prevent the SCC from transmitting on the loop without
the consent of the processor.

4.9.1.2 On-Loop Message Transmission
When a secondary station has a message to transmit and it recognizes an EOP on the
line, the first thing that it does is to change the last ‘1’ of the EOP pattern to a ‘0’ before
transmitting it. This turns the EOP into a Flag sequence. The secondary station now
places its message on the loop and terminates its message with an EOP. Any secondary
stations further down the loop with messages to transmit can then append its message to
the message of the first secondary station by the same process. All secondary stations
without messages to send merely echo the incoming messages and are prohibited from
placing messages on the loop, except upon recognizing an EOP.

4.9.1.3 On-Loop Transmit Message Programming Sequence
To transmit a message on the loop, the Go Active On Poll bit WR10 must be set to ‘1’.
Once this is done, the SCC will change the next received EOP into a Flag and begin
transmitting on the loop. At this point the processor may either write the first character to
the transmit buffer and wait for a transmit buffer empty condition or wait for the Break/
Abort and Hunt Status bits to be set to ‘1’ in RR0 and the Loop Sending bit to be set to ‘1’
in RR10 before writing the first data to the transmitter. Note that the Break/Abort and Hunt
bits in RR0 will be set to ‘1’ when the EOP is received. If the data is written immediately
after the Go Active On Poll bit has been set, the SCC will insert only one flag after the
EOP is changed into a flag. If the data is not written until after the receiver enters the
Hunt mode, flags will be transmitted until the data is written. If only one frame is to be
transmitted on the loop in response to an EOP, the processor must set the Go Active on
Poll bit to ‘0’ before the last data is written to the transmitter. In this case the transmitter
will close the frame with a single flag and then revert to the one-bit delay. The Loop Send-
ing bit in RR10 is set to ‘0’ when the closing Flag has been sent. If more than one frame
is to be transmitted, the Go Active On Poll bit should not be set to ‘0’ until the last frame is
being sent. If this bit is not set to ‘0’ before the end of a frame, the transmitter will send
Flags until either more data is written to the transmitter, or until the Go Active On Poll bit
is set to ‘0’. Note that the state of the Abort/Flag on Underrun and Mark/Flag idle bits in
WR10 are ignored by the SCC in SDLC Loop mode.

4.9.2 Going Off Loop
If SDLC Loop Mode is de-selected, the SCC is designed to exit from the loop gracefully.
When SDLC Loop mode is de-selected by writing to WR10, the SCC waits until the next
polling cycle to remove the on-bit time delay. If a polling cycle is in progress at the time
the command is written, the SCC finishes sending any message that it Figure 4–19.
Transmitter Disabling with NRZI Encoding may be transmitting, ends with an EOP, and
disconnects TxD from RxD. If no message was in progress, the SCC immediately discon-
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nects TxD from RxD. To ensure proper loop operation after the SCC goes off the loop,
and until the external relays take the SCC completely out of the loop, the SCC should be
programmed for mark idle instead of Flag idle. When the SCC goes off the loop, the On–
Loop bit is reset.

4.9.2.1 Off Loop Programming Sequence
To go off the loop in an orderly manner requires actions similar to those taken to go on
the loop. First, the Go Active On Poll bit must be set to ‘0’ and any transmission in pro-
gress completed, if the SCC is currently sending on the loop. This will be indicated by the
Loop Sending bit in RR10 being set to ‘0’.  Once the SCC is not sending on the loop, exit
from the loop is accomplished by setting the Loop Mode bit in WR10 to ‘0’, and at the
same time writing the Abort/Flag on Underrun and Mark/Flag idle bits with the desired
values.  The SCC will revert to normal SDLC operation as soon as an EOP is received, or
immediately, if the receiver is already in Hunt mode because of the receipt of an EOP.
Note that the Break/Abort and Hunt bits in RR0 will be set to ‘1’ and the On Loop bit in
RR10 will be set to ‘0’ when EOP is detected.

If SDLC loop mode is enabled by the Go Active on Poll bit (D4) in WR10 and the station
receives an EOP, the receiver will enter Hunt Mode.  When the receiver is in Hunt Mode it
is not possible to take the station off the loop unless data has been transmitted; i.e., a flag
has been detected.  

4.9.3 SDLC Loop Initialization
The initialization sequence for the SCC in SDLC Loop mode is similar to the sequence
used in SDLC mode, except that it is somewhat longer. The processor should program
WR4 first, to select SDLC mode, and the WR10 to select the CRC preset value, and pro-
gram the Mark/Flag Idle bit. The Loop Mode and Go Active On Poll bits in WR10 should
not be set to ‘1’ yet. The flag is written in WR7 and the various options are selected in
WR3 and WR5. At this point the other registers should be initialized as necessary, then
the Loop Mode bit (D1) in WR10 should be set to ‘1’. When all of this is complete, the
transmitter may be enabled by setting bit D3 of WR5 to ‘1’. Now that the transmitter is
enabled, the CRC generator may be initialized by issuing the Reset Tx CRC Generator
command in WR0. The receiver is enabled by setting the Go Active on Poll bit (D4) in
WR10 to ‘1’.

4.9.4 SDLC Loop NRZI Encoding Enabled
The SCC allows the user the option of using NRZI in SDLC Loop mode by programming
WR10 appropriately. With NRZI encoding, the outputs of secondary stations in the loop
may be inverted from their inputs because of messages that they have transmitted.  Re-
moving the stations from the loop (removing the one-bit time delay) may cause problems
further down the loop because of extraneous transitions on the line. The SCC avoids this
problem by making transparent adjustments at the end of each frame it sends in re-
sponse to an EOP.

A response frame from the SCC is terminated by a flag and an EOP. Normally, the flag
and the EOP share a zero, but if such sharing would cause the RxD and TxD pins to be
of opposite polarity after the EOP, the SCC adds another zero between the flag and the
EOP. This causes an extra line transition so that RxD and TxD are identical after the EOP
is sent. This extra zero is completely transparent because it means only that the flag and
the EOP no longer share a zero. All that a proper loop exit needs, therefore, is the re-
moval of the one-bit time delay.

4.10 SYNCHRONOUS MODE OPERATION

4.10.1 Receiver Operation
Receiver operation in Synchronous modes begin in a Hunt mode where the communica-
tions line is monitored for a synchronizing pattern on a bit-by-bit basis. The receiver may
be placed in Hunt mode by having the processor issue the Enter Hunt Mode command
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via bit D4 in WR3. The Enter Hunt Mode bit in WR3 is a command so writing a ‘0’ to it has
no effect.

In Synchronous modes, once character synchronization has been established, Hunt
mode is terminated and must remain so until the end of message has been received. At
this point, the Enter Hunt Mode command can be re-issued for the next message. Issuing
this command prematurely can lead to false character synchronization. Thus, the SYNC/
HUNT status bit in RR0 will be set only when the Enter Hunt Mode command is issued.

The Hunt status of the Receiver is reported in the SYNC/HUNT status bit in RR0 (D4).
This status bit is one of the possible sources of External/Status interrupts, with both tran-
sitions causing an interrupt. This is true even if the SYNC/HUNT bit is set as a result of
the processor issuing the Enter Hunt Mode command.

While in Hunt mode, the receiver path used in establishing character synchronization will
depend on the mode selected. In either case, however, synchronization will be estab-
lished at the beginning of each transmission either through a two character (BISYNC) or a
single character (MONOSYNC) synchronizing pattern. When character synchronization is
established Hunt mode is terminated and the receiver stops scanning the communication
line for the synchronizing pattern. At this point data passes to the Receive Shift Register
and characters are formed by assembling the proper number of consecutive bits following
the synchronizing pattern before being transferred into the Receive Data FIFO.

4.10.1.1 SYNC Detect Output
In Synchronous modes, except External SYNC mode, if bit D7 of WR11 is set to ‘0’, the
SYNC pin will be configured as an output and the SCC will drive it Low every time a sync
character is detected in the data stream.  Note, however, that the SYNC pin is activated
regardless of character boundaries so any external circuitry using it in Synchronous
modes should respond only to the SYNC pulse that occurs while the receiver is in Hunt
mode. The timing for the SYNC signal is shown in Figure 4–20.

4.10.1.1.1 MONOSYNC Mode
The message format for MONOSYNC is shown in Figure 4–21. In this mode, the incom-
ing data are clocked into the Receive Sync Register and compared with the contents of
WR7 on a bit-by-bit basis until a sync character is found. When a sync character is found,
character synchronization is established and data passes to the Receive Shift Register.

In this mode, WR6 is always used to open a message being transmitted, and as time fill
when the transmitter has nothing to send.

4.10.1.1.2 BISYNC Mode
The BISYNC message format is shown in Figure 4–22. In this mode, the synchronization
procedure is similar to that of MONOSYNC except that two sync characters are used for
character synchronization instead of one. In this mode, incoming data are shifted into the
Receive Shift Register while the next eight bits are assembled in the Receive Sync Regis-
ter. If these two characters match the programmed characters in WR6 and WR7, respec-
tively, synchronization is established and the incoming data bypasses the Receive Sync
Register and enters the 3-bit delay directly.

In this mode, the concatenation of WR6 with WR7 is always used during transmit and re-
ceive operations.
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RTxC

PCLK

SYNC

Figure 4–20.  SYNC as an Output

SYNC DATA CRC

Figure 4–21.  MONOSYNC Message Format

SYN SYN SOH STX
ETX
or

ETB
BCCTEXTHEADER

DIRECTION OF SERIAL DATA FLOW

Figure 4–22.  BISYNC Message Format

4.10.1.2 SYNC Character Length
In Synchronous modes, the sync character length that is used during transmit and receive
operations is programmable via bit D0 of WR10.

If this bit is set to ‘0’ in MONOSYNC mode an 8-bit sync character will be used during
transmit and receive operations; however, if set to ‘1’ the 6-bit sync character option will
be selected, and only the least significant six bits of WR6 will be used during transmis-
sion, and the six high-order bits in WR7 will be used during receive.

In BISYNC mode, this bit selects between a 12- or 16-bit sync character length; however,
because the receiver requires that sync characters be left-justified in the registers, while
the transmitter requires them to be right-justified, only the receiver will work properly with
a 12-bit sync character. So if bit D0 of WR10 is set to ‘1’, the receiver will be configured to
recognize a 12-bit sync character, but the transmitter will remain configured for a 16-bit
sync character. The arrangement of the sync character in WR6 and WR7 is shown in Fig-
ure 4–23.

4.10.1.3 Receiver Initialization
The initialization sequence for the receiver in Synchronous modes is to write to WR4 first,
to select the mode, then WR10 to modify it if necessary, WR6 and WR7 to program the
sync characters and then WR3 and WR5 to select the various options. At this point the
other registers should be initialized as necessary. When all of this is complete the re-
ceiver is enabled by setting bit D0 of WR3 to ‘1’.

4.10.1.4 SYNC Character Removal
In Synchronous modes, a sync character that is not part of the data is transmitted before
data to establish character synchronization at the receiver. Once data transmission be-
gins all characters are sent continuously and in phase with each other. Since this syn-
chronizing information is only present at the beginning of a message it may happen that
during message transmission the combination of data characters may not provide suffi-
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cient transitions to allow self-clocking devices to remain in sync. Under these conditions
the equipment in use today will send sync characters in order to maintain character
phase.

In this case the receiver may want to recognize these characters and delete them from
the receive data. This function is available in the SCC by setting the Sync Character Load
Inhibit bit (D1) in WR3 to ‘1’. While this bit is set to ‘1’, the character about to be loaded
into the receive Data FIFO will be compared with the contents of WR6. If all eight bits
match the character, it is not loaded into the FIFO. Because the comparison is across
eight bits, this function works correctly only when the number of bits per character is the
same as the sync character length. Thus it cannot be used with 12- or 16-bit sync char-
acters.

Both leading sync characters and sync characters embedded in the data will be properly
removed in the case of an 8-bit sync character, but only the leading sync characters may
be properly removed in the case of a 6-bit sync character. Care must be exercised in us-
ing this feature because sync characters not transferred to the receive Data FIFO will
automatically be excluded from CRC calculation. This works properly only in the 8-bit
case.
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Figure 4–23. SYNC Character Programming
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4.10.1.5 CRC Polynomial Selection
Either of two CRC polynomials may be used in Synchronous modes. The polynomial that
will be used by both the transmitter and receiver is selected by bit D2 in WR5. If this bit is
set to ‘1’, the CRC-16 polynomial (X16+X15+X2+1) will be used; if this bit is set to ‘0’, the
CRC-CCITT polynomial (X16+X12+X5+1) will be used.

4.10.1.5.1 Rx CRC Initialization
The initial state of both transmit and receive CRC generators is controlled by bit D7 of
WR10. When this bit is set to ‘1’, both transmit and receive CRC generators will be preset
to an initial value of all ‘1’s; if this bit is set to ‘0’, they will be preset to an initial value of all
‘0’s.

The SCC presets the receive CRC generator whenever the receiver is in Hunt Mode so a
CRC reset command is not strictly necessary. However, it may be preset by issuing the
Reset CRC Checker command in WR0. The Reset CRC Checker command is necessary
in Synchronous modes if the Enter Hunt Mode command in WR3 is not issued between
received messages. Note that any action that disables the receiver in Synchronous
modes (including External Sync mode) initializes the CRC circuitry.

4.10.1.5.2 Rx CRC Enabling
If CRC is to be used on receive data the receive CRC generator must be enabled by set-
ting bit D0 of WR3 to ‘1’. If sync characters are being stripped (i.e., WR3 bit D1 set to ‘1’)
from the data stream, enabling the CRC may be done at any time before the first non-
sync character is received. If the sync strip feature is not being used, the CRC generator
must not be enabled until after the first data character has been transferred to the Re-
ceive Data FIFO. As previously mentioned, 8-bit sync characters stripped from the data
stream are automatically excluded from CRC calculation. The receive CRC generator
may be enabled and disabled as many times for a given calculation.

4.10.1.5.3 Rx CRC Character Exclusion
Being able to exclude characters from CRC calculation is possible in the SCC because
CRC calculation may be enabled and disabled on the fly. To give the processor sufficient
time to decide whether or not a particular character should be included in the CRC calcu-
lation, the SCC contains an 8-bit time delay between the Receive Shift Register and the
receive CRC generator. The logic also guarantees that the calculation will start or stop
only on a character boundary by delaying the enable or disable until the next character is
loaded into the Receive Data FIFO. To understand how this works refer to the following
explanation and Figure 4–24.

Consider a case where the SCC receives a sequence of eight bytes, called A, B, C, D, E,
F, G and H with A received first. Now suppose that A is the sync character, that CRC is to
be calculated on B, C, E, and F, and that F is the last byte of this message. Before A is
received the receiver is in Hunt mode and the CRC is disabled. When A is in the receive
shift register it is compared with the contents of WR7. Since A is the sync character, the
bit patterns match and receiver leaves Hunt mode, but character A is not transferred to
the receive data FIFO. The CRC remains disabled even though somewhere during the
next eight bit times the processor reads B and enables CRC. At the end of the eight-bit-
time, B is in the 8-bit delay and C is in the receive shift register. Character C is loaded
into the receive data FIFO and at the same time the CRC checker is enabled. During the
next eight-bit-time, the processor reads C and leaves the CRC enabled. At the end of
these eight-bit-times the SCC has calculated CRC on B, character C is the 8-bit delay
and D is in the Receive Shift register. D is then loaded into the receive data buffer and at
some point during the next eight-bit-time the processor reads D and disables CRC. At the
end of these eight-bit-times CRC has been calculated on C, character D is in the 8-bit
delay and E is in the Receive Shift register.

Now E is loaded into the receive Data FIFO and, at the same time, the CRC is disabled.
During the next eight-bit-times the processor reads E and enables the CRC. During this
time E shifts into the 8-bit delay, F enters the Receive Shift register and CRC is not being
calculated on D. After these eight-bit-times have elapsed, E is in the 8-bit delay, and F is
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in the Receive Shift register. Now F is transferred to the receive data FIFO and CRC is
enabled. During the next eight-bit-times the processor reads F and leaves the CRC en-
abled. The processor is usually aware that this is the last character in the message and
so prepares to check the result of the CRC computation. However, another sixteen bit-
times are required before CRC has been calculated on all of character F. At the end of
eight-bit-times F is in the 8-bit delay and G is in the Receive Shift register. At this time G
is transferred to the Figure 4–23. SYNC Character Programming Figure 4–24. Receive
CRC Data Path for Synchronous Modes receive data FIFO. Character G must be read
and discarded by the processor. Eight bit times later H is transferred to the receive data
FIFO also. The result of a CRC calculation is latched in the receive error FIFO at the
same time as data is written to the receive data FIFO. Thus the CRC result through char-
acter F accompanies character H in the FIFO and will be valid in RR1 until character H is
read from the receive data FIFO. The CRC checker may be disabled and reset at any
time after character H is transferred to the receive data FIFO. Recall, however, that inter-
nally CRC will not be disabled until a character is loaded into the receive data FIFO so
the reset command should not be issued until after this occurs. A better alternative is to
place the receiver in Hunt mode, which automatically disables and resets the CRC
checker.

4.10.1.5.4 CRC Error
Because there is an eight bit delay between the Receive Shift Register and receive CRC
generator in Synchronous Modes, the CRC Error status bit in RR1 will not be valid until
16 bit times after the last CRC character has been loaded from the Receive Shift Register
to the Receive Data FIFO.

4.10.2 Transmitter Operation
In Synchronous modes, the sync character in WR6 or the sync characters in WR6 and
WR7 are used to open a message transmission. Depending on the mode the transmitter
is in either one or two sync characters will be loaded into the Transmit Shift Register at
the beginning of a message. All data are shifted simultaneously out the transmit multi-
plexer and into the transmit CRC Generator. The result of the transmit CRC generator is
sent out the transmit multiplex when enabled.

4.10.2.1 Transmitter Initialization
The initialization sequence for the transmitter in Synchronous modes is: WR4 FIrst, to
select the mode, then WR10 to modify it if necessary, WR6 and WR7 to program the sync
characters, and then WR3 and WR5 to select the various options. At this point, the other
registers should be initialized as necessary. Once all of this is complete the transmitter
mark idles (i.e., TxD pin High) until the transmitter is enabled via bit D5 in WR5.  

When the transmitter is enabled, it starts sending sync characters and continues to send
sync characters until a character is written to the Transmit Buffer (WR8). During this sync
idle time the CRC generator may be initialized by issuing the Reset Tx CRC Generator
command in WR0. When a character is written into WR8 and the current sync character
has been sent, the transmitter starts transmitting data. It will then set the Transmit Buffer
Empty bit each time the contents of WR8 are transferred into the Transmit Shift Register
to indicate that another character can be loaded into WR8.

4.10.2.2 CRC Polynomial Selection
Either of two CRC polynomials may be used for error detection purposes. The selection
for both the transmitter and receive is done via bit D2 of WR5. Setting this bit to ‘1’ se-
lects the CRC-16 polynomial, while setting it to ‘0’ selects the CRC-CCITT polynomial.
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Receive Data FIFO

Receive Shift Register

Eight Bit Time Delay

CRC Checker

Receive Data

Figure 4–24. Receive CRC Data Path for Synchronous Mode

4.10.2.2.1 Tx CRC Initialization
The initial state of the transmit and receive CRC generators is controlled by bit D7 of
WR10. When this bit is set to ‘1’, both generators will be preset to an initial value of all
‘1’s, if this bit is set to ‘0’, both generators will be reset to ‘0’s. The SCC does not auto-
matically preset the transmit CRC generator, so this must be done in software. This is
accomplished by issuing the Reset Tx CRC Generator command, which is encoded in
bits D7 and D6 of WR0. For proper results this command must be issued while the trans-
mitter is enabled and sending sync characters.

4.10.2.2.2 Tx CRC Enabling
If CRC is to be used, the transmit CRC generator must be enabled by setting bit D0 of
WR5 to ‘1’. This bit may also be used to exclude certain characters from the CRC calcula-
tion in Synchronous modes.

4.10.2.2.3 CRC Transmission
As in SDLC mode, the transmission of the CRC check characters in Synchronous modes
is controlled by the Transmit CRC Enable bit in WR5 (D0) and Tx Underrun/EOM bit in
RR0 (D6). If the Transmit Enable bit is set to ‘0’ when a transmit underrun occurs, the
CRC check characters will not be sent regardless of the state of the Tx Underrun/EOM
bit. If the Transmit Enable bit is set to ‘1’ when a transmit underrun occurs then the state
of the Tx Underrun/EOM bit determines the action taken by the transmitter.  The Tx Un-
derrun/EOM bit is set by the transmitter and only reset by the processor via the Reset Tx
Underrun/EOM command in WR0.

If the Tx Underrun/EOM bit is set to ‘1’ when an underrun occurs, the transmitter will
close the message just sent by sending sync characters; however, if this bit is set to ‘0’,
the transmitter will close the message by sending the accumulated CRC followed by sync
characters. The transmitter will idle the transmission line by sending sync characters until
either more data are written to the Transmit Buffer or the transmitter is disabled.
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The Tx Underrun/EOM status bit in RR0 will be set to ‘1’ to indicate that an underrun has
occurred, and that the CRC, or sync characters, have been loaded into the Transmit Shift
Register for transmission. The Low-to-High transition of this bit may be programmed to
generate an External/Status interrupt or, if interrupts are disabled, may be polled in RR0.

Hence, if the CRC check characters are to be properly appended to the end of a mes-
sage, the Reset Tx Underrun/EOM Command must be issued after the first, but before
the last, character is written to the Transmit Buffer.  

Note that the Reset Tx Underrun/EOM command will not reset the status bit latch if the
Transmitter is disabled. However, if no External/Status interrupts are pending, or if a Re-
set External/Status Interrupt command accompanies this command while the transmitter
is disabled, an External/Status interrupt will be generated with the Tx Underrun/EOM bit
reset in RR0.

4.10.2.2.4 Tx CRC Character Exclusion
On the SCC, leading sync characters are automatically excluded from CRC calculation,
but it will be calculated on any sync characters sent as data unless the transmit CRC gen-
erator is disabled via bit D0 of WR5 when that character is loaded in the Transmit Shift
Register from the Transmit Buffer.

Internally, the CRC is enabled or disabled for a particular character at the same time as
the character is loaded from the Transmit Buffer to the Transmit Shift Register. Thus, to
exclude a character from CRC calculation, bit D0 of WR5 should be set to ‘0’ before the
character is written to the transmit buffer. This guarantees that the internal disable will
occur when the character moves from the buffer to the shift register. Once the buffer be-
comes empty, the Tx CRC Enable bit may be set for the next character.

4.10.2.3 Transparent Transmission
The SCC can be used in applications where data are sent without enveloping them in any
specific protocol or Parity. This can be done by programming WR4 for the channel in Ex-
ternal SYNC mode as shown below.

In this mode of operation, the transmitter will be configured for MONOSYNC operation
and the SYNC pin will be used to signal when to start reception of data. The transmitter is
initialized as before except that the first character to be sent must be written to WR6 be-
fore enabling the transmitter. Once the transmitter is enabled and transmission of the
character in WR6 has started, the Transmit Buffer can be written to with the next charac-
ter. From that point on, data from the Transmit Buffer will continue to be sent until the
transmitter is disabled. To prevent any unwanted data in WR6 from being sent when a
transmitter underrun occurs, the transmitter must be disabled during the transmission of
the last character. The same procedure is followed if another data block is to be sent.

0 0 1 1 0 0 X 0

WR4—Register Layout

Data reception in this mode of operation requires that the SYNC pin be used to signal
when character accumulation should commence at the receiver. As long as SYNC re-
mains Low data will continue to be received and transferred.

4.10.2.4 Transmitter to Receiver Synchronization
The SCC contains a transmitter-to-receiver synchronization function that may be used to
guarantee that the character boundaries for the received and transmitted data are the
same. In this mode the receiver is in Hunt and the transmitter is idle, sending either all
‘1’s or all ‘0’s. When the receiver recognizes a sync character, it leaves Hunt mode and
one character time later the transmitter is enabled and begins sending sync characters.
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Beyond this point the receiver and transmitter are again completely independent, except
that the character boundaries are now aligned. This is shown in Figure 4–25.

There are several restrictions on the use of this feature. First, it will work only with 6-bit,
8-bit or 16-bit sync characters, and the data character length for both the receiver and the
transmitter must be six bits with a 6-bit sync character or eight bits with an 8-bit or 16-bit
sync character. Of course, the receive and transmit clocks must have the same rate as
well as the proper phase relationship.

A specific sequence of operations must be followed to synchronize the transmitter to the
receiver. Both the receiver and transmitter must have been initialized for operation in Syn-
chronous mode sometime in the past, although this initialization need not be redone each
time the transmitter is synchronized to receiver. The transmitter is disabled by setting bit
D3 of WR5 to ‘0’. At this point the transmitter will send continous ‘1’s. If it is desired that
continous ‘0’s be transmitted, the Send Break bit (D4) in WR5 should be set to ‘1’. The
transmitter is now idling but must still be placed in the Transmitter to Receiver Synchroni-
zation mode. This is accomplished by setting the Loop Mode bit (D1) in WR10 and then
enabling the transmitter by setting bit D3 of WR5 to ‘1’. At this point the processor should
set the Go Active On Poll bit (D4) in WR10. The final step is to force the receiver to
search for sync characters. If the receiver is currently disabled the receiver will enter Hunt
mode when it is enabled by setting bit D0 of WR3 to ‘1’. If the receiver is already enabled
it may be placed in Hunt mode by setting bit D4 of WR3 to ‘1’. Once the receiver leaves
hunt mode the transmitter is activated on the following character  boundary.

4.10.2.4.1 Transmitter Disabling
In Synchronous modes, if the transmitter is disabled during transmission of a character,
that character will be completely sent before mark idling the line. This applies to both data
and sync characters. However, if the transmitter is disabled during the transmission of
CRC, CRC transmission will be terminated and the remaining bits will be from WR6 and/
or WR7 (sync registers) before mark idling the line.

4.10.2.5 External SYNC Mode
For those applications that may want to use external logic for receiver sychronization, the
SCC makes provisions for an external circuit to signal character synchronization on the
SYNC pin. This mode expects the SYNC pin to be available for use; this means that bit
D7 of WR11 should be set to ‘0’. The External SYNC message format is shown in Figure
4–26.

In this mode, the SYNC/HUNT status bit in RR0 reports the state of the SYNC pin but the
receiver must be placed in Hunt mode when the external logic is searching for a sync
character match. When the receiver is in Hunt mode and the SYNC pin is driven Low, two
receive clocks after the last bit of the sync character is received, character assembly will
begin on the rising edge of the receive clock immediately following the activation of
SYNC. This is shown in Figure 4–27. Both transitions on the SYNC pin will cause an Ex-
ternal/Status interrupt if the SYNC/HUNT IE bit is set to ‘1’.

SYNC SYNC

SYNC

SYNC

RxD

TxD

Direction of Message Flow

Receiver Leaves Hunt

Figure 4–25.  Transmitter to Receiver Synchronization
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DATA DATA CRC1 CRC2

EXTERNAL SYNC

SIGNAL

Figure 4–26.  External SYNC Message Format

The SYNC input falling edge (synchronized through some internal circuitry) essentially
removes the Receiver from “Hunt Mode” in which it is waiting for synchronization before
accepting Receive Data. Upon exiting “Hunt Mode”, the Receiver will begin accepting all
incoming Receive Data. To cause the Am85C30 to discontinue accepting data (i.e. notify
the Am85C30 that there is an end of frame), the “Enter Hunt Mode” command must be
issued. The SYNC line should remain low for at least the TwSY (SYNC* Pulse Width)
specification value, and may be kept low for a longer duration of time if desired.

4.10.2.5.1 SDLC External SYNC Mode
By programming WR4 as shown below both the receiver and transmitter will be placed in
SDLC mode. The only variation from normal SDLC operation will be that the SYNC pin
will be used to start or stop the reception of a frame by forcing the receiver to act as
though a flag had been received.

1 1 1 1 0 0 ? ?

D7 D6 D5 D4 D3 D2 D1 D0

WR4—Register Layout

4.10.2.5.2 Synchronous External SYNC Mode
By programming WR4 as shown below the transmitter will be configured for MONOSYNC
operation and the SYNC pin will be used to start the reception of a message.

D7

?

D6

?

D5

1

D4

1

D3

0
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0

D1

?
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?

0


0 programming either of these bit
patterns specifies that only the SYNC
pin can be used for character sync

either the SYNC pin or a match with
the character stored in WR7 will signal
character sync

1 0 

10

WR4—Register Layout
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Figure 4–27.  External SYNC Receiver Synchronization
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Support Circuitry Programming

CHAPTER 5

5.1 INTRODUCTION
The SCC incorporates additional logic on-chip which dramatically reduces the need for
external hardware. This includes clocking options, baud rate generators, clock recovery
logic, on-chip oscillators, and internal loopback modes. This chapter discusses how to
program these functions.

5.2 CLOCK OPTIONS
The SCC may be programmed to select one of several sources to provide the transmit
and receive clocks. In addition, the SCC contains a crystal oscillator in each channel, as
well as the ability to echo one of several internal clock sources off chip. These options are
controlled by the bits in WR11 as shown below.

WR11 is the Clock Mode Control register for both the receive and transmit clocks. It de-
termines the type of signal on the SYNC and RTxC pins and the direction of the TRxC
pin. This register also controls the output of the baud rate generator, the DPLL output,
and the selection of either an input clock or XTAL output for the RTxC pin.

5.2.1 Crystal Oscillator
The crystal oscillator option is controlled by bit D7 in WR11. When this bit is set to ‘0’, the
crystal oscillator is disabled and all pins function normally. When this bit is set to ‘1’, the
crystal oscillator is enabled and a high-gain amplifier is connected between the RTxC pin
and the SYNC pin. While the crystal oscillator is enabled, anything that has RTxC se-
lected as its clock source will automatically be connected to the output of the crystal oscil-
lator.

While the crystal oscillator is enabled, the SYNC pin is unavailable for other use. In Syn-
chronous modes no sync pulse is output, and the External Sync mode cannot be se-
lected. In Asynchronous mode, the state of the SYNC/HUNT bit in RR0 is no longer con-
trolled by the SYNC pin. Instead, the SYNC/HUNT bit is forced to ‘0’. Note that the crystal
oscillator requires some finite time to stabilize (20 ms) and so must be allowed to stabilize
before being used as a clock.

For best results, a crystal oscillator with the following specifications should be used;

■ 30 ppm @ 25°C
■ <50 ppm over temperature range of –20 to 70°C
■ <5 ppm/yr aging

■ 5 mw drive level
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D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

TRxC Out = XTAL Output

TRxC Out = Transmit Clock

TRxC Out = BR Generator Output

TRxC Out = DPLL Output

TRxC O/I

Transmit Clock = RTxC Pin

Transmit Clock = TRxC Pin

Transmit Clock = BR Generator Output

Transmit Clock = DPLL Output

Receive Clock = RTxC Pin

Receive Clock = TRxC Pin

Receive Clock = BR Generator Output

Receive Clock = DPLL Output

RTxC X TAL/NO X TAL

WR11—Clock Mode Control

5.2.2 Receive Clock Source
The source of the receive clock is controlled by bits D6 and D5 of WR11. The receive
clock may be programmed to come from the RTxC pin, the TRxC pin, the output of the
baud rate generator, or the transmit output of the DPLL.

5.2.3 Transmit Clock Source
The source of the transmit clock is controlled by bits D4 and D3 of WR11. The transmit
clock may be programmed to come from the RTxC pin, the TRxC pin, the output of the
baud rate generator, or the transmit output of the DPLL.

Ordinarily the TRxC pin is an input, but it becomes an output if this pin is not selected as
the source for the transmitter or the receiver, and bit D2 of WR11 is set to ‘1’. The selec-
tion of the signal provided on the TRxC output pin is controlled by bits D1 and D0 of
WR11. The TRxC pin may be programmed to provide the output of the crystal oscillator,
the output of the BRG, the receive output of the DPLL or the actual transmit clock. If the
output of the crystal oscillator is selected but the crystal oscillator has not been enabled,
the TRxC pin will be driven High. The option of placing the transmit clock signal on the
TRxC pin, when it is an output, allows access to the transmit output of the DPLL.
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Figure 5–1 shows a simplified schematic diagram of the circuitry used in the clock multi-
plexing. It shows the inputs to the multiplexer section as well as the various signal inver-
sions that occur in the paths to the outputs. Also shown are the edges used by the re-
ceiver, transmitter, BRG, and DPLL to sample or send data or otherwise change state.
For example, the receiver samples data on the falling edge, but since there is an inver-
sion in the clock path between the RTxC pin and the receiver, a rising edge of the RTxC
pin samples the data for the receiver.

5.2.4 Clock Programming
Selection of the clock options may be done anywhere in the initialization sequence, but
the final values must be selected before the receiver, transmitter, BRG, or DPLL are en-
abled to prevent problems from arbitrarily narrow clock signals out of the multiplexers.
The same is true of the crystal oscillator, in that the output should be allowed to stabilize
before it is used as a clock source.

SYNC

OSC

OSC

RTxC

DPLL

TX

RX

Receiver

Transmitter
TRxC

BRG

ECHO

ECHO

DPLL

Baud Rate

Baud Rate
Generator Out

TX DPLL Out

RX DPLL Out

PCLK Generator

Figure 5–1. Clock Multiplexer
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5.3 BAUD RATE GENERATOR (BRG)
Each channel in the SCC contains a programmable BRG. Each generator consists of two
8-bit, time-constant registers forming a 16-bit time constant, a 16-bit down counter, and a
flip-flop on the output that makes the output a square wave. On start-up, the flip-flop on
the output is set High so that it starts in a known state, the value in the time-constant reg-
ister is again loaded into the counter, and the counter begins counting down.

Upon reaching a count of zero, the output of the BRG toggles and the time-constant value
held in WR12 and WR13 is reloaded into the down counter and the process of counting
down starts over. When the zero count is reached, the output of the BRG toggles, and for
the duration of the zero count, the Zero Count status signal goes active to the External/
Status interrupt section. Refer to Zero Count Section for details on the Zero Count Status
bit in RR0. While the BRG is disabled the state of the Zero Count status bit in RR0 will
always read ‘0’ providing the Zero Count IE bit in WR15 is reset. While the Zero Count IE
bit is set, the Zero Count status bit in RR0 will be set to ‘1’ for as long as the BRG counter
is at the count of zero. This status bit is forced active by a hardware reset.

No attempt is made to synchronize the loading of a new time constant with the clock used
to drive the BRG. When the time-constant is to be changed, the generator should be
stopped by resetting bit D0 of WR14. This ensures the loading of a correct time constant.

The time-constant for the BRG is programmed in WR12 and WR13, with the least signifi-
cant byte in WR12. The formulas relating the baud rate to the time-constant and vice
versa are shown in Table 5–1 with an example. In these formulas the BRG clock fre-
quency is in Hertz, the desired baud rate in bits/second and the time-constant is dimen-
sionless. The example in Table 5–2 assumes a 2.4576 MHz clock frequency and shows
the time-constant for a number of popular baud rates.

Table 5–1.  Time Constant Formulas

Time Constant =
Clock Frequency

–2
2 • (Clock Mode) • (Baud Rate)

Baud Rate =
Clock Frequency

2 • (Clock Mode) • (Time Constant + 2)

Table 5–2.  Baud Rate Example

Baud Rate                      Divider

Decimal Hex

38400 0 0000H

19200 2 0002H

9600 6 0006H

4800 14 000EH

2400 30 001EH

1200 62 003EH

600 126 007EH

300 254 00FEH

150 510 01FEH

For 2.4576 MHz, X16 Clock Mode
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If neither the transmit clock nor the receive clock is programmed to come from the TRxC
pin, the output of the BRG may be made available for external use on the TRxC pin.

Figure 5–2 shows a block diagram of the BRG. The BRG input comes from the output of
a two-input multiplexer, and the zero count condition is outputed to the External/Status
Interrupt section. The BRG may be disabled and enabled by command and is disabled by
a hardware reset.

Zero Count

÷2
Baud Rate
Generator
Clock

RTxC Pin

PCLK Pin

Select

Output

WR13 WR12

16 Bit Down Counter

Figure 5–2. Baud Rate Generator

Write to
WR14

Clock
Source

Counter
Clock

Counter First Decremented
(After Hardware Reset)

Counter First Decremented
(After Previous Disable)

End of Write to WR14 with Enable

Figure 5–3. BRG Startup 
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5.3.1 BRG Clock Source
The clock source for the BRG is selected by bit D1 of WR14. When this bit is set to ‘0’,
the BRG uses the signal on the TRxC pin as its clock, independent of whether the TRxC
pin is a simple input or part of the crystal oscillator circuit. When this bit is set to ‘1’, the
BRG is clocked by PCLK. Note that in order to avoid metastable problems in the counter,
this bit should be changed only while the BRG is disabled, since arbitrarily narrow pulses
can be generated at the output of the multiplexer when it changes status.

5.3.2 BRG Enabling/Disabling
The BRG is enabled while bit D0 of WR14 is set to ‘1’ and is disabled while this bit is set
to ‘0’. To prevent metastable problems when the BRG is first enabled, the enable bit is
synchronized to the BRG clock. This introduces an additional two count delay when the
BRG is first enabled as shown in Figure 5–3.

The BRG is disabled immediately when bit D0 of WR14 is set to ‘0’ and no delay is gener-
ated. The BRG may be enabled and disabled on the fly, but this delay on startup must be
taken into consideration.

Note that on the NMOS Z8530 (non-Hstep), it has been verified that if the BRG is dis-
abled and then re-enabled, the BRG down counter may become underflowed. When this
happens there will be a delay of (FFFF) •  (BRG clk period) = 65535 •  (BRG clk period)
before the down counter is loaded with the new time constant. This will delay any activity
which is controlled by the BRG.

It is important to clarify that if the underflow condition occurs, the resultant delay will occur
once. All subsequent BRG controlled delays will be per the programmed BRG count
value. In a system this one time delay may not cause a failure since activities like data
transmission do not have to be completed within a fixed time frame. If the delay happens,
the data remains in the Transmit Buffer and will be transmitted at a later time. However,
in diagnostic routines the baud rate delay can cause failures, since all activities are ex-
pected to be completed within a fixed time frame.

Therefore, in order to guarantee correct operation, the SCC BRG should be operated ac-
cording to the following guidelines:

1) If the BRG needs to be disabled, re-enable it only after a hardware reset. This is not al-
ways possible or desirable, but will guarantee that no underflow condition will occur.

2) If the time constant has to be re-loaded, do it “on the fly” with the LSB first.

■ If MSB is not being used (MSB = 00H), then the maximum delay for the new baud 
rate will be:

(old LSB) •  (BRG Clock cycle)

■ If both MSB and LSB are being used, then loading the new LSB first might generate 
an intermediate baud rate determined by the new LSB and old MSB time 
constants.  After the new MSB is loaded the worst case delay for the new baud rate 
will be:

Max[(old MSB,old LSB),(old MSB,new LSB)] •  (BRG clock cycle)

If during the transition from the old baud rate to the new one the baud rate is not 
being used, and the above delays are taken into consideration, then loading the 
time constant “on the fly” will not cause any problems and will guarantee that no 
underflow condition will occur.

3) If the BRG has to be disabled and re-enabled without a hardware reset, then the baud
rate may be delayed one time by 65535 * (BRG clk period).
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5.3.3 BRG Initialization
Initializing the BRG is done in four steps. First, the time-constant is determined and
loaded into WR12 and WR13. Next, the processor must select the clock source for the
BRG by writing to bit D1 of WR14. Finally, the BRG is enabled by setting bit D0 of WR14
to ‘1’. Note that the first write to WR14 is not necessary after a hardware reset if the clock
source is to be the RTxC pin. This is because a hardware reset automatically selects the
RTxC pin as the BRG clock source.

5.4 DATA ENCODING/DECODING
The SCC provides four data encoding methods, selected by bits D6 and D5 in WR10. An
example of these four methods is shown in Figure 5–4. Encoding may be used for asyn-
chronous or synchronous data as long as the clock mode is x1. Note that the data encod-
ing method selected is active even though the transmitter or receiver may be idling or dis-
abled.

1 1 0 0 1 0Data

NRZ

NRZI

FM1
(BiPhase Mark)

FM0
(BiPhase Space)

Bit Cell Level:

High = 1
Low = 0

No Change = 1
Change = 0

Bit Center Transition:
Transition = 1
No Transition = 0

Manchester

No Transition = 1
Transition = 0

High→Low = 1
Low→High = 0

Figure 5–4.  Data Encoding

5.4.1 NRZ (Non-Return to Zero)
In NRZ encoding a ‘1’ is represented by a High level and a ‘0’ is represented by a Low
level. In this encoding method only a minimal amount of clocking information is available
in the data stream in the form of transitions on bit-cell boundaries. In an arbitrary data
pattern this may not be sufficient to generate a clock for the data from the data itself.

5.4.2 NRZI (Non-Return to Zero Inverted)
In NRZI encoding a ‘1’ is represented by no change in the level and a ‘0’ is represented
by a change in the level. As in NRZ only a minimal amount of clocking information is
available in the data stream, in the form of transitions on bit cell boundaries. In an arbi-
trary data pattern this may not be sufficient to generate a clock for the data from the data
itself. In the case of SDLC Mode operation, where the number of consecutive ‘1’s in the
data stream is limited, a minimum number of transitions to generate a clock are guar-
anteed.
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5.4.3 FM1 (Biphase Mark)
In FM1 encoding, also known as biphase mark, a transition is present on every bit cell
boundary, and an additional transition may be present in the middle of the bit cell. In FM1,
a ‘0’ is sent as no transition in the center of the bit cell and a ‘1’ is sent as a transition in
the center of the bit cell. FM1 encoded data contains sufficient information to recover a
clock from the data.

5.4.4 FM0 (Biphase Space)
In FM0 encoding, also known as biphase space, a transition is present on every bit cell
boundary and an additional transition may be present in the middle of the bit cell. In FM0
a ‘1’ is sent as no transition in the center of the bit cell and a ‘0’ is sent as a transition in
the center of the bit cell. FM0 encoded data contains sufficient information to recover a
clock from the data.

5.4.5 Manchester Decoding
In addition to these four methods, the SCC can be used to decode Manchester (biphase
level) data using the DPLL in the FM mode and programming the receiver for NRZ data.
Manchester encoding always produces a transition at the center of the bit cell. If the tran-
sition is High-to-Low, the bit is a ‘1’; if the transition is Low-to-High, the bit is a ‘0’.

5.4.6 Data Encoding Programming
The data encoding method to be used should be selected in the initialization procedure
before the transmitter and receiver are enabled but no other restrictions apply. Note, in
Figure 5–4, that in NRZ and NRZI the receiver samples the data only on one edge. How-
ever, in FM1 and FM0, the receiver samples the data on both edges. Also, as shown in
Figure 5–4, the transmitter defines bit cell boundaries by one edge in all cases and uses
the other edge in FM1 and FM0 to create the mid-bit transition.

5.5 DIGITAL PHASE-LOCKED LOOP (DPLL)
The SCC contains a DPLL that can be used to recover clock information from a data
stream with NRZI or FM coding. The DPLL is driven by a clock that is nominally 32
(NRZI) or 16 (FM) times the data rate. The DPLL uses this clock, along with the data
stream, to construct a receive clock for the data. This clock can then be used as the re-
ceive clock, the transmit clock, or both.

Figure 5–5 shows a block diagram of the DPLL. It consists of a 5-bit counter, an edge
detector, and a pair of output decoders. The clock for the DPLL comes from the output of
a two-input multiplexer, and the two outputs go to the transmitter and receive clock multi-
plexers. The DPLL is controlled by seven commands that are encoded in bits D7, D6, and
D5 of WR14.

Edge DetectorRxD Receive
Clock

DecodeCount Modifier

5-Bit Counter
Transmit
Clock

Decode

Figure 5–5.  DPLL
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5.5.1 DPLL Clock Source
The clock for the DPLL is selected by two of the commands in WR14. One command se-
lects the output of the BRG as the clock source, and the other command selects the
RTxC pin as the clock source, independent of whether the RTxC pin is a simple input or
part of the crystal oscillator circuit. Note that in order to avoid metastable problems in the
counter, the clock source selection should be made only while the DPLL is disabled, since
arbitrarily narrow pulses can be generated at the output of the multiplexer when it
changes status.

5.5.2 DPLL Enabling
The DPLL is enabled by issuing the Enter Search Mode command in WR14. This com-
mand is also used to reset the DPLL to a known state if it is suspected that synchroniza-
tion has been lost. When used to enable the DPLL, the Enter Search Mode command
unlocks the counter, which is held while the DPLL is disabled, and enables the edge de-
tector. If the DPLL is already enabled when this command is issued, the DPLL also enters
Search mode.  

While in Search mode, the counter is held at a specific count and no outputs are pro-
vided. The DPLL remains in this status until an edge is detected in the receive data
stream. This first edge is assumed to occur on a bit cell boundary, and the DPLL will be-
gin providing an output to the receiver that will properly sample the data. As long as no
other edges are detected, the DPLL output clock will free run at a frequency equal to the
DPLL clock source divided by 32 without any phase jitter. Upon detecting another edge
the DPLL will adjust the output clock to remain in phase with the received data by adding
or subtracting a count of one. This will result in a phase jitter of ±5.63° on the DPLL out-
put. Because the DPLL uses  both edges of the incoming data to compare with its clock
source, a mark-space deviation of no greater than ±1.5% (from 50%) should be main-
tained at the interface. If the first edge that the DPLL sees does not occur on a bit cell
boundary, the DPLL will eventually lock on to the receive data but it will take longer to do
so.

5.5.3 DPLL Modes
The DPLL may be programmed to operate in either NRZI or FM modes, as selected by a
command in WR14. Note that as in the case of the DPLL clock source selection, the
mode of operation should only be changed while the DPLL is disabled to prevent unpre-
dictable results.

5.5.3.1 NRZI Mode
In NRZI mode, the clock supplied to the DPLL must be 32 times the data rate. In this
mode the transmit and receive clock outputs of the DPLL are identical, and the clocks are
phased so that the receiver samples the data in the middle of the bit cell. In NRZI mode,
the DPLL does not require a transition in every bit cell, so this is useful for recovering the
clocking information from NRZ and NRZI data streams.

The DPLL uses the x32 clock along with the receive data, to construct receive and trans-
mit clock outputs that are phased to properly receive and transmit data.

To do this, the DPLL divides each bit cell into two regions, and makes an adjustment to
the count cycle of the 5-bit counter dependent upon in which region a transition on the
receive data input occurred. This is shown in Figure 5–6. Ordinarily, a bit cell boundary
will occur between count 15 and count 16, and the DPLL output will cause the data to be
sampled in the middle of the bit cell. The DPLL actually allows the transition marking a bit
cell boundary to occur anywhere during the second half of count 15 or the first half of
count 16 without making a correction to its count cycle.
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Bit Cell

17Count 16 1918 2120 2322 2524 2726 28 3029 31 10 32 54 76 98 1110 12 1413 15

Correction Add One Count Subtract One Count

No Change No Change

DPLL Out

Figure 5–6.  DPLL in NRZI Mode

However, if the transition marking a bit cell boundary occurs between the middle of count
16 and count 31 the DPLL is sampling the data too early in the bit cell. In response to this
the DPLL extends its count by one during the next 0 to 31 counting cycle, which effec-
tively moves the edge of the clock that samples the receive data closer to the center of
the bit cell. In a similar manner, if the transition occurs between count 0 and the middle of
count 15, the output of the DPLL is sampling the data to late in the bit cell. To correct this,
the DPLL shortens its count by one during the next 0 to 31 counting cycle, which effec-
tively moves the edge of the clock that samples the receive data closer to the center of
the bit cell.

In NRZI mode, if the DPLL does not see any transition during a counting cycle, no adjust-
ment is made in the following counting cycle. If an adjustment to the counting cycle is
necessary the DPLL modifies count five, either deleting it or doubling it. Thus only the
Low time of the DPLL output will be lengthened or shortened. While the DPLL is in search
mode, the counter remains at count 16, where the DPLL outputs are both High. An exam-
ple of the DPLL in operation is shown in Figure 5–7.

5.5.3.2 FM Mode
In FM mode, the clock supplied to the DPLL must be 16 times the data rate. In this mode
the transmit clock output of the DPLL lags the receive clock output by 90 degrees. This is
necessary to make the transmit and receive bit cell boundaries coincide, since the receive
clock must sample the data one-fourth and three-fourths of the way through the bit cell. In
FM mode the DPLL requires a transition in every bit cell, and if this transition is not pre-
sent in two consecutive sampled bit cells, the DPLL automatically enters search mode.

The DPLL uses the clock supplied, along with the receive data, to construct receive and
transmit clock outputs that are phased to receive and transmit data properly. In FM mode
the counter in the DPLL still counts from 0 to 31 but now each cycle corresponds to 2 bit
cells. In order to make adjustments and remain in phase with the receive data, the DPLL
divides a pair of bit cells into five regions, making the adjustment to the counter depend-
ent upon which region the transition on the receive data input occurred. This is shown in
Figure 5–8.

Ordinarily, a bit cell boundary will occur between count 15 or count 16, and the DPLL re-
ceive output will cause the data to be sampled at one-fourth and three-fourths of the way
through the bit cell. The DPLL actually allows the transition marking a bit cell boundary to
occur anywhere during the second half of count 15 or the first half of count 16 without
making a correction to its count cycle.
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However, if the transition marking a bit cell boundary occurs between the middle of count
16 and the middle of count 19 the DPLL is sampling the data too early in the bit cell. In
response to this the DPLL extends its count by one during the next 0 to 31 counting cycle,
which effectively moves the receive clock edges closer to to where they should be. In FM
mode any transitions occurring between the middle of count 19 in one cycle and the mid-
dle of count 12 during the next cycle are ignored by the DPLL. This is necessary to guar-
antee that any data transitions in the bit cells will not cause an adjustment to the counting
cycle.

As in NRZI mode, if an adjustment to the counting cycle is necessary, the DPLL modifies
count 5, either deleting it or doubling it. If no adjustment is necessary, the count sequence
proceeds normally. While the DPLL is in Search mode, the counter remains at count 16,
where the receive output is Low and the transmit output is Low. This fact can be used to
provide a transmit clock under software control since the DPLL is in Search mode while it
is disabled. Note that while the DPLL is disabled the transmit clock output of the DPLL
may be toggled by alternately selecting FM and NRZI mode in the DPLL. The same is
true of the receive clock.

+1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1

3232 32 31 31 31 33 33 33

Receive
Data

DPLL
Output

Correction
Windows

Count
Length

Figure 5–7.  DPLL in FM Mode

5.5.3.3 Manchester Decoding Mode
In addition to FM and NRZI encoded data, the DPLL may also be used to recover the
clock from Manchester encoded data, which contains a transition at the center of every bit
cell.  Here it is the direction of the transition that distinguishes a ‘1’ from a ‘0’.  Another
way of looking at Manchester encoding is to realize that, during the first half of the bit cell
the data are sent; during the second half of the bit cell the complement of the data are
sent. This is shown in Figure 5–9, along with the DPLL output if it thinks that the mid-bit
transitions are really bit cell boundaries. As is obvious from the figure, if the receiver sam-
ples the data on the falling edge of the DPLL receive clock output, the Manchester data
will be properly decoded. This occurs if the receiver is programmed to accept NRZ data.

5.5.3.4 FM Mode DPLL Receive Status
From the above discussion together with an examination of FM0 and FM1 data encoding,
it should be obvious that only clock transitions should exist on the receive data pin when
the DPLL is programmed to enter Search mode. If this is not the case the DPLL may at-
tempt to lock on to the data transitions. With FM0 encoding this requires continuous ‘1’s
received when leaving Search mode. In FM1 encoding it is continuous ‘0’s; with
Manchester encoded data this means alternating ‘1’s and ‘0’s.
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With all three of these data encoding methods there will be at least one transition in every
bit cell, and in FM mode the DPLL is designed to expect this transition. In particular, if no
transition occurs between the middle of count 12 and the middle of count 19, the DPLL is
probably not locked onto the data properly. When the DPLL misses an edge the One
Clock Missing bit in RR10 is set to ‘1’ and latched. It will hold this value until a Reset
Missing Clock command is issued in WR14 or until the DPLL is disabled or programmed
to enter the Search mode.

Upon missing this one edge the DPLL takes no other action and does not modify its count
during the next counting cycle. However, if the DPLL does not see an edge between the
middle of count 12 and the middle of count 19 in two successive 0 to 31 count cycles, a
line Figure 5–7. DPLL Operating Example error condition is assumed. If this occurs, the
two Clocks Missing bits in RR10 are set to ‘1’ and latched. At the same time the DPLL
enters the Search mode. The DPLL makes the decision to enter Search mode during
count 2, where both the receive and transmit clock outputs are Low. This prevents any
glitches on the clock outputs when Search mode is entered. While in Search mode no
clock outputs are provided by the DPLL. The two Clocks Missing bit in RR10 is latched
until a Reset Missing Clock command is issued in WR14, or until the DPLL is disabled or
programmed to enter the Search mode.

In NRZI Mode of operation and while the DPLL is disabled, the One and Two Clock Miss-
ing bits in RR10 will be reset to ‘0’.

Bit Cell

17Count 16 1918 2120 2322 2524 2726 28 3029 31 10 32 54 76 98 1110 12 1413 15

Correction Ignored

No Change No Change

RX DPLL Out

+1 –1

TX DPLL Out

Figure 5–8. DPLL in FM Mode

1 1 0 0 1 0Data

Manchester

RX DPLL Out

TX DPLL Out

Figure 5–9.  Manchester Clock Recovery
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5.5.4 DPLL Initialization
Initialization of the DPLL may be done at any time during the initialization sequence, but
should probably be done after the clock modes have been selected in WR11, and before
the receiver and transmitter are enabled.

When initializing the DPLL the clock source should be selected first, followed by the se-
lection of the operating mode. At this point the DPLL, may be enabled by issuing the En-
ter Search Mode command in WR14. Note that a channel or hardware reset disables the
DPLL, selects the RTxC pin as the clock source for the DPLL, and places it in the NRZI
mode.

Note that the DPLL is not free running if it is in search mode. Unless the DPLL receives a
continuous stream of data, it will lose synchronization and enter search mode. It is there-
fore recommended that the clock input of the transmitter is fed from a continuous clock
source other than the DPLL unless it can be guaranteed the DPLL always receives
enough data to stay synchronized.

5.5.5 Am85C30-16 DPLL OPERATION AT 32 MHz
5.5.5.1 Introduction
The Digital Phase-Locked Loop (DPLL) for the Am85C30-16 can operate at twice the
data sheet frequency (32 MHz). The DPLL is used to recover clock information from a FM
data stream. This enhancement is available for commercial product only.

All Am85C30-16 devices are tested to guarantee 32 MHz DPLL capability.

5.5.5.2 Benefit
The customer can transmit and receive serial data at 2 mb/s in FM mode. This is twice
the data rate specified in the data sheet. This is over three times what the competition
can do. As specified in the competition’s data sheet, 10 MHz part can only handle a
10 MHz clock for the DPLL. The Am85C30-16 DPLL can run at 32 MHz for both synchro-
nous (SDLC) and asynchronous modes with FM encoding. This eliminates the need for
an external DPLL and allows the user to utilize FM encoding at higher data rates.

5.5.5.3 Applications
The increased data rate of 2 mb/s is ideal for both factory and office automation applica-
tions including Local Area Networks as well as other RS485 and RS422 applications.

5.5.5.4 Description
An external 32 MHz, 50% duty cycle, TTL compatible signal to the RTxC pin provides the
clock for the DPLL. The PCLK remains at 16 MHz. The rest of the setup is described in
detail in the previous section of this technical manual.

5.5.5.5 Competition
The competition’s data sheet for their 85C30 limits the clock for the DPLL to less than
10 MHz. This translates to only 0.625 mb/s for FM transmission and reception. The
Am85C30-16 transmits and receives FM data at 2.0 mb/s—over three times faster than
the competition’s part.

5.6 DIAGNOSTIC MODES
The SCC contains two other features useful for diagnostic purposes controlled by bits in
WR14. These are Local Loopback and Auto Echo.
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5.6.1 Local Loopback
Local loopback is selected when bit D4 of WR14 is set to ‘1’. In this mode the output of
the transmitter is internally connected to the input of the receiver. At the same time the
TxD pin remains connected to the transmitter. In this mode the DCD pin is ignored as a
receiver enable and the CTS pin is ignored as a transmitter enable even if the Auto En-
ables mode has been selected. Note that the DPLL input is connected to the RxD pin, not
to the input of the receiver. This precludes the use of the DPLL in Local Loopback. Local
Loopback is shown schematically in Figure 5–10.

5.6.2 Auto Echo
Auto Echo is selected when bit D3 of WR14 is set to ‘1’. In this mode the TxD pin is con-
nected directly to the RxD pin, and the receiver input is connected to the RxD pin. In this
mode the CTS pin is ignored as a transmitter enable and the output of the transmitter
does not connect to anything. If both the Local Loopback and Auto Echo bits are set to
‘1’, the Auto Echo mode will be selected, but both the CTS pin and the DCD pin will be
ignored as auto enables. This, however, should not be considered a normal operating
mode. Auto Echo is shown schematically in Figure 5–11.

Receiver

Transmitter

TX Enable

RX EnableDCD

CTS

RxD

TxD

N.C.

Local Loopback

Figure 5–10.  Local Loopback

Receiver

Transmitter

TX Enable
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DCD

CTS

RxD
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Figure 5–11.  Auto Echo
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Register Description

CHAPTER 6

6.1 INTRODUCTION
The following sections describe the SCC registers.  Each register is detailed in terms of
bit configuration, the active states (See Table 6–1) of each bit, their definitions, their func-
tions, and their effects upon the internal hardware and external pins.
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Table 6–1.  SCC Register Description

Read Register Functions

RR0 Transmit/Receive buffer status, and External status

RR1 Special Receive Condition status, residue codes, error conditions

RR2 Modified (Channel B only) interrupt vector and Unmodified interrupt 
vector (Channel A only)

RR3 Interrupt Pending bits (Channel A only)

*RR6 14-bit frame byte count (LSB)

*RR7 14-bit frame byte count (MSB), frame status

RR8 Receive buffer

RR10 Miscellaneous XMTR, RCVR status parameters

RR12 Lower byte of baud rate generator time constant

RR13 Upper byte of baud rate generator time constant

RR15 External/Status interrupt control information

* Available only when Am85C30 is programmed in enhanced mode.

Write Register Functions

WR0 Command Register, (Register Pointers),  CRC initialization, resets 
for various modes

WR1 Interrupt conditions, Wait/DMA request control

WR2 Interrupt vector (access through either channel)

WR3 Receive/Control parameters, number of bits per character, Rx CRC 
enable

WR4 Transmit/Receive miscellaneous parameters and codes, clock rate, 
number of sync  characters, stop bits, parity

WR5 Transmit parameters and control, number of Tx bits per character, 
Tx CRC enable

WR6 Sync character (1st byte) or SDLC address

WR7 SYNC character (2nd byte) or SDLC flag

**WR7′ SDLC options; auto flag, RTS, EOM reset, extended read, etc.

WR8 Transmit buffer

WR9 Master interrupt control and reset (accessed through either 
channel), reset bits, control interrupt daisy chain

WR10 Miscellaneous transmitter/receiver control bits, NRZI, NRZ, FM 
encoding, CRC reset

WR11 Clock mode control, source of Rx and Tx clocks

WR12 Lower byte of baud rate generator time constant

WR13 Upper byte of baud rate generator time constant

WR14 Miscellaneous control bits:  baud rate generator, Phase-Locked 
Loop control, auto echo, local loopback

WR15 External/Status interrupt control information-control external 
conditions causing interrupts

** Only available in Am85C30.
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6.2 WRITE REGISTERS
The SCC write register set for each channel includes ten control registers, two sync char-
acter registers, two baud rate time constant registers, a transmit buffer, and a master in-
terrupt register. The following sections describe in detail each write register and the
associated bit configuration for each.

6.2.1 Write Register 0 (Command Register)
WR0 is the command register and the CRC reset code register. Figure 6–1 shows the bit
configuration for WR0.

D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 0

0 1

0 1

0 0

0 1

1 0

1 1

Null Code

Reset Rx CRC Checker
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0

1

0

1

Register 0

Register 1

Register 2

Register 3
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Register 6

Register 7
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0 0
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1

0
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1 1 1

Null Code
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Reset EXT/Status Interrupts

Send Abort (SDLC)

Enable INT On Next Rx Character

Reset TxINT Pending

Error Reset

Reset Highest IUS

With Point High Command

Figure 6–1.  Write Register 0
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Bits D7 and D6:  CRC Reset Codes 0 and 1

Null code (00) . This command has no effect on the SCC and is used when a write to
WR0 is necessary for some reason other than a CRC Reset command.

Reset Receive CRC Checker (01) . This command is used to initialize the receive CRC
circuitry. It is necessary in synchronous modes (except SDLC) if the Enter Hunt Mode
command in Write Register 3 is not issued between received messages. Any action that
disables the receiver initializes the CRC circuitry. Also, whenever the receiver is in Hunt
mode, or whenever a flag is received, the CRC checker will be automatically reset in
SDLC mode.

Reset Transmit CRC Generator (10) . This command initializes the CRC generator. It is
usually issued in the initialization routine and after the CRC has been transmitted. A
Channel Reset will not initialize the generator and this command should not be issued
until after the transmitter has been enabled in the initialization routine.

Reset Transmit Underrun/EOM Latch (11) . This command controls the transmission of
CRC at the end of transmission (EOM). If this latch has been reset, and a transmit under-
run occurs, the SCC automatically appends CRC to the message. In SDLC mode with
Abort on Underrun selected, the SCC sends an abort, and Flag on underrun if the TX Un-
derrun/EOM latch has been reset.

At the start of the CRC transmission the Tx Underrun/EOM latch is set. The Reset com-
mand can be issued at any time during a message. If the transmitter is disabled this com-
mand will not reset the latch. However, if no External Status interrupt is pending, or if a
Reset External Status Interrupt command accompanies this command while the transmit-
ter is disabled, an External/Status interrupt is generated with the Tx Underrun/EOM bit
reset in RRO.

Bits D5–D3:  Command Codes

Null Code (000) . The Null command has no effect on the SCC.

Point High (001) . This command effectively adds eight to the Register Pointer (D2–D0)
by allowing WR8 through WR15 to be accessed. The Point High command and the Reg-
ister Pointer bits are written simultaneously.

Reset External/Status Interrupts (010) .  After an External/Status interrupt (a change on
a modem line or a break condition, for example), the status bits in RR0 are latched. This
command enables the bits and allows interrupts to occur again as a result of a status
change. Latching the status bits captures short pulses until the CPU has time to read the
change. The SCC contains simple queuing logic associated with most of the external
status bits in RR0. If another External/Status condition changes while a previous condi-
tion is still pending (Reset External/Status Interrupts has not yet been issued) and this
condition persists until after the command is issued, this second change causes another
External/Status interrupt. However, if this second status change does not persist (there
are two transitions), another interrupt is not generated. Exceptions to this rule are detailed
in the RR0 description.

Send Abort (011) . This command is used in SDLC mode to transmit a sequence of eight
to thirteen ‘1s.’ This command always empties the transmit buffer and sets Tx Underrun/
EOM bit in Read Register 0.

Enable Interrupt on Next RX Character (100) .  If the interrupt on the First Received
Character mode is selected, this command is used to reactivate that mode after each
message is received.  The next character to enter the receive FIFO causes a Receive
interrupt.  Alternatively, the first previously stored character in the FIFO will cause a Re-
ceive interrupt.

Reset Tx Interrupt Pending (101) . This command is used in cases where there are no
more characters to be sent; e.g., at the end of a message. This command prevents fur-
ther transmit interrupts until after the next character has been loaded into the transmit
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buffer or until CRC has been completely sent. This command is necessary to prevent the
transmitter from requesting an interrupt when the transmit buffer becomes empty again,
(with Transmit Interrupt Enabled) on the last data character transmitted.

Error Reset (110) . This command resets the error bits in RR1. If Interrupt on First Rx
Character or Interrupt on Special Condition modes are selected and a special condition
exists, the data with the special condition is held in the receive FIFO until this command is
issued. If either of these modes is selected and this command is issued before the data
have been read from the Receive FIFO, the data are lost.

Reset Highest IUS (111) .  This command resets the highest priority Interrupt Under
Service (IUS) bit, allowing lower priority conditions to request interrupts.  This command
allows the use of the internal daisy chain (even in systems without an external daisy
chain) and should be the last operation in an interrupt service routine.

Bits 2 through 0:  Resister Selection Code

These three bits select Registers 0 through 7. With the Point High command, Registers 8
through 15 are selected.

6.2.2 Write Register 1 (Transmit/Receive Interrupt and 
Data Transfer Mode Definition)

Write Register 1 is the control register for the various SCC interrupt and Wait/Request
modes. Figure 6–2 shows the bit assignments for WR1.

Bit 7:  WAIT/DMA Request Enable

This bit enables the Wait/Request function in conjunction with the Request/Wait Function
Select bit (D6).  If bit 7 is set to ‘1’, the state of bit 6 determines the activity of the WAIT/
REQUEST pin (Wait or Request). If bit 7 is set to ‘0’, the selected function (bit 6) forces
the WAIT/REQUEST pin to the appropriate inactive state (High for Request, floating for
Wait).

Bit 6:  WAIT/DMA Request Function

The request function is selected by setting this bit to ‘1’.  In the DMA Request mode, the
WAIT/REQUEST pin switches from High to Low when the SCC is ready to transfer data.
When this bit is ‘0’, the wait function is selected. In the Wait mode, the WAIT/REQUEST
pin switches from floating to Low when the CPU attempts to transfer data before the SCC
is ready.

Bit 5:  WAIT/DMA Request On Receive Transmit

This bit determines whether the WAIT/REQUEST pin operates in the Transmit mode or
the Receive mode. When set to ‘1’, this bit allows the wait/request function to follow the
state of the receive buffer; i.e., depending on the state of bit 6, the WAIT/REQUEST pin is
active or inactive in relation to the empty or full state of the receive buffer. Conversely, if
this bit is set to ‘0’, the state of the WAIT/REQUEST pin is determined by bit 6 and the
state of the transmit buffer. (Note that a transmit request function is available on the DTR/
REQUEST pin. This allows full-duplex operation under DMA control for both channels.)

The request function may occur only when the SCC is not selected; e.g., if the internal
request becomes active while the SCC is in the middle of a read or write cycle, the exter-
nal request will not become active until the cycle is complete. An active request output
causes a DMA controller to initiate a read or write operation. If the request on Transmit
mode is selected in either SDLC or Synchronous mode, the Request pin is pulsed Low for
one PCLK cycle at the end of CRC transmission of another block of data.

In the Wait On Receive mode, the WAIT pin is active if the CPU attempts to read SCC
data that have not yet been received. In the Wait On Transmit mode, the WAIT pin is ac-
tive if the CPU attempts to write data when the transmit buffer is still full. Both situations
can occur frequently when block transfer instructions are used.
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Bits 4 and 3:  Receive Interrupt Modes

These two bits specify the various character-available conditions that may cause interrupt
requests.

Receive Interrupts Disabled (00) .  This mode prevents the receiver from requesting an
interrupt and is normally used in a polled environment where either the status bits in RR0
or the modified vector in RR2 (Channel B) can be monitored to initiate a service routine.
Although the receiver interrupts are disabled, a special condition can still provide a unique
vector status in RR2.

D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

Rx INT Disable

Rx INT on First Character or Special Condition

INT on All Rx Characters or Special Condition

Rx INT on Special Condition Only

EXT INT Enable

Tx INT Enable

Parity is Special Condition

WAIT/DMA Request on RECEIVE/TRANSMIT

WAIT/DMA Request Function

WAIT/DMA Request Enable

Figure 6–2.  Write Register 1

Receive Interrupt on First Character or Special Condition (01) . The receiver requests
an interrupt in this mode on the first available character (or stored FIFO character) or on a
special condition. Sync characters to be stripped from the message stream do not cause
interrupts.

Special receive conditions are:  receiver overrun, framing error, end of frame, or parity
error (if selected). If a special receive condition occurs, the data containing the error are
stored in the receive FIFO until an Error Reset command is issued by the CPU.

This mode is usually selected when a Block Transfer mode is used. In this interrupt
mode, a pending special receive condition remains set until either an Error Reset com-
mand, a channel or hardware reset, or until receive interrupts are disabled.

The Receive Interrupt on First Character or Special Condition mode can be re-enabled by
the Enable Rx Interrupt on Next Character command in WR0.

Interrupt on All Receive Characters or Special Condition (10) . This mode allows an
interrupt for every character received (or character in the receive FIFO) and provides a
unique vector when a special condition exists. The Receiver Overrun bit and the Parity
Error bit in RR1 are two special conditions that are latched. These two bits must be reset
by the Error Reset command. Receiver overrun is always a special receive condition, and
parity can be programmed to be a special condition.

Data characters with special receive conditions are not held in the receive FIFO in the
Interrupt On All Receive Characters or Special Conditions mode as they are in other re-
ceive interrupt modes.
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Receive Interrupt on Special Condition (11) . This mode allows the receiver to interrupt
only on characters with a special receive condition. When an interrupt occurs, the data
containing the error are held in the receive FIFO until an Error Reset command is issued.
When using this mode in conjunction with a DMA, the DMA can be initialized and enabled
before any characters have been received by the SCC. This eliminates the time-critical
section of code required in the Receive Interrupt on First Character or Special Condition
mode; i.e., all data can be transferred via the DMA so that the CPU need not handle the
first received character as a special case.

Bit 2:  Parity Is Special Condition 

If this bit is set to ‘1’, any received characters with parity not matching the sense pro-
grammed in WR4 give rise to a Special Receive Condition. If parity is disabled (WR4),
this bit is ignored.  A special condition modifies the status of the interrupt vector stored in
WR2. During an interrupt acknowledge cycle, this vector can be placed on the data bus.

Bit 1:  Transmitter Interrupt Enable

If this bit is set to “1’, the transmitter requests an interrupt whenever the transmit buffer
becomes empty.

Bit 0:  External/Status Master Interrupt Enable

This bit is the master enable for External/Status interrupts including DCD, CTS, SYNC
pins, break/abort, the beginning of CRC transmission when the Transmit/Underrun/EOM
latch is set, or when the counter in the baud rate generator reaches ‘0’. Write Register 15
contains the individual enable bits for each of these sources of External/Status interrupts.
This bit is reset by a channel or hardware reset.

6.2.3 Write Register 2 (Interrupt Vector)
WR2 is the interrupt vector register. Only one vector register exists in the SCC, but it can
be accessed through either channel. The interrupt vector can be modified by status infor-
mation. This is controlled by the Vector Includes Status (VIS) and the Status High/Status
Low bits in WR9. When the register is accessed in Channel A, the vector returned is the
vector actually stored in WR2. When this register is accessed in Channel B, the vector
returned includes status information in bits 1, 2, and 3 or in bits 6, 5, and 4, depending on
the state of the Status High/Status Low bit in WR9 and independent of the state of VIS bit
in WR9. The bit positions for WR2 are shown in Figure 6–3.

D7 D6 D5 D4 D3 D2 D1 D0

V3

V4

V5

V6

V0

V1

V2

V7

Figure 6–3.  Write Register 2
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6.2.4 Write Register 3 (Receive Parameters and Control)
This register contains the control bits and parameters for the receiver logic as illustrated
in Figure 6–4. This register is readable by executing a Read to RR9 when D0 of WR15
and D6 of WR7’ are set to ‘1’.

Bits 7 and 6:  Receiver Bits/Character

The state of these two bits determines the number of bits to be assembled as a character
in the received serial data stream. Table 6–2 lists the number of bits per character in the
assembled character format. The number of bits per character can be changed while a
character is being assembled, but only before the number of bits currently programmed is
reached. Unused bits in the Received Data Register (RR8) are set to ‘1’ in asynchronous
modes. In synchronous modes and SDLC modes, the SCC transfers an 8-bit section of
the serial data stream to the receive FIFO at the appropriate time.

Table 6–2.  Receive Bits/Character

D7 D6 Character Length

0 0 5 Bits/Character

0 1 7 Bits/Character

1 0 6 Bits/Character

1 1 8 Bits/Character

Bit 5:  Auto Enables

This bit programs the function for both DCD and CTS pins. CTS becomes the transmitter
enable and DCD becomes the receiver enable when this bit is set to ‘1’. However, the
Receiver Enable and Transmit Enable bits must be set before the DCD and CTS pins can
be used in this manner. When the Auto Enables bit is set to ‘0’, the DCD and CTS pins
are merely inputs to the corresponding status bits in Read Register 0. The state of DCD is
ignored in the Local Loopback mode. The state of CTS is ignored in both Auto Echo and
Local Loopback modes. If CTS disables the transmitter during a byte transmission, the
SCC will still complete the byte transfer.

Bit 4:  Enter Hunt Mode

This command forces the comparison of sync characters or flags for the purpose of syn-
chronization. After reset, the SCC automatically enters the Hunt mode (except asynchro-
nous). Whenever a flag or sync character is matched, the Sync/Hunt bit in Read Register
0 is reset and, if External/Status Interrupt Enable is set, an interrupt sequence is initiated.
The SCC automatically enters the Hunt mode when an abort condition is received or
when the receiver is disabled.

Bit 3:  Receiver CRC Enable

This bit is used to initiate CRC calculation at the beginning of the last byte transferred
from the Receiver Shift register to the receive FIFO. This operation occurs independently
of the number of bytes in the receive FIFO. When a particular byte is to be excluded from
CRC calculation, this bit should be reset before the next byte is transferred to the receive
FIFO. If this feature is used, care must be taken to ensure that eight bits per character is
selected in the receiver because of an inherent delay from the Receive Shift register to
the CRC checker.

This bit is internally set to ‘1’ in SDLC mode and the SCC calculates CRC on all bits ex-
cept inserted zeros between the opening and closing character flags. This bit is ignored in
asynchronous modes.
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D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

Rx 5 Bits/Character

Rx 7 Bits/Character

Rx Enable

SYNC Character Load Inhibit

Address Search Mode (SDLC)

Rx CRC Enable

Enter Hunt Enable

Auto Enables

Rx 6 Bits/Character

Rx 8 Bits/Character

Figure 6–4.  Write Register 3

Bit 2:  Address Search Mode (SDLC)

Setting this bit in SDLC mode causes messages with addresses not matching the ad-
dress programmed in WR6 to be rejected. No receiver interrupts can occur in this mode
unless there is an address match. The address that the SCC attempts to match can be
unique (1 in 256) or multiple (16 in 256), depending on the state of Sync Character Load
Inhibit bit. The Address Search mode bit is ignored in all modes except SDLC.

Bit 1:  SYNC Character Load Inhibit

If this bit is set to ‘1’ in any synchronous mode except SDLC, the SCC compares the byte
in WR6 with the byte about to be stored in the FIFO, and it inhibits this load if the bytes
are equal. The SCC does not calculate the CRC on bytes stripped from the data stream
in this manner.  If the 6-bit sync option is selected while in Monosync mode, the compare
is still across eight bits, so WR6 must be programmed for proper operation.

If the 6-bit sync option is selected with this bit set to ‘1’, all sync characters except the one
immediately preceding the data are stripped from the message. If the 6-bit sync option is
selected while in the Bisync mode, this bit is ignored.

The address recognition logic of the receiver is modified in SDLC mode if this bit is set to
“1;” i.e., only the four most significant bits of WR6 must match the receiver address. This
procedure allows the SCC to receive frames from up to 16 separate sources without pro-
gramming WR6 for each source (if each station address has the four most significant bits
in common). The address field in the frame is still eight bits long.

This bit is ignored in SDLC mode if Address Search mode has not been selected.

Bit 0:  Receiver Enable

When this bit is set to ‘1’, receiver operation begins. This bit should be set only after all
other receiver parameters are established and the receiver is completely initialized. This
bit is reset by a channel or hardware reset command, and it disables the receiver.

6.2.5 Write Register 4 (Transmit/Receiver Miscellaneous 
Parameters and Modes)

WR4 contains the control bits for both the receiver and the transmitter. These bits should
be set in the transmit and receiver initialization routine before issuing the contents of
WR1, WR3, WR6, and WR7. Bit positions for WR4 are shown in Figure 6–5. This register
is readable by executing a read to RR4 when D0 of WR15 and D6 of WR7 are set to ‘1’.
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D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

X1 Clock Mode

X16 Clock Mode

X32 Clock Mode

X64 Clock Mode

Parity Enable

Parity Even/Odd

SYNC Modes Enable

1 Stop Bit/Character

11/2 Stop Bits/Character

2 Stop Bits/Character

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

8 Bit SYNC Character

16 Bit SYNC Character

SDLC Mode (01111110 Flag)

External SYNC Mode

Figure 6–5.  Write Register 4

Bits 7 and 6:  Clock Rate 1 And 0

These bits specify the multiplier between the clock and data rates. In synchronous
modes, the 1X mode is forced internally and these bits are ignored unless External Sync
mode has been selected.

1X Mode (00) . The clock rate and data rate are the same. In External Sync mode, this bit
combination specifies that only the SYNC pin can be used to achieve character synchro-
nization.

16X Mode (01) . The clock rate is 16 times the data rate. In External Sync mode, this bit
combination specifies that only the SYNC pin can be used to achieve character synchro-
nization.

32X Mode (10) . The clock rate is 32 times the data rate. In External Sync mode, this bit
combination specifies that either the SYNC pin or a match with the character stored in
WR7 will signal character synchronization. The sync character can be either six or eight
bits long as specified by the 6-bit/8-bit Sync bit in WR10.

64X Mode (11) . The clock rate is 64 times the data rate. With this bit combination in Ex-
ternal Sync mode, both the receiver and transmitter are placed in SDLC mode. The only
variation from normal SDLC operation is that the SYNC pin is used to start or stop the
reception of a frame by forcing the receiver to act as though a flag had been received.

Bits 5 and 4:  SYNC Modes 1 And 0

These two bits select the various options for character synchronization. They are ignored
unless synchronous modes are selected in the stop bits field of this register.

Monosync (00) . In this mode, the receiver achieves character synchronization by match-
ing the character stored in WR7 with an identical character in the received data stream.
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The transmitter uses the character stored in WR6 as a time fill. The sync character can
be either six or eight bits, depending on the state of the 6-bit/8-bit Sync bit in WR10. If the
Sync Character Load Inhibit bit is set, the receiver strips the contents of WR6 from the
data stream if received within character boundaries.

Bisync (01) . The concatenation of WR7 with WR6 is used for receiver synchronization
and as time fill by the transmitter. The sync character can be 12 or 16 bits in the receiver,
depending on the state of the 6-bit/8-bit Sync bit in WR10. The transmitted character is
always 16 bits.

SDLC Mode (10) . In this mode, SDLC is selected and requires a flag (01111110) to be
written to WR7. The receiver address field should be written to WR6. The SDLC CRC
polynomial must also be selected (WR5) in SDLC mode.

External Sync Mode (11) . In this mode, the SCC expects external logic to signal charac-
ter synchronization via the SYNC pin.  If the crystal oscillator option is selected (in
WR11), the internal SYNC signal is forced to ‘0’. Also in this mode, bits D7–D6 of this
register select a special version of External Sync mode. Refer to Synchronous External
SYNC Mode on page 4–41. The transmitter is in Monosync mode using the contents of
WR6 as the time fill with the sync character length specified by the 6-bit/8-bit Sync bit in
WR10.

Bits 3 and 2:  Stop Bits 1 and 0

These bits determine the number of stop bits added to each asynchronous character that
is transmitted. The receiver always checks for one stop bit in Asynchronous mode. A
Special mode specifies that a Synchronous mode is to be selected. D2 is always set to
‘1’, by a channel or hardware reset to ensure that the SYNC pin is in a known state after a
reset.

Synchronous Modes Enable (00) . This bit combination selects one of the synchronous
modes specified by bits D4, D5, D6, and D7 of this register and forces the 1X Clock mode
internally.

1 Stop Bit/Character (1) . This bit selects Asynchronous mode with one stop bit per char-
acter.

11/2 Stop Bits/Character (10) . These bits select Asynchronous mode with 1-1/2 stop bits
per character. This mode cannot be used with the 1X clock mode.

2 Stop Bits/Character (11) . These bits select Asynchronous mode with two stop bits per
transmitted character and check for one received stop bit.

Bit 1:  Parity Even/ Odd

This bit determines whether parity is checked as even or odd.  A ‘1’ programmed here
selects even parity, and a ‘0’ selects odd parity. This bit is ignored if the Parity Enable bit
is not set.

Bit 0:  Parity Enable

When this bit is set, an additional bit position beyond those specified in the bits/character
control is added to the transmitted data and is expected in the receive data. The Re-
ceived Parity bit is transferred to the CPU as part of the data unless eight bits per charac-
ter is selected in the receiver.

6.2.6 Write Register 5 (Transmit Parameter and Controls)
WR5 contains control bits that affect the operation of the transmitter. D2 affects both the
transmitter and the receiver. Bit positions for WR5 are shown in Figure 6–6. This register
is readable by executing a read to RR5 when D0 of WR15 and D6 of WR7’ are set to ‘1’.
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D7 D6 D5 D4 D3 D2 D1 D0

Tx CRC Enable

RTS

SDLC/CRC-16

Send Break

0 0

0 1

1 0

1 1

Tx 5 Bits (or less)/Character

Tx 7 Bits/Character

Tx 6 Bits/Character

Tx 8 Bits/Character

Tx Enable

DTR

Figure 6–6.  Write Register 5

Bit 7:  Data Terminal Ready

This is the control bit for the DTR/REQ pin while the pin is in the DTR mode (selected in
WR14). When set, DTR is Low; when reset, DTR is High. This bit is ignored when DTR/
REQ is programmed to act as a Request pin. This bit is reset by a channel or hardware
reset.

Bits 6 and 5:  TX Bits/Character 1 and 0

These bits control the number of bits in each byte transferred to the transmit buffer. Bits
sent must be right justified with least significant bits first.

The Five Or Less mode allows transmission of one to five bits per character; however, the
CPU should format the data character as shown below in Table 6–3. In the Six or Seven
Bits/Character modes, unused data bits are ignored.

Bit 4:  Send Break

When set, this bit forces the TxD output to send continuous ‘0’s beginning with the follow-
ing transmit clock, regardless of any data being transmitted at the time. This bit functions
whether or not the transmitter is enabled. When reset, TxD continues to send the con-
tents of the Transmit Shift register, which might be syncs, data, or all ‘1’s. If this bit is set
while in the X21 mode (Monosync and Loop mode selected) and character synchroniza-
tion is achieved in the receiver, this bit is automatically reset and the transmitter begins
sending syncs or data. This bit can also be reset by a channel or hardware reset.

Table 6–3.  Transmit Bits/Character 

D6 D5 Character Length
0 0 5 or less bits/character
0 1 7 bits/character
1 0 6 bits/character
1 1 8 bits/character

D7 D6 D5 D4 D3 D2 D1 D0 Transmitter
1 1 1 1 0 0 0 D0 Sends one data bit
1 1 1 0 0 0 D1 D0 Sends two data bits
1 1 0 0 0 D2 D1 D0 Sends three data bits
1 0 0 0 D3 D2 D1 D0 Sends four data bits
0 0 0 D4 D3 D2 D1 D0 Sends five data bits
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Bit 3:  Transmit Enable

Data is not transmitted until this bit is set, and the TxD output sends continuous ‘1’s un-
less Auto Echo mode or SDLC Loop mode is selected.  If this bit is reset after transmis-
sion has started, the transmission of data or sync characters is completed. If the
transmitter is disabled during the transmission of a CRC character, sync or flag charac-
ters are sent instead of CRC. This bit is reset by a channel or hardware reset.

Bit 2:  SDLC/CRC-16

This bit selects the CRC polynomial used by both the transmitter and receiver. When set,
the CRC-16 polynomial is used; when reset, the SDLC polynomial is used. The SDLC/
CRC polynomial must be selected when SDLC mode is selected. The CRC generator and
checker can be preset to all ‘0’s or all ‘1’s, depending on the state of the Preset 1/Preset
0 bit in WR10.

Bit 1: Request To Send

This is the control bit for the RTS pin. When the RTS bit is set, the RTS pin goes Low;
when reset RTS goes High. In the Asynchronous mode with the Auto Enables bit set,
RTS goes High only after all bits of the character have been sent and the transmit buffer
is empty. In synchronous modes or the Asynchronous mode with auto enables off, the pin
directly follows the state of this bit. This bit is reset by a channel or hardware reset.

Bit 0:  Transmit CRC Enable

This bit determines whether or not CRC is calculated on a transmit character. If this bit is
set at the time the character is loaded from the transmit buffer to the Transmit Shift regis-
ter, CRC is calculated on that character. CRC is not automatically sent unless this bit is
set when the transmit underrun exists.

6.2.7 Write Register 6 (Sync Characters or SDLC 
Address Field)

WR 6 is programmed to contain the transmit sync character in the Monosync mode. The
first byte of a 16-bit sync character in the External Sync mode. WR6 is not used in asyn-
chronous modes. In the SDLC modes, it is programmed to contain the secondary address
field used to compare against the address field of the SDLC Frame. In SDLC mode, the
SCC does not automatically transmit the station address at the beginning of a response
frame. Bit positions for WR6 are shown in Figure 6–7.
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D7 D6 D5 D4 D3 D2 D1 D0

SYNC7

SYNC1

SYNC7

SYNC3

ADR7

ADR7

SYNC6

SYNC0

SYNC6

SYNC2

ADR6

ADR6

SYNC5

SYNC5

SYNC5

SYNC1

ADR5

ADR5

SYNC4

SYNC4

SYNC4

SYNC0

ADR4

ADR4

SYNC3

SYNC3

SYNC3

     1
ADR3

     X

SYNC2

SYNC2

SYNC2

    1
ADR2

    X

SYNC1

SYNC1

SYNC1

    1
ADR1

    X

SYNC0

SYNC0

SYNC0

    1
ADR0

    X

MONOSYNC, 8 BITS
MONOSYNC, 6 BITS
BISYNC, 16 BITS
BISYNC, 12 BITS
SDLC
SDLC (ADDRESS RANGE)

Figure 6–7. Write Register 6

D7 D6 D5 D4 D3 D2 D1 D0

SYNC7

SYNC5

SYNC15

SYNC11

     0

SYNC6

SYNC4

SYNC14

SYNC10

    1

SYNC5

SYNC3

SYNC13

SYNC9

     1

SYNC4

SYNC2

SYNC12

SYNC8

    1

SYNC3

SYNC1

SYNC11

SYNC7

     1

SYNC2

SYNC0

SYNC10

SYNC6

     1

SYNC1

    X
SYNC9

SYNC5

    1

SYNC0

    X
SYNC8

SYNC4

    0

MONOSYNC, 8 BITS
MONOSYNC, 6 BITS
BISYNC, 16 BITS
BISYNC, 12 BITS
SDLC (Flag)

Figure 6–8. Write Register 7
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6.2.8 Write Register 7 (Sync Character or SDLCFlag/SDLC
Option Register) 
Note SDLC option register is available only in CMOS version.

In the Nmos Am8530H, the use of this register differs depending on the mode the SCC is
programmed in. In Monosync mode, WR7 is programmed with the receive sync charac-
ter; in BISYNC, it is programmed with the second byte (the last 8 bits) of the 16-bit sync
character. In SDLC modes, WR7 is programmed with the flag character (01111110).

Note, however, that WR7 may hold the receive sync character or flag if one of the special
versions of the External Sync mode is selected.

Write Register 7′ (Special SDLC Enhancement Register)
In the CMOS Am8530, special SDLC options are provided that enable the user to more
effectively interface to the Am85C30. These options are available to the user if the previ-
ously unused bit, D0 of WR15, is set to ‘1’. When this bit is set, and the SCC is pro-
grammed for SDLC operation, an access to WR7 accesses a different register which
allows the programming of these options. This register is referred to as WR7’ (WR7
prime). Resetting this bit (D0 of WR15) disables the options and the next access to WR7
is to the flag register. Therefore, the user should always program the flag character first
before setting bit D0 of WR15 to ‘1’. This register is readable by executing a read to RR14
when D0 of WR15 and D6 of WR7’ are set to ‘1’.

Note that WR7 is not used in Asynchronous mode. Bit positions for WR7 are shown in
Figure 6–8. Bit positions for WR7’ are shown in Figure 6–9 with bit descriptions given
below.

D7 D6 D5 D4 D3 D2 D1 D0

TxD forced high in SDLC NRZI Mode

DTR/REQ Timing Mode

Receive CRC

Extended Read Enable

Auto Tx Flag

Auto EOM Reset

Auto RTS Deactivation

This bit must always be programmed with a ‘0’

Figure 6–9. Write Register 7 ′

Bit 7:  Not used. This bit must be programmed with ‘0’.

Bit 6:  Extended Read Enable

If this bit is set to ‘1’ the user is able to read the following previously unreadable registers;
WR3, WR4, WR5 and WR10 in the CMOS SCC in each channel. These registers are
read by addressing bogus read registers RR9, RR4, RR5 and RR11, respectively.

WR7’ is updated or modified by writing to WR7 while this bit is set and is read by execut-
ing a read cycle to WR14 (RR14).

Bit 5:  Receive CRC

If this bit is set to ‘1’, the last two bits of the received CRC are properly clocked into the
receive shift register and are available to the user.
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Bit 4:  DTR/REQ Timing Mode

This bit controls the timing of the DTR/REQ pin. If this bit is set to ‘1’, the deactivation tim-
ing of the DTR/REQ pin is made identical to the WAIT/REQ pin.

Bit 3:  TxD Forced High in SDLC NRZI Mode

If this bit is set to ‘1’, and the transmitter is disabled while the SCC is programmed in
SDLC mode with NRZI encoding, the TxD pin will be pulled to a high physical state.

Bit 2:  Auto RTS Deactivation

This bit synchronizes the deactivation of RTS with the closing flag of an SDLC frame. If
this bit is set to ‘1’ and the user deactivates RTS while the CRC characters are being
transmitted, the SCC assures that the last bit of the flag character is transmitted before
deactivating RTS.

Bit 1:  Auto EOM Reset

This bit removes the requirement of having to reset the Tx Underrun/EOM latch during
the transmission of a frame. If this bit is set to ‘1’, the Tx Underrun/EOM latch will be
automatically reset by the SCC after the first byte is transmitted.

Bit 0:  Auto Tx Flag

This bit removes the requirement of having to wait for the mark idle and flag characters to
be sent before the first data character of a new frame is written to the transmit buffer reg-
ister (WR8). If this bit is set to ‘1’, the user need only write the first character to the trans-
mit buffer. The SCC will then transmit the opening flag followed by data.

6.2.9 Write Register 8 (Transmit Buffer)
WR8 is the transmit buffer register.

6.2.10 Write Register 9 (Master Interrupt Control)
WR9 is the Master Interrupt Control register and contains the Reset command bits. Only
one WR9 exists in the SCC and can be accessed from either channel. The interrupt con-
trol bits can be programmed at the same time as the Reset command because these bits
are reset only by a hardware reset. Bit positions for WR9 are shown in Figure 6–10.

D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

No Reset

Channel Reset B

Channel Reset A

Force Hardware Reset 

VIS

NV

DLC

MIE

STATUS HIGH/STATUS LOW

Interrupt Masking without INTACK

Figure 6–10. Write Register 9
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Bits 7 and 6:  Reset Command Bits

Together, these bits select one of the reset commands for the SCC. Setting either of
these bits to ‘1’ disables both the receiver and the transmitter in the corresponding chan-
nel, forces TxD for that channel marking, forces the modem control signals High in that
channel, resets all IPs and IUSs and disables all interrupts in that channel. Five extra
PCLK cycles must be allowed beyond the usual cycle time before any additional com-
mand or controls are written to the SCC.

No Reset (00) . This command has no effect. It is used when a write to WR9 is necessary
for some reason other than an SCC Reset command.

Channel Reset B (01) . Issuing this command causes a channel reset to be performed on
Channel B.

Channel Reset A (10) . Issuing this command causes a channel reset to be performed on
Channel A.

Force Hardware Reset (11) . The effects of this command are identical to those of a
hardware reset except that the MIE, Status High/Status Low and DLC bits take the pro-
grammed values that accompany this command.

Bit 5:  Interrupt Masking Without INTACK

If this bit is set to ‘1’, the INTACK cycle is ignored by the SCC and should be tied High.
This allows users to mask lower priority interrupts in applications where INTACK  is nei-
ther necessary nor used.

Bit 4:  Status High/ Status Low

This bit controls which vector bits the SCC will modify to indicate status. When set to ‘1’,
the SCC modifies bits V6, V5, and V4 according to Table 6–4. When set to ‘0’, the SCC
modifies bits V1, V2, and V3 according to Table 6–1–3.  This bit controls status in both
the vector returned during an interrupt acknowledge cycle and the status in RR2B. This
bit is reset by a hardware reset.

Bit 3:  Master Interrupt Enable

The Master Interrupt Enable bit is used to globally inhibit SCC interrupts. When set to ‘1’,
interrupts for channel A and channel B are enabled. When this bit is set to ‘0’, IEO is not
forced low but follows the state of IEI unless there is an IUS set in the SCC. No IUS can
be set after the MIE bit is set to ‘0’. This bit is reset by a hardware reset.

Table 6–4.  Interrupt Vector Modification

V3 V2 V1 Status High/Status Low=0
V4 V5 V6 Status High/Status Low=1

0 0 0 Ch B Transmit Buffer Empty

0 0 1 Ch B External/Status Change

0 1 0 Ch B Receive Character Available

0 1 1 Ch B Special Receive Condition

1 0 0 Ch A Transmit Buffer Empty

1 0 1 Ch A External/Status Change

1 1 0 Ch A Receive Character Available

1 1 1 Ch A Special Receive Condition 
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Bit 2:  Disable Lower Chain

The Disable Lower Chain can be used by the CPU to control the interrupt daisy chain.
Setting this bit to ‘1’ forces the IEO pin Low, preventing lower-priority devices on the daisy
chain from requesting interrupts. This bit is reset by a hardware reset.

Bit 1:  No Vector

The No Vector bit controls whether or not the SCC will respond to an interrupt acknowl-
edge cycle by placing a vector on the data bus if the SCC is the highest-priority device
requesting an interrupt. If this bit is set, no vector is returned; i.e., D0–D7 remain three-
stated during an interrupt acknowledge cycle, even if the SCC is the highest-priority de-
vice requesting an interrupt.

Bit 0:  Vector Includes Status

The Vector Includes Status bit controls whether or not the Z-SCC will include status infor-
mation in the vector it places on the bus in response to an interrupt acknowledge cycle. If
this bit is set, the vector returned is variable, with the variable field depending on the high-
est-priority IP that is set. Table 6–4 shows the encoding of the status information. This bit
is ignored if the No Vector (NV) bit is set and does not apply if RR2 is read from Chan-
nel B.

6.2.11 Write Register 10 (Miscellaneous Transmitter/
Receiver Control Bits)

WR10 contains miscellaneous control bits for both the receiver and the transmitter. Bit
positions for WR10 are shown in Figure 6–11. This register is readable by executing a
read to RR11 when D0 of WR15 and D6 of WR7’ are set to ‘1’.

D7 D6 D5 D4 D3 D2 D1 D0

6 Bit/8Bit SYNC

Loop Mode

Abort/Flag on Underrun

Go Active on Poll

0 0

0 1

1 0

1 1

NRZ

NRZI

FM1 (Transition = 1)

FM0 (Transition = 0)

Mark/Flag Idle

CRC Preset ‘1’ or ‘0”

Figure 6–11. Write Register 10
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1 1 0 0 1 0 1
Transmit Clock

Data
NRZ

NRZI

FM1

FM0

Receive Clock

NRZ
1 1 0 0 1 0 1Data

NRZI

FM1

FM0

Bit Cell

Bit Cell

Figure 6–12. NRZ (NRZI) FM1 (FM0) Timing

Bit 7:  CRC Presets ‘1’ or ‘0’

This bit specifies the initialized condition of the receive CRC checker and the transmit
CRC generator.  If this bit is set to ‘1’, the CRC generator and checker are preset to ‘1’. If
this bit is set to ‘0’, the CRC generator and checker are preset to ‘0’. Either option can be
selected with either CRC polynomial. In SDLC mode, the transmitted CRC is inverted be-
fore transmission and the received CRC is checked against the bit pattern
“0001110100001111.” This bit is reset by a channel or hardware reset. This bit is ignored
in Asynchronous mode.

Bits 6 and 5:  Data Encoding 1 and 2

These bits control the coding method used for both the transmitter and the receiver, as
illustrated in Table 6–5. All of the clocking options are available for all coding methods.
The DPLL in the SCC is useful for recovering clocking information in NRZI and FM
modes. Any coding method can be used in the X1 mode. A hardware reset forces NRZ
mode. Timing for the various modes is shown in Figure 6–12.



Register DescriptionAMD

6–22

Table 6–5. Data Encoding

D6 D5 Encoding

0 0 NRZ

0 1 NRZI

1 0 FM1 (transition = 1)

1 1 FM0 (transition = 0)

Bit 4:  Go Active On Poll

When Loop mode is first selected during SDLC operation, the SCC connects RxD to TxD
with only gate delays in the path. The SCC does not go on-loop and insert the 1-bit delay
between RxD and TxD until this bit has been set and an EOP received. When the SCC is
on-loop, the transmitter is active in SDLC Loop mode and is sending a flag. If this bit is
set at the time the flag is leaving the Transmit Shift register, another flag or data byte (if
the transmit buffer is full) is transmitted. If the Go Active On Poll bit is not set at this time,
the transmitter finishes sending the flag and reverts to the 1-Bit Delay mode. Thus, to
transmit only one response frame, this bit should be reset after the first data byte is sent
to the SCC but before CRC has been transmitted. If the bit is not reset before CRC is
transmitted, extra flags are sent, slowing down response time on the loop. If this bit is re-
set before the first data is written, the SCC completes the transmission of the present flag
and reverts to the 1-Bit Delay mode. After gaining control of the loop, the SCC is not able
to transmit again until a flag and another EOP have been received. Though not strictly
necessary, it is good practice to set this bit only upon receipt of a poll frame to ensure that
the SCC does not go on-loop without the CPU noticing it.

In synchronous modes other than SDLC with the Loop Mode bit set, this bit must be set
before the transmitter can go active in response to a received sync character.

This bit is always ignored in Asynchronous mode and Synchronous modes unless the
Loop Mode bit is set. This bit is reset by a channel or hardware reset.

Bit 3:  Mark/ Flag Idle

This bit affects only SDLC operation and is used to control the idle line condition.  If this
bit is set to ‘0’, the transmitter sends flags as an idle line. If this bit is set to ‘1’, the trans-
mitter sends continuous ‘1’s after the closing flag of a frame. The idle line condition is se-
lected byte by byte; i.e., either a flag or eight ‘1’s are transmitted. The primary station in
an SDLC loop should be programmed for Mark Idle to create the EOP sequence. Mark
Idle must be deselected at the beginning of a frame before the first data are written to the
SCC, so that an opening flag can be transmitted. This bit is ignored in Loop mode, but the
programmed value takes effect upon exiting the Loop mode. This bit is reset by a channel
or hardware reset.



Register Description AMD

6–23

Bit 2:  Abort/ Flag On Underrun

This bit affects only SDLC operation and is used to control how the SCC responds to a
transmit underrun condition. If this bit is set to ‘1’ and a transmit underrun occurs, the
SCC sends an abort and a flag instead of CRC. If the bit is reset, the SCC sends CRC on
a transmit underrun. At the beginning of this 16-bit transmission, the Transmit Underrun/
EOM bit is set, causing an External/Status interrupt. The CPU uses this status, along with
the byte count from memory or the DMA, to determine whether the frame must be
retransmitted. A transmit buffer Empty interrupt occurs at the end of this 16-bit transmis-
sion to start the next frame. If both this bit and the Mark/Flag Idle bit are set to ‘1’, all ‘1’s
are transmitted after the transmit underrun. This bit should be set after the first byte of
data is sent to the SCC and reset immediately after the last byte of data so that the frame
will be terminated properly with CRC and a flag. This bit is ignored in Loop mode, but the
programmed value is active upon exiting Loop mode. This bit is reset by a channel or
hardware reset.

Bit 1:  Loop Mode

In SDLC mode, the initial set condition of this bit forces the SCC to connect TxD to TxD
and to begin searching the incoming data stream so that it can go on-loop. All bits perti-
nent to SDLC mode operation in other registers must be set before this mode is selected.
The transmitter and receiver should not be enabled until after this mode has been se-
lected. As soon as the Go Active On Poll bit is set and an EOP is received, the SCC goes
on-loop. If this bit is reset after the SCC is on-loop, the SCC waits for the next EOP to go
off-loop.

In synchronous modes, the SCC uses this bit, along with the Go Active On Poll bit, to
synchronize the transmitter to the receiver. The receiver should not be enabled until after
this mode is selected. The TxD pin is held marking when this mode is selected unless a
break condition is programmed.  The receiver waits for a sync character to be received
and then enables the transmitter on a character boundary. The break condition, if pro-
grammed, is removed. This mode works properly with sync characters of 6, 8, or 16 bits.
This bit is ignored in Asynchronous mode and is reset by a channel or hardware reset.

Bit 0:  6 Bit/ 8 Bit Sync

This bit is used to select a special case of synchronous modes. If this bit is set to ‘1’ in
Monosync mode, the receiver and transmitter sync characters are six bits long instead of
the usual eight. If this bit is set to ‘1’ in Bisync mode, the received sync will be 12 bits and
the transmitter sync character will remain 16 bits long. This bit is ignored in SDLC and
Asynchronous modes but still has effect in the special external sync modes. This bit is
reset by a channel or hardware reset.

6.2.12 Write Register 11 (Clock Mode Control)
WR11 is the Clock Mode Control register. The bits in this register control the sources of
both the receive and transmit clocks, the type of signal on the Sync and RTxC pins, and
the direction of the TRxC pin. Bit positions for WR11 are shown in Figure 6–13.
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D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

Receive Clock = RTxC Pin

Receive Clock = TRxC Pin

Receive Clock = BR Generator Output

Receive Clock = DPLL Output

TRxC Out = XTAL Output

TRxC Out = Transmit Clock

TRxC Out = BR Generator Output

TRxC Out = DPLL Output

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

Transmit Clock = RTxC Pin

Transmit Clock = TRxC Pin

Transmit Clock = BR Generator Output

Transmit Clock = DPLL Output

TRxC O/I

RTxC XTAL/NO XTAL

Figure 6–13. Write Register 11

Bit 7:  RTxC—XTAL/ NO XTAL

This bit controls the type of input signal the SCC expects to see on the RTxC pin. If this
bit is set to ‘0’, the SCC expects a TTL-compatible signal as an input to this pin. If this bit
is set to ‘1’, the SCC connects a high-gain amplifier between the RTxC and SYNC pins in
expectation of a quartz crystal being placed across the pins.

The output of this oscillator is available for use as a clocking source. In this mode of op-
eration, the Sync pin is unavailable for other use. The Sync signal is forced to ‘0’ inter-
nally. A hardware reset forces No XTAL. (At least 20 ms should be allowed after this bit is
set to allow the oscillator to stabilize.)

Bits 6 and 5:  Receiver Clock 1 And 0

These bits determine the source of the receive clock as shown in Table 6–6. They do not
interfere with any of the modes of operation in the SCC but simply control a multiplexer
just before the internal receive clock input. A hardware reset forces the receive clock to
come from the TRxC pin.

Table 6–6.  Receive Clock Source

D6 D5

0 0 Receive Clock = RTxC pin

0 1 Receive Clock = TRxC pin

1 0 Receive Clock = BRG output

1 1 Receive Clock = DPLL output
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Bits 4 and 3:  Transmit Clock 1 and 0

These bits determine the source of the transmit clock as shown in Table 6–7. They do not
interfere with any of the modes of operation of the SCC but simply control a multiplexer
just before the internal transmit clock input. The DPLL output that may be used to feed
the transmitter in FM modes lags by 90 the output of the DPLL used by the receiver.  This
makes the received and transmitted bit cells occur simultaneously, neglecting delays.  A
hardware reset selects the TRxC pin as the source of the transmit clocks.

Table 6–7.  Transmit Clock Source

D4 D3

0 0 Transmit Clock = RTxC pin

0 1 Transmit Clock = TRxC pin

1 0 Transmit Clock = BRG output

1 1 Transmit Clock = DPLL output

Bit 2:  TRxC O/I

This bit determines the direction of the TRxC pin. If this it is set to ‘1’, the TRxC pin is an
output and carries the signal selected by D1 and D0 of this register. However, if either the
receive or the transmit clock is programmed to come from the TRxC pin, TRxC will be an
input, regardless of the state of this bit. The TRxC pin is also an input if this bit is set to
‘0’. A hardware reset  forces this bit to ‘0’.

Bits 1 and 0:  TRxC Output Source 1 And 0

These bits determine the signal to be echoed out of the SCC via the TRxC pin. No signal
is produced if TRxC has been programmed as the source of either the receive or the
transmit clock. If TRxC O/I (bit 2) is set to ‘0’, these bits are ignored.

If the XTAL oscillator output is programmed to be echoed, and the XTAL oscillator has
not been enabled, the TRxC pin hoes High. The DPLL signal that is echoed is the DPLL
signal used by the receiver. Hardware reset selects the XTAL oscillator as the output
source.

Table 6–8.  Transmit External Control Selection

D1 D0

0 0 TRxC = XTAL oscillator output

0 1 TRxC = Transmit Clock

1 0 TRxC = BRG output

1 1 TRxC = DPLL output
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6.2.13 Write Register 12 (Lower Byte of Baud Rate 
Generator Time Constant)

WR12 contains the lower byte of the time constant for the baud rate generator. The time
constant can be changed at any time, but the new value does not take effect until the next
time the time constant is loaded into the down counter. No attempt is made to synchro-
nize the loading of the time constant into WR12 and WR13 with the clock driving the
down counter. For this reason, it is advisable to disable the baud rate generator while the
new time constant is loaded into WR12 and WR13. Ordinarily, this is done anyway to pre-
vent a load of the down counter between the writing of the upper and lower bytes of the
time constant.

The formula for determining the appropriate time constant for a given baud is shown be-
low with the desired rate in bits per second and the BR clock period in seconds. This for-
mula is derived because the counter decrements from N down to ‘0’-plus-one-cycle for
reloading the time constant and is then fed to a toggle flip-flop to make the output a
square wave. Bit positions for WR12 are shown in Figure 6–14.

Time Constant  =
1

2 • (Desired Rate) •  (Baud Rate)
–2

D7 D6 D5 D4 D3 D2 D1 D0

TC3

TC4

TC5

TC6

TC0

TC1

TC2

TC7

Lower Byte of
Time Constant

Figure 6–14.  Write Register 12

6.2.14 Write Register 13  (Upper Byte of Baud Rate 
Generator Time Constant)

WR13 contains the upper byte of the time constant for the baud rate generator. Bit posi-
tions for WR13 are shown in Figure 6–15.
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D7 D6 D5 D4 D3 D2 D1 D0

TC11

TC12

TC13

TC14

TC8

TC9

TC10

TC15

Upper Byte of
Time Constant

Figure 6–15.  Write Register 13

6.2.15 Write Register 14 (Miscellaneous Control Bits)
WR14 contains some miscellaneous control bits. Bit positions for WR14 are shown in Fig-
ure 6–16.

D7 D6 D5 D4 D3 D2 D1 D0

BR Generator Enable

BR Generator Source

DTR/REQUEST Function

Local Loopback

Auto Echo

0 0

0 0

0 1

0

1

0

0 1

1 0

1 0

1 1

1

0

1

0

1 1 1

Null Command

Enter Search Mode

Reset Missing Clock

Disable DPLL

Set Source = BR Generator

Set Source = RTxC

Set FM Mode

Set NRZI Mode

DPLL Commands

Figure 6–16.  Write Register 14

Bits 7 and 5:  Digital Phase-Locked Loop Command Bits

These three bits encode the eight commands for the Digital Phase-Locked Loop. A chan-
nel or hardware reset disables the DPLL, resets the missing clock latches, sets the
source to the RTxC pin and selects NRZI mode. The Enter Search Mode command en-
ables the DPLL after a reset.

Null Command (000).  This command has no effect on the DPLL.
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Enter Search Mode (001) . Issuing this command causes the DPLL to enter the Search
mode, where the DPLL searches for a locking edge in the incoming data stream. The ac-
tion taken by the DPLL upon receipt of this command depends on the operating mode of
the DPLL.

In NRZI mode, the output of the DPLL is High while the DPLL is waiting for an edge in the
incoming data stream. After the Search mode is entered, the first edge the DPLL sees is
assumed to be a valid data edge, and the DPLL begins the clock recovery operation from
that point. The DPLL clock rate must be 32 times the data rate in NRZI mode. Upon leav-
ing the Search mode, the first sampling edge of the DPLL occurs 16 of these 32X clocks
after the first data edge and the second sampling edge occurs 48 of these 32X clocks
after the first data edge. Beyond this point, the DPLL begins normal operation, adjusting
the output to remain in sync with the incoming data.

In FM mode, the output of the DPLL is Low while the DPLL is waiting for an edge in the
incoming data stream. The first edge the DPLL detects is assumed to be a valid clock
edge. For this to be the case, the line must contain only clock edges; i.e., with FM1 en-
coding, the line must be continuous ‘0’s. With FM0 encoding the line must be continuous
‘1’s, whereas Manchester encoding requires alternating ‘1’s and ‘0’s on the line. The
DPLL clock rate must be 16 times the data rate in FM mode. The DPLL output causes the
receiver to sample the data stream in the nominal center of the two halves of the bit cell
to decide whether the data was a ‘1’ or a ‘0’. After this command is issued, as in NRZI
mode, the DPLL starts sampling immediately after the first edge is detected. (In FM
mode, the DPLL examines the clock edge of every other bit cell to decide what correction
must be made to remain in sync.) If the DPLL does not see an edge during the expected
window, the one clock missing bit in RR10 is set. If the DPLL does not see an edge after
two successive attempts, the two clocks missing bit in RR10 is set and the DPLL auto-
matically enters the Search mode. This command resets both clock missing latches.

Reset Clock Missing (010) . Issuing this command disables the DPLL, resets the clock
missing latches in RR10, and forces a continuous Search mode state.

Disable DPLL (011) . Issuing this command disables the DPLL, resets the clock missing
latches in RR10, and forces a continuous Search mode state.

Set Source = BR Gen (100) . Issuing this command forces the clock for the DPLL to
come from the output of the baud rate generator.

Set Source = RTxC (101). Issuing this command forces the clock for the DPLL to come
from the RTxC pin or the crystal oscillator, depending on the state of the XTAL/no XTAL
bit in WR11. This mode is selected by a channel or hardware reset.

Set FM Mode (110) . This command forces the DPLL to operate in the FM mode and is
used to recover the clock from FM or Manchester-encoded data. (Manchester is decoded
by placing the receiver in NRZ mode while the DPLL is in FM mode.)

Set NRZI Mode (111) .  Issuing this command forces the DPLL to operate in the NRZI
mode.  This mode is also selected by a hardware or channel reset.

Bit 4:  Local Loopback

Setting this bit to ‘1’ selects the Local Loopback mode of operation  In this mode, the in-
ternal transmitted data are routed back to the receiver, as well as to the TxD pin. The
CTS and DCD inputs are ignored as enables in Local Loopback mode, even if Auto En-
ables is selected. (if so programmed, transitions on these inputs still cause interrupts.)
This mode works with any Transmit/Receive mode except Loop mode. For meaningful
results, the frequency of the transmit and receive clocks must be the same. This bit is re-
set by a channel or hardware reset.

Bit 3:  Auto Echo

Setting this bit to ‘1’ selects the Auto Enable mode of operation.  In this mode, the TxD
pin is connected to RxD, as in Local Loopback mode, but the receiver still listens to the
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RxD input. Transmitted data are never seen inside or outside the SCC in this mode, and
CTS is ignored as a transmit enable. This bit is reset by a channel or hardware reset.

Bit 2:  DTR/Transmit DMA Request Function

This bit selects the function of the DTR/REQ pin. If this bit is set to ‘0’, the DTR/REQ pin
follows the inverted state of the DTR bit in WR5. If this bit is set to ‘1’, the DTR/REQ pin
goes Low whenever the transmit buffer becomes empty and in any of the synchronous
modes when CRC has been sent at the end of a message. The request function on the
DTR/REQ pin differs from the transmit request function available on the W/REQ pin in
that Request does not go inactive until the internal operation satisfying the request is
complete, which occurs four to five PCLK cycles after the rising edge of READ or WRITE.
If the DMA used is edge-triggered, this difference is unimportant. This bit is reset by a
channel or hardware reset.

Bit 1:  Baud Rate Generator Source

This bit selects the source of the clock for the baud rate generator. If this bit is set to ‘0’,
the baud rate generator clock comes from either the RTxC pin or the XTAL oscillator (de-
pending on the state of the XTAL/no XTAL bit). If this bit is set to ‘1’, the clock for the
baud rate generator is the SCC’s PCLK input.  Hardware reset sets this bit to ‘0’, select-
ing the RTxC pin as the clock source for the baud rate generator.

Bit 0:  Baud Rate Generator Enable

This bit controls the operation of the baud rate generator. The counter in the baud rate
generator is enabled for counting when this bit is set to ‘1’, and counting is inhibited when
this bit is set to ‘0’.  When this bit is set to ‘1’, change in the state of this bit is not reflected
by the output of the baud rate generator for two counts of the counter. This allows the
command to be synchronized. However, when set to ‘0’, disabling is immediate. This bit is
reset by a hardware reset.

6.2.16 Write Register 15 (External/Status Interrupt 
Control)

WR15 is the External/Status source control register. If the External/Status interrupts are
enabled as a group via WR1, bits in this register control which External/Status conditions
can cause an interrupt. Only the External/Status conditions that occur after the controlling
bit is sent to ‘1’, will cause an interrupt. This is true even if an External/Status condition is
pending at the time the bit is set. Bit positions for WR15 are shown in Figure 6–17.

D7 D6 D5 D4 D3 D2 D1 D0

DCD IE

SYNC/HUNT IE

CTS IE

Tx Underrun/EOM IE

SDLC/HDLC Enhancement Enable

Zero Count IE

10 x 19-Bit Frame Status FIFO Enable

Break/Abort IE

Figure 6–17.  Write Register 15
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Bit 7:  Break/Abort IE

If this bit is set to ‘1’, a change in the Break/Abort status of the receiver causes an Exter-
nal/Status interrupt. This bit is set by a channel or hardware reset.

Bit 6:  Tx Underrun/EOM

If this bit is set to ‘1’, a change of state by the Tx Underrun/EOM latch in the transmitter
causes an External/Status interrupt. This bit is set to ‘1’ by a channel or hardware reset.

Bit 5:  CTS IE

If this bit is set ‘1’,  a change of state on the CTS pin causes an External/Status interrupt.
This bit is set by a channel or hardware reset.

Bit 4:  SYNC/Hunt IE

If this bit is set to ‘1’, a change of state on the SYNC pin causes an External/Status inter-
rupt in Asynchronous mode, and a change of state in the Hunt bit in the receiver causes
an External/Status interrupt in synchronous modes. This bit is set by a channel or hard-
ware reset.

Bit 3:  DCD IE

If this bit is set to ‘1’, a change of state on the DCD pin causes an External/Status inter-
rupt. This bit is set by a channel or hardware reset.

Bit 2 10x19–Bit Frame Status FIFO Enable

If this bit is set to ‘1’, the 10X19-bit FIFO array and 14-bit counter are available for use but
only if the SCC is programmed in SDLC mode.

Bit 1:  Zero Count IE

If this bit is set to ‘1’, an External/Status interrupt is generated whenever the counter in
the baud rate generator reaches ‘0’. This bit is set to ‘0’ by a channel or hardware reset.

Bit 0:  SDLC/HDLC Enhancement Enable

If this bit is set to ‘1’, WR7′ can be accessed as WR7′ to allow the use of special SDLC/
HDLC options. Refer to WR7′ for details.

6.3 READ REGISTERS
The SCC contains nine read registers in each channel. The status of these registers is
continually changing and depends on the mode of communication, received and transmit-
ted data, and the manner in which this data is transferred to and from the CPU. The fol-
lowing description details the bit assignments for each register.

6.3.1 Read Register 0 (Transmit/Receive Buffer Status 
and External Status)

Read Register 0 contains the status of the receive and transmit buffers. RR0 also con-
tains the status bits for the six sources of External/Status interrupts. The bit configuration
is illustrated in Figure 6–18.
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D7 D6 D5 D4 D3 D2 D1 D0

DCD

SYNC/HUNT

CTS

Tx Underrun/EOM

Rx Character Available

Zero Count

Tx Buffer Empty

Break/Abort

Figure 6–18.  Read Register 0

Bit 7:  Break/Abort

In the Asynchronous mode, this bit is set when a Break sequence (null character plus
framing error) is detected in the receive data stream. This bit is reset when the sequence
is terminated, leaving a single null character in the receive FIFO. This character should
be read and discarded. In SDLC mode, this bit is set by the detection of an Abort se-
quence (seven or more ‘1’s), then reset automatically at the termination of the Abort se-
quence. In either case, if the Break/Abort IE bit is set, an External/Status interrupt is
initiated. Unlike the remainder of the External/Status bits, both transitions are guaranteed
to cause an External/Status interrupt, even if another External/Status interrupt is pending
at the time these transitions occur. This procedure is necessary because Abort or Break
conditions may not persist.

Bit 6:  TX Underrun/EOM

This bit is set by a channel or hardware reset and when the transmitter is disabled or a
Send Abort command is issued. This bit can be reset only by the reset Tx Underrun/EOM
Latch command in WR0. When the Transmit Underrun occurs, this bit is set and causes
an External/Status interrupt (if the Tx Underrun/EOM IE bit is set).

Only the 0-to-1 transition of this bit causes an interrupt. This bit is always ‘1’ in Asynchro-
nous mode, unless a reset Tx Underrun/EOM Latch command has been erroneously is-
sued. In this case, the Send Abort command can be issued to set the bit to ‘1’ and at the
same time cause an External/Status interrupt.

Bit 5:  Clear to Send

If the CTS IE bit in WR15 is set, this bit indicates the state of the CTS pin the last time
any of the enabled External/Status bits changed. Any transition on the CTS pin while no
other interrupt is pending latches the state of the CTS pin and generates an External/
Status interrupt. Any odd number of transitions on the CTS pin while another External/
Status interrupt is pending also causes an External/Status interrupt condition. If the CTS
IE bit is reset, it merely reports the current unlatched state of the CTS pin (i.e., if CTS pin
is Low, this bit will be High).

Bit 4: SYNC/Hunt

The operation of this bit is similar to that of the CTS bit, except that the condition moni-
tored by the bit varies depending on the mode in which the SCC is operating.

When the XTAL oscillator option is selected in asynchronous modes, this bit is forced to
‘0’ (no External/Status interrupt is generated). Selecting the XTAL oscillator in synchro-
nous or SDLC modes has no effect on the operation of this bit.
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The XTAL oscillator should not be selected in External Sync mode.

In Asynchronous mode, the operation of this bit is identical to that of the CTS status bit,
except that this bit reports the state of the SYNC pin.

In External sync mode the SYNC pin is used by external logic to signal character syn-
chronization. When the Enter Hunt Mode command is issued in External Sync mode, the
SYNC pin must be held High by external sync logic until character synchronization is
achieved. A High on the SYNC pin holds the Sync/Hunt bit in the reset condition.

When external synchronization is achieved, SYNC must be driven Low on the second
rising edge of the Receive Clock after the last rising edge of the Receive Clock on which
the last bit of the receive character was received. Once SYNC is forced Low, it is good
practice to keep it Low until the CPU informs the external sync logic that synchronization
has been lost or that a new message is about to start. Both transitions on the SYNC pin
case External/Status interrupts if the Sync/Hunt IE bit is set to ‘1’.

The Enter Hunt Mode command should be issued whenever character synchronization is
lost. At the same time, the CPU should inform the external logic that character synchroni-
zation has been lost and that the SCC is waiting for SYNC to become active.

In the Monosync and Bisync Receive modes, the Sync/Hunt status bit is initially set to ‘1’
by the Enter Hunt Mode command. The Sync/Hunt bit is reset when the SCC establishes
character synchronization. Both transitions cause External/Status interrupts if the Sync/
Hunt IE bit is set when the CPU detects the end of message or the loss of character syn-
chronization. When the CPU detects the end of message of the loss of character
synchronization, the Enter Hunt Mode command should be issued to set the Sync/Hunt
bit and cause an External/Status interrupt. In this mode, the SYNC pin is an output, which
goes Low every time a sync pattern is detected in the data stream.

In the SDLC modes, the Sync/Hunt bit is initially set by the Enter Hunt Mode command or
when the receiver is disabled. It is reset when the opening flag of the first frame is de-
tected by the SCC. An External/Status interrupt is also generated if the Sync/Hunt IE bit is
set. Unlike the Monosync and Bisync modes, once the Sync/Hunt bit is reset in SDLC
mode, it does not need to be set when the end of the frame is detected. The SCC auto-
matically maintains synchronization. The only way the Sync/Hunt bit can be set again is
by the Enter Hunt Mode command or by disabling the receiver.

Bit 3:  Data Carrier Detect

If the DCD IE bit in WR 15 is set, this bit indicates the state of the DCD pin the last time
the Enabled External/Status bits changed. Any transition on the DCD pin while no inter-
rupt is pending latches the state of the DCD pin and generates an External/Status inter-
rupt. Any odd number of transitions on the DCD pin while another External/Status
interrupt is pending also causes an External/Status interrupt condition. If the DCD IE is
reset, this bit merely reports the current, unlatched state of the DCD pin.

Bit 2:  TX Buffer Empty

This bit is set to ‘1’ when the transmit buffer is empty. It is reset while CRC is sent in a
synchronous or SDLC mode and while the transmit buffer is full. The bit is reset when a
character is loaded into the transmit buffer. This bit is always in the set condition after a
hardware or channel reset.

Bit 1:  Zero Count

If the Zero Count Interrupt Enable bit is set in WR15, this bit is set to one while the
counter in the baud rate generator is at the count zero. If there is no other External/Status
interrupt condition pending at the time this bit is set, an External/Status interrupt is gener-
ated.  However, if there is another External/Status interrupt pending at this time, no inter-
rupt is initiated until interrupt service is complete. If the Zero Count condition does not
persist beyond the end of the interrupt service routine, no interrupt will be generated. This
bit is not latched High, even though the other External/Status latches close as a result of
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the Low-to-High transition on ZC. The interrupt service routing should check the other
External/Status conditions for changes. If none changed, ZC was the source. In polled
applications, check the IP bit in RR3A for a status change and then proceed as in the in-
terrupt service routine.

Bit 0:  RX Character Available

This bit is set to ‘1’ when at least one character is available in the receive FIFO and is
reset when the receive FIFO is completely empty. A channel or hardware reset empties
the receive FIFO.

6.3.2 Read Register 1
RR1 contains the Special Receive Condition status bits and the residue codes for the I-
Field in SDLC mode. Figure 6–19 shows the bit positions for RR1.

D7 D6 D5 D4 D3 D2 D1 D0

Residue Code 0

Parity Error

Rx Overrun Error

CRC/Framing Error

All Sent

Residue Code 2

Residue Code 1

End of Frame (SDLC)

* Modified in B Channel.

Figure 6–19.  Read Register 1

Bit 7:  End of Frame (SDLC)

This bit is used only in SDLC mode and indicates that a valid closing flag has been re-
ceived and that the CRC Error bit and residue codes are valid. This bit can be reset by
issuing the Error Reset command. It is also updated by the first character of the following
frame. This bit is reset in any mode other than SDLC.

Bit 6:  CRC/Framing Error

If a framing error occurs (in Asynchronous mode), this bit is set (and not latched) for the
receive character in which the framing error occurred. Detection of a framing error adds
an additional one-half bit to the character time so that the framing error is not interpreted
as a new Start bit. In Synchronous and SDLC modes, this bit indicates the result of com-
paring the CRC checker to the appropriate check value. This bit is reset by issuing an
Error Reset command, but the bit is never latched. Therefore, it is always updated when
the next character is received. When used for CRC error status in Synchronous or SDLC
modes, this bit is usually set since most bit combinations, except for a correctly com-
pleted message, result in a non-zero CRC.

The CRC bit is valid only if CRC is enabled and if the second byte of the CRC is at the
top of the receive data FIFO. IF the Frame Status FIFO is enabled and contains at least
one frame of data, then the CRC bit of the Frame Status FIFO (note that this register is
physically different from the standard RR1) will be valid. Note that the CRC bytes could
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have been read out by a DMA controller independently from the CPU but the CRC status
is still available in the Frame Status FIFO.

Bit 5:  Receiver Overrun Error

This bit indicates that the receive FIFO has overflowed. Only the character that has been
written over is flagged with this error, and when the character is read, the Error condition
is latched until reset by the Error Reset command. The overrun character and all subse-
quent characters received until the Error Reset command is issued causes a Special Re-
ceive Condition vector to be returned.

Bit 4:  Parity Error

When parity is enabled, this bit is set for the characters whose parity does not match the
programmed sense (even/odd). This bit is latched so that once an error occurs, it remains
set until the Error Reset command is issued. If the parity in Special Condition bit is set, a
parity error causes a Special Receive Condition vector to be returned on the character
containing the error and on all subsequent characters until the Error Reset command is
issued.

Bits 3, 2, and 1:  Residue Codes 2, 1, And 0

In those cases in SDLC mode where the received I-Field is not an integral multiple of the
character length, these three bits indicate the length of the I-Field and are meaningful
only for the transfer in which the end of frame bit is set. This field is set to “011” by a
channel or hardware reset and is forced to this state in Asynchronous mode. These three
bits can leave this state only if SDLC is selected and a character is received. The codes
signify the following (reference Table 6–9) when a receive character length is eight bits
per character.

I-Field bits are right–justified in all cases. If a receive character length other than eight bits
is used for the I-Field, a table similar to Table 6–9 can be constructed for each different
character length. Table 6–10 shows the residue codes for no residue (the I-Field bound-
ary lies on a character boundary).

Table 6–9.  I-Field Bit Selection (8 Bits Only)

I-Field I-Field
Residue Residue Residue Bits in Bits in 

0 1 2 Last Byte Previous Byte

1 0 0 0 3

0 1 0 0 4

1 1 0 0 5

0 0 1 0 6

1 0 1 0 7

0 1 1 0 8

1 1 1 1 8

0 0 0 2 8
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Table 6–10.  Residue Bits/Character

Residue Residue Residue
Bits/Char 0 1 2

8 0 1 1

7 0 0 0

6 0 1 0

5 0 0 1

Bit 0:  All Sent

In Asynchronous mode, this bit is set when all characters have completely cleared the
transmitter.  Most modems contain additional delays in the data path, which require the
modem control signals remain active until after the data have cleared both the transmitter
and the modem.  This bit is always set in synchronous and SDLC modes.

6.3.3 Read Register 2
RR2 contains the interrupt vector written into WR2. When the register is accessed in
Channel A, the vector returned is the vector actually stored in WR2. When this register is
accessed in Channel B, the vector returned includes status information in bits 1, 2, and 3
or in bits 6, 5, and 4, depending on the state of the Status High/Status Low bit in WR9
and independent of the state of VIS bit in WR9. The vector is modified according to Table
6–4 shown in the explanation of the VIS bit in WR9. If no interrupts are pending, the
status is V3, V2, V1 = 011, or V6, V5, V4 = 110. Only one vector register exists in the
SCC, but it can be accessed through either channel. Figure 6–20 shows the bit positions
for RR2.

D7 D6 D5 D4 D3 D2 D1 D0

V3

V4

V5

V6

V0

V1

V2

V7

Interrupt Vector*

*Modified in B Channel

Figure 6–20.  Read Register 2

6.3.4 Read Register 3
RR3 is the Interrupt Pending register. The status of each of the Interrupt Pending bits in
the SCC is reported in this register. This register exists only in Channel A. If this register
is accessed in Channel B, all ‘0’s are returned. The two unused bits are always returned
as ‘0’. Figure 6–21 shows the bit positions for RR3.
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D7 D6 D5 D4 D3 D2 D1 D0

Channel A EXT/STAT IP

Channel A Tx IP

Channel A Rx IP

0

Channel B EXT/STAT IP

Channel B Tx IP

Channel B Rx IP

0

Always 0 in B Channel

Figure 6–21.  Read Register 3

6.3.5 Read Register 6
When the SCC is programmed for SDLC operation and bit D2 of WR15 is set to ‘1’, RR6
contains the LSB of a frame byte count stored in the 10x19-bit FIFO array as shown in
Figure 6–22.

D7 D6 D5 D4 D3 D2 D1 D0

Figure 6–22.  Read Register 6

6.3.6 Read Register 7
When the SCC is programmed for SDLC operation and bit D2 of WR15 is set to ‘1’, RR7
contains the MSB of a frame byte count stored in the 10x19-bit FIFO array, and provides
FIFO status via bits D7 and D6 as shown in Figure 6–23. Bit D7 is set to ‘1’ when the
10x19-bit FIFO overflows; otherwise it is set to ‘0’. Bit D6 is used to determine if status
data will be from the FIFO or directly from the 8-bit Status FIFO (RR1). This bit is set to
‘1’ whenever the 10x19-bit FIFO is not empty; otherwise it is ‘0’.

D7 D6 D5 D4 D3 D2 D1 D0

FIFO Data Available Status
1 = Status Reads Come From 10 x 9 Bit FIFO
0 = Status Reads Come From SCC

MSB Byte Count

FIFO Overflow Status
1 = FIFO Overflowed During Operation
0 = Normal

Figure 6–23.  Read Register 7
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6.3.7 Read Register 8
RR8 is the Receive Data register.

6.3.8 Read Register 10
RR10 contains some miscellaneous status bits. Unused bits are always ‘0’. Bit positions
for RR10 are shown in Figure 6–24.

D7 D6 D5 D4 D3 D2 D1 D0

0

Loop Sending

0

Two Clocks Missing

0

On Loop

0

One Clock Missing

Figure 6–24.  Read Register 10

Bit 7:  One Clock Missing

While operating in the FM mode, the DPLL sets this bit to ‘1’ when it does not see a clock
edge on the incoming lines in the window where it expects one. This bit is latched until
reset by a Reset Missing Clock or Enter Search Mode command in WR14. In the NRZI
mode of operation and while the DPLL is disabled, this bit is always ‘0’.

Bit 6:  Two Clocks Missing

While operating in the FM mode, the DPLL sets this bit to ‘1’ when it does not see a clock
edge in two successive tries. At the same time the DPLL enters the Search mode. This bit
is latched until reset by a Reset Missing Clock or Enter Search Mode command in WR14.
In the NRZI mode of operation and while the DPLL is disabled, this bit is always ‘0’.

Bit 4:  Loop Sending

This bit is set to ‘1’ in SDLC Loop mode while the transmitter is in control of the Loop, that
is, while the SCC is actively transmitting on the loop. This bit is reset at all other times.

This bit can be polled in SDLC mode to determine when the closing flag has been sent.

Bit 1:  On Loop

This bit is set to ‘1’ while the SCC is actually on-loop in SDLC Loop mode. This bit is set
to ‘1’ in the X21 mode (Loop mode selected while in monosync) when the transmitter
goes active. This bit is ‘0’ at all other times. This bit can also be polled in SDLC mode to
determine when the closing flag has been sent.
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6.3.9 Read Register 12
RR12 returns the value stored in WR12, the lower byte of the time constant for the baud
rate generator. Figure 6–25 shows the bit positions for RR12.

D7 D6 D5 D4 D3 D2 D1 D0

TC3

TC4

TC5

TC6

TC0

TC1

TC2

TC7

Lower Byte of
Time Constant

Figure 6–25.  Read Register 12

6.3.10 Read Register 13
RR13 returns the value stored in WR13, the upper byte of the time constant for the baud
rate generator. Figure 6–26 shows the bit positions for RR13.

D7 D6 D5 D4 D3 D2 D1 D0

TC11

TC12

TC13

TC14

TC8

TC9

TC10

TC15

Upper Byte of
Time Constant

Figure 6–26.  Read Register 13
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6.3.11 Read Register 15
RR15 reflects the value stored in WR15, the External/Status IE bits. The unused bit is
always returned as ‘0’ unless the corresponding bits in WR15 have been set to ‘1’. In the
NMOS SCC, bits D0 and D2 always read 0. Figure 6–27 shows the bit positions for RR15.

D7 D6 D5 D4 D3 D2 D1 D0

DCD IE

SYNC/HUNT IE

CTS IE

Tx Underrun/EOM IE

SDLC/HDLC Enhancement Status

Zero Count IE

10 x 19-Bit Frame Status FIFO Enable Status

Break/Abort IE

Figure 6–27.  Read Register 15
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SCC Application Notes

CHAPTER 7

7.1 Am8530H INITIALIZATION

7.1.1 Introduction
This application note describes the software initialization procedure for the Am8530 Serial
Communications Controller (SCC).

Table 7–1 provides a worksheet that can be used as an aid when initializing the SCC.
Since all SCC operation modes are initialized in a similar manner, the worksheet can be
used to tailor the SCC device to the user’s individual need. Specific examples are given in
the following chapters.

7.1.1.1 Register Overview
Each of the SCC’s two channels has its own separate Write registers that are pro-
grammed to initialize different operating modes. There are two types of bits in the Write
registers:  Command bits and Mode bits. An example of a register that contains both
types of bits is Write Register 9 (WR9), and is shown in Figure 7–1.

WR9 is the Master Interrupt Control register and contains the Reset command bits. Com-
mand bits are denoted by having boxes drawn around them in register diagrams. Bit D5
in this register is not used in this register and must be 0 at all times.

D7 D6 D5 D4 D3 D2 D1 D0

0 0

0 1

1 0

1 1

No Reset

Channel Reset B

Channel Reset A

Force Hardware Reset

VIS

NV

DLC

0

MIE

STATUS HIGH/STATUS LOW

Figure 7–1.  Write Register 9

The Command bits, D7 and D6, select one of the reset commands for the SCC. Setting
either of these bits to 1 disables both the receiver and the transmitter in the correspond-
ing channel, forces TxD for the channel marking, forces the modem control signals High
in that channel, resets all IPs and IUSs, and disables all interrupts in that channel. Func-
tions controlled by the Command bits can be enabled or disabled only; they cannot be
toggled.
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Bits D4–D0 are Mode bits that can be enabled or disabled either by being set to ‘1’ or re-
set to ‘0’. Each Mode bit affects only one function. For example, Bit D1 is the No Vector
mode bit; it controls whether or not the SCC will respond to an interrupt acknowledge cy-
cle by placing a vector on the data bus. If this bit is set, no vector is returned. In Com-
mand bits entry, each new command requires a separate rewrite of the entire register.
Care must be taken when issuing a command so that the Mode bits are not changed acci-
dentally.

7.1.1.2 Initialization Procedure
The SCC initialization procedure is divided into three parts. The first part consists of pro-
gramming the operation modes (e.g., bits-per-character, parity) and loading the constants
(e.g., interrupt vector, time constants). The second part enables the hardware functions
(e.g., transmitter, receiver, baud-rate generator). It is important that the operating modes
are programmed before the hardware functions are enabled. The third part, if required,
consists of enabling the different  interrupts.

Table 7–2 shows the order (from top to bottom) in which the SCC registers are to be pro-
grammed. Those registers that need not be programmed are listed as optional in the
comments column. The bits in the registers that are marked with an ‘X’ are to be pro-
grammed by the user. The bits marked with an ‘S’ are to be set to their previous pro-
grammed value. For example, in part 2, Write Register 3, bits D1–D7 are shown with an
‘S’ because they have been programmed in part 1 and must remain set to the same
value.
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Table 7–1.  SCC Initialization Worksheet

1 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0
0CWR9

Register HEX Binary Comments

Software Reset

Modes

0 0 0 0 0 00WR0

WR4

0 0 0 0 0WR1

WR2

0WR3

0WR5

WR6

WR7

0 0 0 0WR9

WR10

WR11

WR12

WR13

0WR14

0WR14

WR14

WR3

WR5

0WR0

WR1

WR15

WR0

WR0

WR1

WR9

Enables

Interrupt

08

01

01

0 0 0 1

1

1

1 0 0 0 0 0 1

00 0 0 1 0 0 0

Reset TxCRC

Reset Ext/Status

Reset Ext/Status00 0 0 1 0 0 0

0 0 0
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Table 7–2.  SCC Initialization Order

Part 1.  Modes and Constants

WR9 1100000 Hardware Reset

WR4 XXXXXXXX Tx/Rx con, Aysnc or Sync Mode

WR1 0XX00X00 Select W/REQ (opt)

WR2 XXXXXXXX Program Interrupt Vector (opt)

WR3 XXXXXXX0  Select Rx Control

WR5 XXXX0XXX  Select Tx Control

WR6 XXXXXXXX Program sync character (opt)

WR7 XXXXXXXX Program sync character (opt)

WR9 000X0XXX Select Interrupt Control

WR10 XXXXXXXX Miscellaneous Control (opt)

WR11 XXXXXXXX Clock Control

WR12 XXXXXXXX Time constant lower byte (opt)

WR13 XXXXXXXX Time constant upper byte (opt)

WR14 XXXXXXX0  Miscellaneous Control

WR14 XXXSSSSSCommands (opt)

Part 2.  Enables

WR14 000SSSS1 Baud Rate Enable

WR3 SSSSSSS1 Rx Enable

WR5 SSSS1SSS Tx Enable

WR0 10000000 Reset Tx CRG (opt)

WR1 XSS00S00 DMA Enable (opt)

Part 3.  Interrupt Status

WR15 XXXXXXXX Enable External/Status

WR0 00010000 Reset External Status

WR0 00010000 Reset External Status twice

WR1 SSSXXSXX Enable Rx, Tx and Ext/Status

WR9 000SXSSS Enable Master Interrupt Enable

1 = Set to one X = User defined

0 = Reset to zero S = Same as previously
prog.

7.1.1.3 Initialization Table Generation
Table 7–1 as shown previously, is a worksheet for the initialization of the SCC. All the bits
that must be programmed as either a ‘0’ or a ‘1’ are already filled in; the remaining bits
are left blank and are to be programmed by the user according to the desired mode of
operation. The binary value can then be converted to a hexadecimal number and placed
in the table, following the Write register notation in the column labeled “HEX.” A Program
Initialization Table is produced when this worksheet is completed.

7.1.1.4 Reset Conditions
Prior to initialization, the SCC should be reset by either hardware or software. A hardware
reset can be accomplished by simultaneously grounding RD and WR. A software reset
can be executed by writing a C0H to Write Register 9. After one channel has been initial-
ized, a channel reset should be used in place of the hardware reset in the initialization.
The state of the SCC registers, after reset, is shown in Table 7–3. Before writing to the
SCC, a read should be performed to guarantee the internal logic is pointing to Register 0.
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7.2 POLLED ASYNCHRONOUS MODE

7.2.1 Introduction
This section describes the use of the SCC in polled Asynchronous mode. The device can
be set with 5 to 8 bits per character, 1, 1-1/2, or 2 stop bits, and a wide range of baud
rates. In this particular example, 8 bits per character, 2 stop bits and 9600 baud rate are
used. An external 2.4576 MHz, crystal oscillator is used for baud-rate generation. The
SCC can be programmed for local loopback for on-board diagnostics. The user can make
use of this feature to test-program the part without additional hardware to simulate an ac-
tual transmit and receive environment.

Table 7–3.  SCC Register Reset Values

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

WR0

Register Hardware Reset

0 0 0 0WR1

WR2

0WR3

WR4

0WR5

WR6

WR7

1 1 0 0WR9

WR10

WR11

WR12

WR13

0WR14

0WR15

RR0

RR1

RR3

0RR10

0 1 0

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Channel Reset

0 0 0 0 0 0

0

0

0

0

0 1 0

0

0

0 0 0 0 0 0 0

0 0

1

0 0 0 0

0 0 0 0 0 0

0 0

0 0

0 0 0 0 1 0 0 0

1 0 0 0 0

1 0

1 1 1 1 1 0 0

0 1 0 0 0 1 1

0 0 0 0 0 0 0 0 00 0 0 0 0 0

00 0 0 0 1 1

1 0

11 1 1 1 0 0

01 0 0

000 0 0 0

0 0 0 0 0

1
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7.2.2 SCC Interface
Figure 7–2 shows the SCC to CPU interface required for this application. The 8-bit data
bus and control lines all come from the user’s CPU. The Am8530 control lines are RD,
WR, A/B, D/C and CE. PCLK comes from the system clock, or an external crystal, up to
the maximum rate of the SCC. The IEI and the INTACK pins should be pulled up. The
baud-rate generator clock is connected to the RTxC pin.

7.2.3 SCC Initialization
Initialization of the SCC for polled asynchronous communication is divided into two parts;
part one programs the operating modes of the SCC and part two enables them (refer to
Table 7–4). Care must be taken when writing the software to meet the SCC’s Cycle and
Reset Recovery times. The Cycle Recovery time, 6 PCLK cycles, applies to the period
between any Read or Write cycles affecting the SCC. The Reset Recovery time is the
period after a hardware reset caused either by hardware or software;  this recovery time
extends the Cycle Recovery time to 11 PCLK cycles.

Data 8

Control 5

System

VCC VCC

XTAL
OSC

2.4576 MHz
OSC

PCLK RTxC

INTACK

IEI

D0 – D7

SCC

Pin 12 For Channel A
Pin 28 For Channel B

Figure 7–2. SCC Interface
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Table 7–4.  Polled Asynchronous Initialization Procedure

Register Value Comments

WR9 C0H Force Hardware Reset

WR4 4CH x16 clock, 2 stop bits, no parity

WR3 C0H Rx 8 bits, Rx disabled

WR5 60H Tx 8 bits, DTR, RTS, Tx off

WR9 00H Int. Disabled

WR10 00H NRZ

WR11 56H Tx & Rx = BRG out, TRxC = BRG out 

WR12 06H Time constant = 6

WR13 00H Time constant high = 0

WR14 10H BRG in = RTxC, BRG off, loopback

Enables

WR14 11H BRG enable

WR3 C1H Rx enable

WR5 68H Tx enable

7.2.3.1 SCC Operating Mode Programming
WR9 resets the SCC to a known state by writing a C0 hex. The Force Hardware Reset
command is identical to a hardware reset. It will reset both channels.

WR4 selects the Asynchronous, x 16 mode, with 2 stop bits and no parity. The x 16 mode
means that clock rate is 16 times the data rate.

WR3 selects 8 bits per character and does not enable the receive. The 8 bits per charac-
ter allows 8 bits to be assembled from the data stream. The receiver is not enabled at this
time because the SCC has not been initialized.

WR5 selects 8 bits per character and does not enable the transmitter. The 8 bits per char-
acter allows 8 bits to be sent, as data, with the least significant bit first. The transmitter is
not enabled at this time because the SCC has not been initialized.

WR9 selects that there are no interrupts enabled. This inhibits the SCC from requesting
an interrupt from the CPU.

WR10 selects NRZ encoding. This NRZ coding is used on the transmitter as well as the
receiver.

WR11 selects the RTxC pin to TTL clock; the baud-rate generator is the transmit and re-
ceive clocks source, and the TRxC pin is used as a baud-rate generator output.

WR12 & WR13 select the baud-rate generator’s time constant. The WR13 time constant
is determined by the equation:

Time Constant =
Clock Frequency

2 x Baud Rate x clock mode
–2

In this example, the clock frequency is 2.4576 MHz, the baud rate is 9600, the clock
mode is 16. The time constant is, therefore, 6; expressed as a 16-bit, hexadecimal num-
ber, it is 0006H. The time constant Low (WR12) is, therefore 06H and the time constant
High (WR13) is 00H. The baud rate for this example can be varied, as long as the data
rate is less than 1/4 of the PCLK rate. Table 7–5 shows the time constants for other com-
mon baud rates.
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Table 7–5.  Time Constants for Common Baud Rates

Baud Divider
Rate Dec Hex

38400 0 0000H

19200 2 0002H

9600 6 0006H

4800 14 000EH

2400 30 001EH

1200 62 003EH

600 126 007EH

300 254 00FEH

150 510 01FEH

For 2.4576 MHz Clock, X16 Clock Mode

WR14 selects the baud-rate generator as the RTxC pin, baud-rate generator disabled,
and internal loopback. The baud-rate generator uses the RTxC pin as the clock source
and is not enabled at this time because the SCC initialization is not complete.

7.2.3.2 SCC Operating Mode Enables
WR14 enables the baud-rate generator. Bit 0 (LSB) is changed to a ‘1’ to enable the
baud-rate generator; all other bits must maintain the value selected during initialization.

WR3 enables the receiver. Bit 0 (LSB) is changed to a ‘1’ to enable the receiver; all other
bits must maintain the value selected during initialization.

WR5 enables the transmitter. Bit 3 is changed to a ‘1’ to enable the transmitter; all other
bits must maintain the value selected during initialization.

7.2.4 Transmit and Receive Routines
After initialization, and after all enables have been selected, the SCC is ready for commu-
nication. The transmitter buffer and the receive FIFO are empty. The example shown be-
low is coded to transmit and receive characters.

;Transmit a character

TXCHAR:INPUT  RRO   ;Read RRO

       TEST   BIT2  ;Test transmit

                     buffer empty

       JZ     TXCHAR;Loop if not empty

       OUTPUT CHAR  ;Output character to

                     data port

       RET          ;Return

;Receive a character

RXCHAR:INPUT  RRO   ;Read RRO

       TEST   BIT 0 ;Test Receive

buffer

       JZ     RXCHAR;Loop if not full

       INPUT  CHAR  ;Input character

                     from data port

       RET          ;Return

Figure 7–3.  Transmit and Receive Routine
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7.3 INTERRUPT WITHOUT INTACK ASYNCHRONOUS 
MODE

7.3.1 Introduction
This section describes the use of the SCC for interrupt-driven Asynchronous mode. As
with the example in the previous chapter, the SCC is set with 8 bits per character, 2 stop
bits, at 9600 baud rate. An external 2.4576 MHz, crystal oscillator is used for baud-rate
generation. Interrupt acknowledge is not generated because of the extra hardware re-
quired to produce this signal. In this chapter, the SCC is also programmed for local loop-
back so that no external loop between the transmit and the receive data lines is needed
for on-board diagnostics. This feature allows the user to test-program the part without
additional hardware to simulate an actual transmit and receive environment.

7.3.2 SCC Interface
Figure 7–4 shows the SCC to CPU interface required for this application. The 8-bit data
bus and control lines all come from the user’s CPU. The control lines are RD, WR, A/B,
D/C and CE. The INT signal goes to an interrupt controller which must produce the inter-
rupt vector to the CPU. The PCLK comes from the system clock, or an external crystal
oscillator, up to the maximum rate of the SCC (e.g., 6 MHz for the Am8530A). The IEI
and the INTACK pins should be pulled up. The baud-rate generator clock is connected to
the RTxC pin.

7.3.3 SCC Initialization
The initialization of the SCC for interrupt-driven asynchronous communication is divided
into three parts as shown in Table 7–6. Part one programs the operating modes of the
SCC, part two and three enable them. Care must be taken when writing the code to meet
the SCC’s Cycle and Reset Recovery times. The Cycle Recovery time applies to the pe-
riod between any Read or Write cycles to the SCC, and is 6 PCLK cycles. The Reset Re-
covery time applies to a hardware reset caused either by hardware or software; this
recovery time extends the Cycle Recovery time to 11 PCLK cycles.

Data 8

Control 5

System

VCC VCC

XTAL
OSC

2.4576 MHz
OSC

PCLK RTxC

INTACK

IEI

D0 – D7

SCC

Pin 12 For Channel A
Pin 28 For Channel B

Interrupt
Controller

INT

Figure 7–4.  SCC Interface
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Table 7–6.  SCC Initialization Order for Interrupt Driven Asynchronous Mode

Register Value Comments

WR9 C0H Force Hardware Reset

WR4 4CH x 16 clock, 2 stop bits, no parity

WR2 00H Interrupt Vector 00

WR3 C0H Rx 8 bits, Rx disabled

WR5 60H Tx 8 bits, DTR, RTS, Tx off

WR9 00H Int Disabled 

WR10 00H NRZ

WR11 56H Tx & Rx = BRG out, TRxC = BRG out

WR12 06H Time constant = 6

WR13 00H Time constant high = 0

WR14 10H BRG in = RTxC, BRG of, loopback

Enables

WR14 11H BRG enable

WR3 C1H Rx enable

WR5 68H Tx enable

Enable Interrupts

WR1 12H Rx Int on all char and Tx Int enables

WR9 08H MIE

7.3.3.1 SCC Operating Modes Programming
WR9 resets SCC to a known state by writing a C0 hex. This command, Force Hardware
Reset, is identical to a hardware reset. It will reset both channels.

WR4 selects asynchronous mode, x16 mode, 2 stop bits and no parity. The x16 mode
means that the clock rate is 16 times the data rate.

WR2 is the interrupt vector of the SCC. Even though a vector is not placed in the bus in
this mode the vector including status is read from RR2. By writing 00H to this register the
status read will be the only bits set in RR2.

WR3 selects 8 bits per character and does not enable the receiver. The 8 bits per charac-
ter allows 8 bits to be assembled from the data stream. The receiver is not enabled at this
time because the SCC is not completely initialized.

WR5 selects 8 bits per character and does not enable the transmitter. The 8 bits per char-
acter allows 8 bits to be sent as data with the least significant bit first.  The transmitter is
not enabled at this time because the SCC is not completely initialized.

WR9 selects that there are no interrupts enabled. This will inhibit the SCC from request-
ing an interrupt from the CPU.

WR10 selects NRZ encoding. This selects NRZ coding that is to be used on the transmit-
ter and the receiver.

WR11 selects the RTxC pin to TTL clock, the transmit and receive clocks source as the
baud-rate generator and the TRxC pin as a baud-rate generator output.
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WR12 & WR13 select the baud-rate generator time constant. The time constant is deter-
mined by the equation:

Time Constant =
Clock Frequency

2 x Baud Rate x clock mode
–2

In this example, the clock frequency is 2.4576 MHz, the baud rate is 9600, and the clock
mode is 16; the time constant is 6. Converting this time constant to a 16-bit hexadecimal
number, it becomes 0006H. The time constant Low (WR12) is 06H and the time constant
High (WR13) is 00H. The baud rate for this example can be varied for as long as the data
rate is less than 1/4 of the PCLK rate. Table 7–7 gives the time constants for other com-
mon baud rates.

Table 7–7.  Time Constants for Common Baud Rates

Baud Divider
Rate Dec Hex

38400 0 0000H

19200 2 0002H

9600 6 0006H

4800 14 000EH

2400 30 001EH

1200 62 003EH

600 126 007EH

300 254 00FEH

150 510 01FEH

For 2.4576 MHz Clock, X16 Clock Mode

WR14 selects the baud rate source as the RTxC pin, baud rate generator disabled, and
internal loopback. The baud-rate generator will use the RTxC pin as the clock source for
the baud-rate generator. The baud-rate generator is not enabled at this time because the
SCC initialization is not complete.

7.3.3.2 SCC Operating Mode Enables
WR14 enables the baud-rate generator. Bit 0 (LSB) is changed to a 1 to enable the baud-
rate generator; all other bits must maintain the value selected during initialization.

WR3 enables the receiver. Bit 0 (LSB) is changed to a 1 to enable the receiver; all other
bits must maintain the value selected during initialization.

WR5 enables the transmitter. Bit 3 is changed to a 1 to enable the transmitter; all other
bits must maintain the value selected during initialization.

7.3.3.3 SCC Operating Mode Interrupts
WR1 enables the Tx and the Rx interrupts. The Rx interrupt is programmed to generate
an interrupt on all received characters or special conditions. This provides an interrupt on
every character received by the SCC. The external/status interrupts are not enabled in
this application.

WR9 sets the master interrupt enable (MIE) bit 3. Setting this bit enables the interrupts
pending to generate and interrupt on the INT pin.
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7.3.4 Interrupt Routine
When the SCC has been initialized and enabled, it is ready for communication. The trans-
mitter buffer and the receive FIFO are both empty. An interrupt will not be generated until
the software writes the first character to the transmit buffer. Once the first character is in
the SCC shift register, the first transmit interrupt will occur. The SCC then continues to
issue interrupts to the interrupt controller until the end of the message. At the end of the
message, a Reset Transmitter Interrupt Pending (WR0) is issued to clear the transmit
interrupt. After the last character is read into the SCC, the interrupts will cease until an-
other message is written into the transmitter.

Once an interrupt is received and the interrupt controller vectors to the interrupt routine,
RR2 is read from channel B. The value read from RR2 is the vector, including status. This
vector shows the status of the highest priority interrupt pending (IP) at the time it is read.
Once the highest priority interrupt condition is cleared, RR2 will show the status of the
next highest interrupt pending, if one is present. This allows multiple interrupts to be serv-
iced without the overhead of the interrupt acknowledge cycle of the interrupt controller.
MIE is disabled and then enabled to guarantee an edge for an edge-sensitive interrupt
controller.

The following example shows how the interrupt routine should be coded.

BEGIN:  INPUT RR2 ;Read RR2 from channel B
        TEST Bit 4    ;Test for Tx Empty
        JE      TXEMPTY ;Jump to Transmit Routine
       TEST    Bit 5 ;Test for Rx full
        JUMP    RXFULL   ;Jump to Receive Routine
        OUT     WR9 00   ;MIE Disabled
        OUT     EOI      ;Output EOI to Interrupt Controller
        IRET               ;Return to Main
;
;
TXEMPTY: TEST    NOMORE     ;Test a last character flag
        JE      LAST       ;Jump to LAST if no more characters
        OUTPUT  CHAR       ;Output character to data port
        DEC     CHARCOUNT  ;Decrement character count
        JUMP    BEGIN      ;Jump to BEGIN to test for more IP
;
LAST:   OUTPUT  RR0,28H    ;Reset Tx Interrupt Pending
        JUMP    BEGIN      ;Jump to BEGIN to test for more IP
;
;
RXFULL: INPUT   RR1        ;Read RR1
        COMPARE RR1,00     ;Test for special condition bit set
        JUMP    NE         ;Jump to SPECIAL
       INPUT   CHAR       ;Input charcater from data port
        JUMP    BEGIN      ;Jump to BEGIN to test for more IP
;
SPECIAL; .
        .
        This means a framing error, receive overrun error or parity error 

has occurred. Character may be read but data is not correct. 
A flag should be set to post the error.

        .
        .        

OUTPUT RR0, 30H    ;Reset Error Command
        JUMP BEGIN         ;Jump to BEGIN to test for more IP

Figure 7–5. SCC Interrupt Routine
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7.4 INTERFACING TO THE 8086/80186

7.4.1 8086 (Also Called iAPX 86) Overview
The 8086 is a general purpose 16-bit microprocessor CPU. The CPU has a 16 bit data
bus multiplexed with sixteen address outputs. There are four additional address lines
(segment addresses which are multiplexed with STATUS) that increase the memory
range to 1 Mbyte. The 8086 addresses are specified as bytes. In a 16 bit word, the least
significant byte has the higher address. This is compatible with 8080, 8085, Z80 and
PDP11 addressing schemes but differs from the Z8000 and 68000 addressing.

The data bus is “asynchronous;” i.e, the CPU machine cycle can be stretched without
clock manipulation by inserting Wait states between T2 and T3 of a read or write cycle to
accommodate slower memory or peripherals. Unlike the 68000, the 8086 has separate
address spaces for I/O (64 kBytes).

The 8086 can operate in MIN. or MAX. mode. Maximum mode offloads certain bus con-
trol functions to a peripheral device and allows the CPU to operate efficiently in a co-proc-
essor environment. A brief discussion on both the MIN. and the MAX. modes follows.

MIN. mode : I/O addressing is define by a High or the IO/M output, and activated by 
the RD output for reading from memory, or I/O or activated by the WR 
output for writing to memory or I/O.

DMA: The Bus is requested by activating the HOLD input to the 8086. Bus 
Grant is confirmed by the HLDA output from the 8086.

MAX.  mode : I/O operation is controlled by two outputs from the 8288.

(8086 plus IORC: active during Read from I/O

8288) IOWC: active during Write to I/O

MRDC: active during Read from memory

MWTC: active during Write to memory

DMA: The Bus is requested and Bus Grant is acknowledged on the same pin 
(RQ/GT0 OR RQ/GT1) through a pulsed handshake.

Interrupts In MIN. and MAX. Modes:
Interrupt is requested by activating the INTR or NMI inputs to the 8086.

Interrupt is acknowledged by the INTA pin on a MIN. mode 8086 or by the INTA pin on
the 8288 in MAX. mode.

Note:  There is no RD or IORC during the interrupt acknowledge sequence.

7.4.1.1 The 8086 and Am8530H Interface
Most common systems demultiplex address and data. The Am8530H is compatible with
these systems.

Interface between the 8086 and the Am8530H peripheral device shows how to take ad-
vantage of its interrupt structure as shown in Figure 7–6. INTACK is generated by the
8086’s first INTA pulse. This allows about 800 nsec for the interrupt daisy chain to settle.
The second INTA pulse is then gated to the RD pin which places the vector on the bus. At
8 MHz, two Wait States must be inserted. This design is the same when interfacing to the
186. It requires no additional Wait States. Diagrams in Figure 7–7 show the connections
for 74LS74 in both 5 MHz and 8 MHz operations of the 8086. Figure 7–8 is an alternate
implementation which can be used in place of the logic in the dotted area in Figure 7–6.

Note that the falling edge of WR must be delayed to meet data setup time requirements.
A Wait State must be inserted (not shown) to meet pulse width requirements during a
write.
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The Am29841 is a high speed 10-bit latch with high drive capability. Other latches may be
used instead. Most designers latch BHE even though S7 is the same, the few extra bits
become quite useful when trying to keep parts count down.

A0 – A9

A8 – A15

A16 – A19

M/IO

AD19

AD10

ALE

AD9

AD0

INTR

RESET

INTA

RD

WR

CLK

CS

D/C

D7

D0

INT

INTACK

RD

WR

Am8530H8086
5 MHz

Am29841

LE OE

OE

LE

Am29806

74LS04

74LS04

Reset
From 8284A

74LS04

74LS02

74LS02

PRE
D

CP

Q

Q

74LS74

D

CP

Q

Q
CLR

74LS74

Figure 7–6.  8086—SCC Interface
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T1 T2 T3 T4 T1 T1 T1 T2 T3 T4

125 ns

186 186

8 x 125 = 1000 ns 8 MHz 8086

6 x 200 = 1200 ns 5 MHz 8086

8 MHz = 325

INTA

INTA1

INTA2

PRE
D

CP

Q

Q

74LS74

INTA1

INTA

RESET

PRE
D

CP

Q

Q

74LS74

INTA2

INTA

RESET

8 MHz 8086
Figure A

5 MHz 8086
Figure B

Figure 7–7.  Interrupt Acknowledge Timing
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Figure 7–8.  Interrupt Acknowledge Timing Implementation
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7.5.1.2   Initialization Routines

 

The sample assembly initialization routine, Figure 7-9 takes into account the READ/ WRITE
recovery time and has been tested in an 8 MHz system. The interrupt service routines for
Channel B are for testing only and are not intended as realistic examples. Also, Figure 7-
10 shows a sample initialization sequence written in "C."

 

AMC AMDOS 8/8 64K, Version 2.00 - 9/26/80

type int8530.a86
; THIS ROUTINE WRITTEN FOR THE 8086
; INITIALIZES THE 8530 SCC FOR ASYNCHRONOUS
; OPERATION AT 9600 BAUD.

; REGISTER USAGE
; AX INPUT AND OUTPUT DATA
; BX COUNTER
; DX ADDRESS OF PORT
; BP POINTER TO MEMORY

CMD EQU 0F902H ;COMMAND/STATUS PORT
DATA EQU 0F900H ;DATA PORT
TAB EQU OFFSET TABLE
ET EQU OFFSET ETB

ORG 0100H

START: MOV DX,CMD ;GET ADDRESS OF CMD PORT
IN AL,DX ;READ STATUS TO SET STATE
MOV BX,ET-TAB ;GET TABLE LENGTH
MOV BP,TAB ;POINT TO TABLE

RPT: MOV AL,[BP] ;GET DATA FROM TABLE
OUT DX,AL ;OUTPUT ADDRESS OF REGISTER
INC BP ;INCREMENT TABLE POINTER
MOV AL,[BP] ;GET DATA
OUT DX,AL ;OUTPUT DATA TO REGISTER
INC BP ;INCREMENT TABLE POINTER
DEC BX ;COUNT-1
JZ RPT ;REPEAT IF NOT DONE

;PROGRAM CONTINUES AS DESIRED

TABLE DB 009H ;ADDRESS WR9
DB 0C0H ;RESET COMMAND
DB 003H ;ADDRESS WR3
DB 041H ;# OF BITS ETC.
DB 004H ;ADDRESS WR4
DB 04CH ;DATA
DB 005H ;ADDRESS WR5
DB 028H ;BITS/CHAR AND TXEN
DB 00BH ;ADDRESS WR11
DB 056H ;SELECT BAUD GEN
DB 00CH ;ADDRESS WR12
DB 00CH ;UPPER TC
DB 00DH ;ADDRESS WR13
DB 000H ;LOWER TC
DB 00EH ;ADDRESS WR14
DB 007H ;SET DTR AND ENABLE BAUD GEN

ETB:
END

 

Figure 7-9. SCC Initialization



  

 

SCC Application Notes

 

7-19

AMD

 

/*********************************************************************
/*                  Initializing the Z8530 asynchronuously
/*            (using pointer referring to memory map I/O device)
/**************************************************************************

#include "stdio.h"
#define spaddress 0x22FS5 /* status port address */
#define dpaddress 0x22F87 /* dataport address */
#define rxbit 2 /* receive ready bit */
#define txbit 1 /* transmit ready bit */
#define tablesize 16

main () 
{

unsigned char table[tablesize]; 
unsigned long *ptspa, *ptdpa; 
unsigned char value;
int i;

/* data table for initialization */

table[0]=0x9; /* address WR9 */
table[l]=0xC0; /* hardware reset SCC */
table[2]=0x3; /* address WR3 */
table[3]=0x41; /* set # of bits etc. */
table[4]=0x4; /* address WR4 */
table[5]=0x4C; /* misc mode */
table[6]=0x5; /* address WR5 */
table[7]=0x28; /* bits/char and TXEN */
table[8]=0xB. /* address WRIi */
table[9]=0x56; /* select baud generator */
table[l0]=0xC; /* address WR12 */
table[ll]=0xC; /* upper TC */
table[l2]=0xD; /* address WR13 */
table[13]=0; /* lower TC */
table[l4]=0xE; /* address WR14 */
table[l5]=0x7; /* set DTR/REQ enable baud generator */

/* output data from table to perfore initialization */

ptspa=spaddress; /* pointer to status port address */
ptdpa=dpaddress; /* pointer to data port address */
value=*ptspa;    /* read status to set the set state machine */
for (i--0; i<tablesize; i++)       /* perform initialization */ 

*ptspa=table[i];

/* receive and echo character routine */

for (  ;;)
    { while (((*ptspa) & rxbit) == 0); /* wait for receive ready bit */

value=*ptdpa; /* receive character */
while (((*ptspa) & txbit) == 0); /* wait for transmit ready bit */
*ptdpa--value' /* transmit character */

 

Figure 7-10. SCC Initialization - Memory Mapped
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7.5 INTERFACING TO THE 68000

7.5.1 68000 Overview
The 68000 has an asynchronous, 16-bit, bidirectional, data bus. Data types supported by
the 68000 are:  bit data, integer data of 8-, 16- or 32-bit addresses and binary coded deci-
mal data. It can transfer and accept data in either words or bytes. The DTACK input indi-
cates the completion of a data transfer. When the processor recognizes DTACK during a
read cycle, the data is latched and the bus cycle terminates. When DTACK is recognized
during a write cycle, the bus cycle also terminates. An active transition of DTACK indi-
cates the termination of data transfer on the bus. All control and data lines are sampled
during the 68000’s clock high time. The clock is internally buffered, which results in some
slight differences in the sampling and recognition of various signals. The 68000 mask sets
prior to CC1 and allows DTACK to be recognized as early as S2, and all devices allow
BERR or DTACK to be recognized in S4, S6, etc., which terminates the cycle. If the re-
quired setup time is met during S4, DTACK will be recognized during S5 and S6, and
data will be captured during S6. DTACK signal is internally synchronized to allow for valid
operation in an asynchronous system. If an asynchronous control signal does not meet
the required setup time, it is possible that it may not be recognized during that cycle. Be-
cause of this, synchronous systems must not allow DTACK to precede data by more than
40 to 240 nanoseconds, depending on the speed of the particular processor. I/O is mem-
ory-mapped, i.e., there are no special I/O control signals. Any peripheral is treated as a
memory location.

DMA: This Bus is requested by activating the BR input of the 68000. Bus Arbitration is
started by the BG output going active. The Bus is available when AS becomes inactive.
The requesting device must acknowledge bus mastership by activating the BGACK input
to the CPU.

The 23-bit address (A1…A23) is on an unidirectional, three-state bus and can address 8
Mwords (16 Mbytes) of memory or I/O. It provides the address for bus operation during all
cycles, except the interrupt cycles. During interrupt cycles, address lines A1, A2 and A3
provide information about the level of interrupt being serviced. Instead of A0 and BYTE/
WORD, there are two separate data strobe lines for the two bytes in a word. A note of
caution here, the 68000 treats the MSB of the lower byte as an even byte, or word ad-
dress. The same goes with processors such as the Z8000. Processors such as the 8086
treat the lower byte as the odd byte.

Interrupt is requested by activating any combination of the interrupt inputs to the 68000
(IPL0…2), indicating the encoded priority level of the interrupt requester (inputs at or be-
low the current processor priority are ignored). The 68000 automatically saves the status
register, switches to supervisor mode, fetches a vector number from the interrupting de-
vice, and displays the interrupt level on the address bus. For interfacing with old 68000
peripherals, the 68000 issues an Enable signal at one-tenth of the processor clock fre-
quency. There are a number of AMD proprietary third generation peripherals that can be
interfaced to the 68000 CPU, to improve system performance. This chapter deals mainly
with the interfacing of the 68000 and the Am8530H.
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7.5.2 The 68000 and Am8530H without Interrupts
Implementation of an interface without interrupt is straightforward. INTACK must be tied
High when not in use and the shift register provides a means for inserting Wait States.

Figure 7–11 shows the interface between the 68000 and the Am8530H. The Am8530H
SCC. It supports all advanced protocols and has a number of user programmable fea-
tures that provide design flexibility.
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Figure 7–11.  SCC—68000 Interfacing
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Figure 7–12.  Am8530H to 68000 Connection with Interrupts Using SSI and MSI

The data bus between the 68000 and the Am8530H are directly linked together. The
Am29806 decodes the address and generates CS for the peripheral and produces ANYE,
which is used by the 74LS164, to generate Wait States. The 74LS164 controls the num-
ber of wait states by the “C” input which in turn controls the DTACK signal to the CPU.
This allows RD and WR to obtain the required 400 ns width. A1 generates the C/D input
to the Am8530H while the remaining address lines are connected to the Am29809 ad-
dress comparator.

The Am29809 Comparator and the Am29806 Comparator/Decoder provides high-speed
address selection as well as an open collector acknowledge driver. This allows memories
and peripherals to be conveniently wire-ORed to the processor’s DTACK pin. This inter-
face does not provide a hardware reset; therefore, it is necessary to do a dummy read to
the control port before issuing a software reset.
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7.5.3 The 68000 and Am8530H with Interrupts
The following description addresses the problems of interfacing the 68000 and Am8530H
with interrupts. The circuit configuration is basically the same as the design without inter-
rupts.

The 74LS148 and the two 74LS138s assume there are other interrupting devices which
are not compatible with the interrupt daisy chain of the Am8530H. The 74LS148 and one
of the 74LS138 can be eliminated if this is not the case.

The first 74LS138 acts as a status decoder; it is gated with AS to de-glitch the outputs.
The second 74LS138 decodes the Interrupt Acknowledge priority level, allowing a two-
dimensional priority scheme. Daisy chain can be used to resolve priority at any given pri-
ority level while the CPU resolves priority between levels.

The 74LS164 is added to generate the correct timing during an Interrupt Acknowledge
cycle. It allows 5 CPU clocks for the daisy chain to settle before it generates RD to put the
vector onto the bus. The daisy chain is implemented by using the IEI, IEO pins (not
shown in Figure 7–12) on the 8500 peripherals. The time allowed for the daisy chain to
settle is a function of the number of devices in the chain; thus the allowance of 5 clocks
used here is arbitrary. The 74LS164 also generates DTACK. A block diagram of this inter-
face is shown in Figure 7–15. Timing diagram is followed in Figure 7–13. It is more
straightforward to use the Am9519A Interrupt Controller instead of the on-chip interrupt
features. However, this approach does not allow the programmer to take advantage of
some of the Am8530H time-saving features.

S0 S1 S2 S3 S4 SW SWSW SWSW SWSW SW SW SW S6 S7 S0SW

T1 T2 TW TW TW TW TW T3 T4

AS

FC0–FC02

IACK

DTACK
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DATA IN

A1 - A3

READ
DATA

Figure 7–13.  Am8530H to 68000 Interrupt Acknowledge Timing
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Figure 7–15.  PAL Timing

7.5.4 The 68000 and Am8530H with Interrupts via a PAL 
Device

This example shows how a Programmable Array Logic (PAL) device simplifies the task of
interrupt generation compared to the MSI implementation.  The block diagram for the in-
terface via a PAL device is shown in Figure 7–14. The timing diagram (Figure 7–15) illus-
trates the Interrupt Acknowledge cycle. As in the other designs, RD is generated during
Interrupt Acknowledge to place the vector on the bus.

The timing during register programming is not shown. The PAL device allows selection of
one or two Wait States by making W0 High or Low respectively. The table below shows
the appropriate number of Wait Sates as a function of CPU speed.

CPU Speed Wait States

4 MHz 1

6 MHz 2

8 MHz 2

10 MHz 2

PAL device equations are shown in Figure 7–16.
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PA16R4 PAL DESIGN SPEC

PAT 002 JOE BRICH 9 SEPT 83

68000 TO 8500 OR 9500 PERIPHERALS

ADVANCED MICRO DEVICES

CLOCK  /CS  RW  /LDS  /WO  /AS  FCO FC1  FC2 GND

/OE  /INTA  /ACK  /C  /B  /A  /DLDS  /RD  /WR  VCC

A := A*/B + B *C + /AS

B := A*/C + /A*C + /AS

C := /A*/B*AS + B*C*AS

DLDS := LDS

RD = LDS*DLDS*RW*/INTA + /INTA*/A*/B*C*WO + INTA*/B*A + ACK * LDS

DESCRIPTION
THIS PAL DEVICE INTERFACESN 85XX TYPE PERIPHERALS TO THE 68000
MICRO PROCESSOR.  IT INSERTS 1 OR 2  WAIT STATES AS SELECTED BY
/WO = 0 IS ONE AND /WO = 1 IS TWO WAIT STATES.  FOUR WAIT STATES
ARE INSERTED DURING THE INTERRUPT ACKNOWLEDGE CYCLES.  ALSO THE
RD OUTPUT GENERATED DURING INTA IS A FUNCTION OF THE INTERNAL
STATE MACHINE AND NOT A FUNCTION OF LDS.  OE CAN BE LEFT OPEN
SINCE THE FLIP–FLOP OUTPUTS ARE NOT USED DIRECTLY.  THE FALLING
EDGE OF RD IS DELAYED IN ORDER TO GUARANTEE THE CS TO RD SETUP
TIME REQUIREMENTS.

Figure 7–16.  PAL Equations

7.6 Am7960 AND Am8530H APPLICATION

7.6.1 Distributed Data Processing Overview
The changing data-processing environment has created attractive opportunities for dis-
tributed processing, encouraging both users and vendors to support the  concept. Distrib-
uted processing provides either functional or geographical dispersion while integrating the
dispersed parts into a coherent system.

The main advantages of distributed processing power are:

a. Efficiency—
Specialized machines perform their functions in an efficient manner.  Large, 
centralized systems are often multi-tasked and they do not necessarily perform all the 

functions with equal efficiency.

b. Low Cost—
i. A less complex computer, or other forms of distributed intelligence, is required.
ii. It simplifies certain applications where only data accessing is required.

c. Control—
Users have control of most of the computing power in the system organization.

d. Unlimited Access—
Distributed processing power allows the user greater access to the machine operating 
system and hardware. In large, centralized systems, very few users are allowed to 
access the mainframe’s operating system and hence cannot take full advantage of all 
the computer’s power.

e. Response Time—
Local processing eliminates the relatively slow common-carrier lines in favor of high-
speed channels. Distributed processing can improve response time for certain 
applications that can be partitioned for simultaneous execution in parallel on multiple,
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functionally distributed computers.  Lengthy delays are often encountered in a centralized
system due to overloaded CPUs and slow communication lines.

f. Resource Sharing—
Remote sites in a distributed system can use each other’s facilities such as sharing 
expensive peripheral devices in the system.

The advantages of distributed processing, therefore, point mainly to two important facts:

1. LANs make distributed intelligence practical.

2. Methods must be devised in order to allow large amount of data to be transported, at 
high speeds, between centers of intelligence.

This discussion addresses the second factor.

7.6.2 Data Communications at the Physical Layer
Today’s data communications market can be segmented in terms of speed.

i. Low speed (300 baud–56 kbaud)

ii. Medium speed (0.5 Mb/s–3 Mb/s)

iii. High speed (10 Mb/s–60 Mb/s)

iv. Very high speed (100 Mb/s and up)

On medium speed applications data rate is assumed at 1 Mb/s. At this rate, the physical
interface requires a highly sophisticated transceiver. The following is a list of the require-
ments:

a. The transceivers must have good but inexpensive isolation from the cabling system 
(large common-mode voltages and surge voltages are common phenomenons in any 
network). Pulse transformers can provide the required isolation.

b. The transceiver must be able to support a good collision avoidance scheme, since all 
devices have equal access to the network (in a CSMA type architecture). If a collision 
does occur, the transceiver must detect the collision and flag the communications 
controller.

c. The receiver must be able to inhibit false starts due to noise in the surrounding 
environment.

d. The transmitter must control the slew rate of the output signal to reduce EMI/RFI to 
surrounding electronic equipment. This is a very important criterion if the network is to 
meet FCC/VDE regulations on radiation.

e. If an isolation transformer is used, some form of data encoding must also be
implemented so that a series of ‘1’s or ‘0’s do not saturate the transformer by 
charging it to either voltage level.

Why the Am7960
The Am7960 Coded Data Transceiver is designated to meet all the requirements of the
medium-speed network. It is frequency agile for data rates between 0.5 Mb/s to 3 Mb/s.

Electro–Magnetic Interference
The Am7960 has an external resistor connected from the slew rate control pin (TSRC) to
ground to control the transmit slew rate. If the rise and fall times of the output signal are
each 30% of the transmit clock period, the output waveform looks approximately like a
sine wave (Figure 7–17). This has a smoothing effect on the transmitted signal, reducing
3rd, 5th and higher order harmonics. This in turn reduces energy radiating from the cable
and minimizes the effects of electro-magnetic interference and radio frequency inter-
ference.
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T X C

30% TxC 30% TxC

Figure 7–17. Slew Rate Controlled Outputs

Common-Mode Problem
The common-mode voltage problem can be resolved by using transformer isolation at the
transceiver-cable interface. The Am7960 provides a high impedance interface to the cou-
pling transformer. It also implements a user-transparent Manchester encoding/decoding
scheme that limits the frequency of output data signals to within a narrow range.

Noise Immunity
In the receiver section of the Am7960 a signal qualifier minimizes false starts, thus im-
proving reliability. Line activity is detected when the input signal crosses the threshold.
The receive clock is acquired when there are two transitions of the input signal during a
bit time interval.

Digital Sampling
The internal DPLL runs at 16 times the data rate. Hence, each bit of the received signal is
quantized into 16 samples. The DPLL is free-running when the line is quiet but synchro-
nizes within 1/16 of a bit on the first valid signal edge. It then opens up a series of win-
dows at the 5/16 to 7/16, 12, and 9/16 to 11/16 positions of the expected bit cell.
Zero-crossings within these windows set a Shorten, Center, or Lengthen flag that makes
the loop adjust for sampling of the next bit cell. The internal circuitry samples the incom-
ing data at 1/4 and 3/4 bit intervals. A transition of voltage levels between these two time
slots indicates the arrival of a valid Manchester data bit.

7.6.3 Hardware Considerations
The Am7960 can be used with a Am8530H Serial Communications Controller (SCC) to
build a simple and cost-effective 1 Mb/s data link for office and industrial applications.
The Am8530H is a two channel, software-programmable, device which can adapt to most
system architectures including:

■ Bus architectures (full-duplex and half-duplex)

■ Token Passing Ring (SDLC Loop Mode)

■ STAR Configurations (similar to SLAN)

The power and flexibility of the Am8530H, along with the Am7960’s CSMA-CA access
scheme. Manchester coding of data and output slew rate control enable the system de-
signer to deliver an inexpensive 1 Mb/s LAN.

The straightforward nature of the hardware connections is shown in Figure 7–18.  The
Request to Send (RTS) output from the SCC is ORed with inverted Advance Carrier De-
tect (ACD) output to implement the collision avoidance scheme.
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ACD is asserted whenever the receiver detects line activity. This scheme is a significant
asset in the single bus (half-duplex) architecture shown in Figure 7–19. Consider the case
where Device 1 is transmitting and Device 4 is receiving. Although the message on the
bus is not read by Devices 2 and 3, their respective ACD lines will be active (Low) due to
line activity at their receive inputs, RxL0 and RxL1. This prevents the controllers from
transmitting as long as there is line activity, thus avoiding any potential collisions or inter-
ruption of the transmission. During transmission, ACD is internally negated. The ACD and
RTS gating scheme does not interfere with normal data transmission.

In this example (Figure 7–19), the Am7960 will generate and recognize its own preamble
because the Am8530H does not have that capability. This is called Mode 0 operation and
is accomplished by holding the Mode pin Low. The Master Reset input is an asynchro-
nous transceiver reset. When asserted, all interface signals will be inhibited with the ex-
ception of transmit clock. It has an internal pull-up resistor, internal discharge clamp
diode, and input hysteresis to provide power-on reset with a single external capacitor to
ground.

The Clear-To-Send (CTS) is activated just before the Am7960 is ready to transmit data.
The interface for Transmit Data (TxD), Transmit Clock (TxC), Receive Data (RxD), and
Carrier Sense (CS) between the Am7960 and the Am8530H are direct connections. This
ease of connection is possible because the Am8530 supports the modem-like interface
(standard for most USARTs and serial communications controllers) for which the Am7960
is designed.

The RxC rising edge to RxD valid time on the Am7960 varies from –5 ns to +20ns. The
Am8530H clocks in data on the rising edge of RxC and requires a set-up of at least 0 ns
from RxD to the rising edge of RxC. This set-up time will not be met if the same RxC
edge that clocks out data from the Am7960 is used to clock in data to the Am8530H. This
problem can be solved by inverting the receive clock from the Am7960 before feeding it
into the Am8530H.

The X1 and X2 pins supply the clock to the digital phase-locked loop in the Am7960,
which in turn generates the TxC and RxC signals. These inputs can be driven by either a
crystal or a TTL source. The crystal oscillator circuit must be used, in 3rd harmonic, for
frequencies above 24 MHz. If a TTL source is connected to X1, the X2 pin must be left
open.

The hardware connections between the Am8530H and a CPU and DMA controller are
equally simple. Use of a DMA controller is suggested for any system that transmits above
500 kb/s, to simplify data transfers between the memory and the Am8530H. After initializ-
ing the Am8530H and the DMA channel, the CPU leaves the actual transfer of data to the
DMA controller (explained under Software Considerations later in this application note).

During transmission, the SCC requests a DMA transfer by pulling the W/REQ line active
(Low) if the transmit buffer is empty, or keeps it High until the transmit buffer is empty.
Similarly, the receive section will request a DMA transfer if the receive buffer contains a
character or will keep W/REQ High until a character enters the receive buffer. A flag
within the SCC can be read to recognize an End-Of-Message (EOM).
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Figure 7–18. 7960-Am8530H Hardware Interface Diagram
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Figure 7–20. Star Network and Token Passing Ring (SDLC Loop Mode)
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The Am8530H can also be configured to make the entire system interrupt-driven. The
chip can be set up to interrupt the CPU on external conditions (i.e., a change on a modem
line or a break condition). It can also be set up to cause receive interrupt on first charac-
ter, on all characters, or on one of many special receive conditions (e.g., receiver overrun,
framing error, or end of frame).

The Am7960 can also support a full-duplex operation (point-to-point between two de-
vices). In this case, no collision avoidance scheme needs to be implemented because
only one device can talk on one line at a time. Such a set-up would be very practical for
STAR configurations, or Token Passing Ring, or Loop configurations (shown in Figure
7–20).

In addition to this 1Mb/s LAN using the Am7960, channel B of the Am8530H is configured
to operate a low speed RS-423/RS-232C asynchronous link. The Am26LS29 driver and
the Am26LS32 receiver were added, as shown in Figure 7–18, to provide proper signal
conditioning for the cable.

7.6.4 Software Considerations
Two programs have been written for the hardware described and are listed at the end of
this application note. The program for the transmitter is listed under “Software to Transmit
Data At 1Mb/s Using DMA.” The program for the receiver is listed under “Software to Re-
ceive Data At 1Mb/s Using DMA.” These programs enable a file to be read off a disk on
one IBM* PC (XT or AT), transmit it over a shielded coaxial cable to another similar PC**,
and save it onto a disk on the receiving PC. The collision avoidance scheme is imple-
mented in hardware. The software implementation demonstrates that the Am8530H and
Am7960 can be simply configured for a 1Mb/s data communications network. An actual
operating network may need a slightly greater degree of software sophistication.

The file from disk (hard or floppy) is first copied into memory. The length of the file and
starting address is then determined. The Am8530H Serial Communications Controller
must now be initialized for an SDLC mode of operation with DMA request on transmit or
receive.

The initialization scheme for the Am8530H involves setting up the various modes of op-
eration followed by enabling the transmitter, the receiver, and DMA request. The CRC
scheme of the Am8530H is used to ensure data integrity at the receive end. Finally, the
interrupts are enabled if the Interrupt Mode of data transfer is to be used.

It is important to follow the data initialization sequence as shown in the software routine
for correct operation of the SCC. The DMA controller of the PC can then be loaded with
the starting address of the data and the length of file (number of bytes to be transmitted).
The DMA channel must be enabled upon completion of initialization. Data transmission
starts as soon as DMA is enabled. The transmit-underrun latch must be reset by writing a
C0H to WR0 of the Am8530H. This command controls the transmission of CRC at the
end of transmission.

At the receiving station, the address (first byte after flags) of the incoming data is com-
pared with the device address in WR6 of the Am8530H. The remaining data are received
only if an address match occurs. This process does not involve any CPU interaction. The
EOM and CRC errors are indicated in RR0 of the Am8530H.

The length of the message is transmitted first, and then the entire message is transmitted.
Between these two transmissions, flags (7EH) are sent on the line.

In this program, CPU polls the Am8530H to determine End-Of-Message (EOM). Using
the same hardware connections, the SCC can be programmed to interrupt on special re-
ceive conditions to indicate an EOM to the CPU.

Channel B of the Am8530H is initialized for asynchronous communication at 19.2 kbaud.
The asynchronous transmit routine polls bit D2 of Read Register 0 to determine a trans-
mit buffer empty condition.  Writing a byte of data to the transmit buffer resets this bit.
Address line AD0 differentiates between a command and data access to the Am8530H.
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Similarly, on the receive side, bit D0 of Read Register 0 is monitored to determine a re-
ceive character available condition. This bit is reset if the receive FIFO is completely
empty. Address line AD1 selects either synchronous or asynchronous data transfers.
Hence, before transmission, the user can select whether the data transfer is over a 1 Mb/
s-network to similar PCs, or over a slower link to a printer.

SUMMARY
The Am8530H can be software-manipulated to perform at a higher degree of sophistica-
tion without any change in hardware connections.

Changing or adding to the software does not affect the Am7960 operation. Hence, the
Am7960 provides an easy upgrade (high-speed, greater distance, common-mode isola-
tion) for most modern modem circuits that use RS-422 drivers and receivers.
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SOFTWARE ROUTINES

Software to Transmit Data at 1 Mb/s Using DMA
#include “stdio.h”
#define arraysize 40 /*size of array for the 8530 sync. init*/
#define port 0x0382 /*I/O port address for the SCC channel A*/
#define aport 0x0380 /*I/O port address for 8530 channel B*/
#define aportd 0x0381 /*I/O data address for 8530 channel B*/
#define arraysiz 18 /*size of array for the 8530 async. init*/
unsigned char *ptr;
unsigned int segread();
struct(int scs, sss, sds, ses; ) rv;
unsigned long int data_segment;
unsigned long int data_seg;
unsigned int num;
unsigned long int adrr;

/*TRANSMIT ROUTINE*/
main()

{
unsigned char var_nam, string1[8], N, n;
unsigned int result, res;

do
{
/*This routine chooses between synchronous
  and asynchronous data transfers*/
printf(“Do you want to print a file(Y/N)? “);
var_nam = scanf(“%s”, string1);
result + strcmp(string1,”N”);
res = strcmp(string1,”n”);

if(result != 0 && res != 0)
{
/*Main routine for asynchronous data transfer*/
printf(“Asynch transmit\n”);
opnfile(); /*Read file from disk into system memory*/
asccinit(); /*Initialize the 8530 for asynchronous trans-

mit*/
trnum(); /*Transmit length of file*/
cont();
atrans(); /*Transmit the entire file*/

else
{
/*Main routine for synchronous data transfer*/
printf(“Synchronous transmit\n” );
opnfile();
sccinit();
dmainit();
cont();
dminit();
}
/*This allows the user to continue transmission of next
file*/
printf(“Do you want to transmit another file(Y/N)? “);
var_nam = scanf(“%s”, string1);
result = strcmp(string1,”N”);
res = strcmp(string1,”n”);
}

while(result != 0 && != 0);
}
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/*THIS ROUTINE LOADS THE FILE FROM DISK TO BUFFER MEMORY*/
opnfile()
{
char var_nam, name[16],*ptrr;
extern char *alloc( );
unsigned int fd, endpos, begpos, count, numd;
unsigned int;
int num_read, i, numr;
printf(“Enter name of file to be transferred: “);
var_nam = scanf(“%s”, name);

fd = fopen(name, “rb”);
endpos = fseek(fd,OL,2); /*looks for end of file*/
fclose(fd);
fd = open(name, BREAD); /*opens the file as binary 

file*/
if(fd<0)  { fputs(“file not opened”, stdout); return;}

ptr = alloc(endpos+1); /*allocates memory space for 
file
  beginning at ptr*/

for(i=0;i<endpos;i++) *(ptr+i)=’\0’;
ptrr = ptr;
num = 0;
num_read = 1;

while(num_read!=0)
{
/*This reads the file from disk starting at location ptrr*/
num_read = read(fed,ptrr,endpos);
num = num + num_read; /*calculates length of file*/
ptrr = ptrr + num_read:
}

ptr = ptr – 2;
num = num + 2;
*ptr = num; /*appends lower byte of length to beginning of 

file*/
ptr++;
numd = num >> 0x08;
*ptr = 0x02; /*address of receiving device is attached*/

adrr = 01;
segread(&rv);
data_segment = rv.sds;
data_seg = data_segment << 4;
addr = data_seg + (long int) ptr; /*absolute 20–bit address 

is calculated
/*this is required by the DMA controller*/
/*num_read contains:

if –1 error
if  0 EOF
if >0 number of characters put in buffer*/

close(fd);
return;
}

/*THIS ROUTINE INITIALIZES THE 8530 FOR TRANSMIT*/
sccinit()

{
unsigned char array[arraysize]; /array to initialize SCC 

registers*/
unsigned int i+0;
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unsigned char temp;  /*temporary storage for transmit/receive 
 character

array[0]=0x9
array[1]=0xC0; /*hardware reset the 8530*/
array[2]=0x4
array[3]=0x20; /*x1 clock, SDLC mode, parity disable*/
array[4]=0x1;
array[5]=0x40; /*choose DMA request on transmit*/
array[6]=0x3;
array[7]=0xFC; /*Rx 8bits/char, autoenabled, hunt mode*/
array[8]=0x5;
array[9]=0x63; /*Tx 8bits/char, RTS enabled, TxCRC 

enabled*/
array[10]=0x6;
array[11]=0x02; /*address for this device is 02*/
array[12]=0x7;
array[13]=0x7E; /*SDLC flag pattern 01111110*/
array[14]=0x9;
array[15]=0x02; /*No vector is returned*/
array[16]=0xA;
array[17]=0x00; /*Send CRC and Flag on underrun, do not 

abort*/
array[18]=0xB;
array[19]=0x08; /*rec. clock=RTxC pin, Transmit clk=TRxC 

pin*/
array[20]=0xE;
array[21]=0x00;
array[22]=0x3;
array[23]=0xFD; /*Rx enable*/
array[24]=0x5;
array[25]=0x6B; /*Tx enable*/
array[26]=0x00;
array[27]=0x80; /*reset TxCRC*/
array[28]=0x1;
array[29]=0xC0; /*DMA request enabled*/
array[30]=0xF;
array[31]=0x08; /*disable all interrupts except DCD 

input*/
array[32]=0x0;
array[33]=0x10; /*reset external/status interrupt twice*/
array[34]=0x0;
array[35]=0x10;
array[36]=0x1;
array[37]=0xC9; /*Rx interrupt on 1st char. or special 

condition*/
array[38]=0x9;
array[39]=0x0A /*set master interrupt enable to 1*/
  /*BEGIN INITIALIZATION ROUTINE*/

temp = inportb(port);     /*read from RR0*/
while(i<arraysize)

{
outportb(port, array[i++]);
}

}
/*THIS ROUTINE INITIALIZES THE 9517 DMA CONTROLLER TO TRANSMIT

 LENGTH OF FILE*/
dmainit()

{
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unsigned int lsb, temp, msb, latch, wrdh, wrdl, tmp1, start;
unsigned int bytn, byt, tmp2;
outportb(0x09, 0x01); /*clear all DMA requests on channel 1*/
outportb(0x0A, 0x05); /*mask channel 1 DMA request*/
outportb(0x0B, 0x49); /*mode register for single transfer mode,

read, auto init, address increment*/
lsb = adrr & 0xFF;
temp = adrr >> 0x08; /*rotate ptr 8 bits to get msb*/
msb = temp & 0xFF;
temp = temp >> 0x08; /*rotate 8 bits to get sector address*/
latch = temp & 0x0F;
outportb(0x81, latch);/*load sector address into DMA page reg-

ister*/
outportb(0x02, lsb); /*lower byte of starting address*/
outportb90x0B, msb); /*upper byte of starting address*/
start = adrr & 0xFFFF;
bytn = 0x03: /*address and 2 bytes for length are

transmit*/
wrdl = bytn & 0xFF /*lower order byte of wordcount*/
tmp1 = bytn >> 0x08; /*rotate wordcount 8 bits for msb*/
wrdh = tmp1 & 0xFF: /*upper byte of wordcount*/
outportb(0x03, wrd1); /*this is the lower byte of # of bytes

that fit within the first sector*/
outportb(0x03, wrdh); /*upper byte of wordcount*/
outportb(0x0A, 0x01); /*enable DMA*/
outportb(port, 0x00);
outportb(port, 0xC0); /*reset transmit underrun latch*/

}
/*THIS ROUTINE INITIALIZES THE 9517 DMA CONTROLLER TO TRANSMIT

ENTIRE/
dminit()

{
unsigned int lsb, temp, msb, latch, wrdh, wrd1, tmp1, start;
unsigned int bytn, byt, tmp2;
outportb(0x09, 0x01); /*clear all DMA requests on channel 1*/
outportb(0x0A, 0x05); /*mask channel 1 DMA request*/
outportb(0x0B, 0x49); /*mode register for single transfer mode,

read, auto init, address increment*/
lsb = adrr & 0xFF;
temp = adrr >> 0x08; /*rotate ptr 8 bits to get msb*/
latch = temp & 0x0F;
outportb(0x81, latch);/*load sector address into dma page reg-

ister*/
outportb(0x02, lsb); /*lower byte of starting address*/
outportb(0x02, msb); /*upper byte of starting address*/
start = adrr & 0xFFFF;
bytn = num;
wrd1 = bytn & 0xFF; /*lower order byte of wordcount*/
tmp1 = bytn >> 0x08; /*rotate wordcount 8 bits for msb*/
wrdh = tmp1 & 0xFF; /*upper byte of wordcount*/
outportb(0x03, wrd1); /*this is the lower byte of # that fit

within the first sector*/
outportb(0x03, wrdh); /*upper byte of wordcount*/
outportb(0x04, 0x01); /*enable DMA*/
outportb(port, 0x00);
outportb(port, 0xC0); /*reset transmit underrun latch*/

}
cont() /*arbitrary time delay routine*/
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{
unsigned long int count;
count = 0;
while(count<35550)

{
count++;
}

}
/*THIS ROUTINE INITIALIZES THE 8530 FOR ASYN-

CHRONOUS TRANSMIT*/
asccinit()

{
unsigned char array[arraysiz], temp;
unsigned int i=0;
array[0]=0x09;
array[1]=0xC0; /*hardware reset*/
array[2]=0x4;
array[3]=0x44; /*X16 clock, 1 stop bits*/
array[4]=0x3;
array[5]=0xC0; /*8 bits/char.*/
array[6]=0x5;
array[7]=0x60; /*8 bits/char.*/
array[8]=0xB;
array[9]=0x56; /*RxC=BR gen, TxC=BR, TRxCout=BR*/
array[10]=0xC;
array[11]=0x06; /*set BR gen for 19.2 kBaud*/
array[12]=0xD;
array[13]=0x00;
array[14]=0xE;
array[15]=0x07; /*set DTR/REQ, enable BR gen, PCLK = BR 

source*/
array[16]=0x5;
array[17]=0x68; /*Enable transmitter*/

/*BEGIN ASYNCHRONOUS ROUTINE*/
temp = inportb(aport);/*read from RR0 to set up state machine*/
while(i<arraysiz)

{
outportb)aport, array[i++]);
}

}
/*TRANSMIT FILE ASYNCHRONOUSLY AT 19.2 kBaud*/

atrans()
{
unsigned int temp, tmp, tx;
unsigned int i, count;
temp = 0;
num = num + 1;
for (i=0; i<num; i++) /*process the loop until all chars. are

transmitted*/
{

tx = 0;
while(tx==0)

{
temp = inportb(aport); /*load RR0

to check Tx buffer empty bit*/
tx = temp & 0x04;
}
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outportb(aportd, *ptr++); /*output a character to 
transmit buffer*/

}
}
/*TRANSMIT LENGTH OF FILE ASYNCHRONOUSLY AT 19.2 kBaud*/

trnum()
{
unsigned char tmp, temp, tx;
unsigned int i, count;
for (i=0; i<0x03; i++) /*process the loop until 

length of file is 
transmitted*/

{
tx = 0;
while(tx==0)

{
temp = 0;
temp = inportb(aport);/*load RR0 to check Tx buffer empty bit*/
tx = temp & 0x04;
}

outportb(aport, *ptr++);/*output a character to transmit buffer*/
}

ptr = ptr – 3;
}
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Software to Receive Data at 1 Mb/s using DMA
#include “stdio.h”
#define arraysize 40 /*size of array for the 8530 init*/
#define port 0x0382 /*I/O port address for the SCC channel A*/
#define aport 0x0380 /*I/O port address for 8530 channel B*/
#define aportd 0x0381 /*I/O data address for 8530 channel B*/
#define arraysiz 22 /*size of array for 8530 asynch. init.*/
char *ptr;
unsigned int segread();
struct{int scs, sss, sds, ses; } rv;
unsigned long int data_segment;
unsigned long int data_seg;
unsigned int num;
unsigned long int adrr;

/*RECEIVE ROUTINE*/
main()

{
unsigned int result, res;
char var_nam, string1[8], N, n;
do

{
/*Choose synchronous or asynchronous receiving*/
printf(“IS THIS DEVICE A PRINTER(Y/N)? “);
var_nam = scanf(“%s”, string1);
result = strcamp(string1, “N”);
res = strcmp(string1, “n’);

if(result!=0 && res!=0)
{
/*Main routine for asynchronous receive*/
num = 0x03;
opnfile();
asccinit(); /*Initialize 8530 for async rec.*/
printf(“WAITING FOR DATA\n”);
recnum(); /*Receive length of file*/
length(); /*Determine length of file*/
opnfile();
recfile(); /*Receive the entire file*/
printf(“WOW!! I RECEIVED THE DATA!\N”);
closfile(); /*Transfer received file to disk*/
}

else
{

/*Main routine for synchronous receive*/
num = 0x03;
opnfile();
sccinit();
dmainit();
printf(“WAITING FOR DATA\n”);
end();
length();
opnfile();
dminit();
end();
printf(“WOW!! I RECEIVED THE DATA\n”);
closfile();
}
/*Allows user continuous reception of files*/
printf(“Do you wish to receive another file(Y/N)? “);
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var_nam = scanf(“%s”, string1);
result = strcmp(string1,”N”);
res = strcmp(string1,”n”);
}
while(result!=0 && res!=0);
}
/*THIS ROUTINE SETS A VALUE FOR THE STARTING ADDRESS AND ALLO-

CATES
 SPACE IN MEMORY TO ACCOMMODATE ENTIRE LENGTH OF FILE*/

opnfile()
{
extern char *alloc( );
unsigned int i;
ptr = alloc(num);

for(i=0; i<num; i++) *(ptr+i)=’\0’;
ptr—;
num = num + 1;
adrr = 01;
segread(&rv);
data_segment = rv.sds;
data_seg = data_segment << 4;
adrr = data_seg + (long int) ptr;

}
/*THIS ROUTINE INITIALIZES THE 8530 FOR RECEIVE*/

sccinit()
{
unsigned char array[arraysize]; /*array to initialize SCC reg-

isters*/
unsigned int i=0;
unsigned char temp; /*temporary storage for 

transmit/receive characters*/
array[0]=0x9;
array[1]=0xC0; /*hardware reset the 8530*/
array[2]=0x4;
array[3]=0x20; /*x1 clock, SDLC mode, parity disable*/
array[4]=0x1;
array[5]=0x40; /*choose DMA request on receive*/
array[6]=0x3;
array[7]=0xFC; /*Rx 8 bits/char, autoenabled, hunt mode,

receive crc enable*/
array[8]=0x5;
array[9]=0x63; /*Tx 8 bits/char, RTS enabled, TxCRC 

enabled*/
array[10]=0x6;
array[11]=0x02; /*address for this device is 01*/
array[12]=0x7;
array[13]=0x7E; /*SDLC flag pattern 01111110*/
array[14]=0x9;
array[15]=0x02; /*No vector is returned*/
array[16]=0xA;
array[17]=0x00; /*Send CRC and Flag on underrun, do not 

abort*/
array[18]=0xB;
array[19]=0x08; /*rec. clock=RTxC pin, Transmit clk=TRxC 

pin*/
array[20]=0xE;
array[21]=0x00;
array[22]=0x3;
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array[23]=0xFD; /*Rx enable*/
array[24]=0x5;
array[25]=0x6B; /*Tx enable*/
array[26]=0x00;
array[27]=0x80; /*reset TxCRC*/
array[28]=0x1;
array[29]=0xE0; /*DMA request enabled*/
array[30]=0xF;
array[31]=0x00; /*disable all interrupts*/
array[32]=0x0;
array[33]=0x10; /*reset external/status interrupt twice*/
array[34]=0x0;
array[35]=0x10;
array[36]=0x1;
array[37]=0xE0; /*Rx interrupt on special condition*/
array[38]=0x9;
array[39]=0x02; /*set master interrupt enable to 1*/

/*BEGIN INITIALIZATION ROUTINE*/
/*The following dummy read statement is used to ensure that SCC
has initialized properly*/
temp = inportb(port); /*read from RR0*/

while(i<arraysize)
{
outportb(port, array[i++]);
}

}
/*THIS ROUTINE INITIALIZES THE 9517 DMA CONTROLLER*/

dmainit()
{
unsigned int lsb, temp, msb, latch, wrdh, wrd1, tmp1, start;
unsigned int bytn, byt, tmp2;
outportb(0x09, 0x01); /*clear all DMA requests on channel 1*/
outportb(0x0A, 0x05); /*mask channel 1 DMA request*/
outportb(0x0B, 0x45); /*mode register for single transfer mode,

read, auto init, address increment*/
lsb = adrr & 0xFF;
temp = adrr >> 0x08; /*rotate ptr 8 bits to get msb*/
msb = tem[ & 0xFF;
temp = temp >> 0x08; /*rotate 8 bits to get sector address*/
latch = temp & 0x0F;
outportb(0x81, latch);/*load sector address into DMA page reg-

ister*/
outportb(0x02, lsb); /*lower byte of starting address*/
outportb(0x02, msb); /*upper byte of starting address*/
start = adrr & 0xFFFF;
bytn = 0x03;
wrd1 = bytn & 0xFF; /*lower order byte of wordcount*/
tmp1 = bytn >> 0x08; /*rotate wordcount 8 bits for msb*/
wrdh = tmp1 & 0xFF; /*upper byte of wordcount*/
outportb(0x03, wrd1); /*this is the lower byte of # of bytes

that fit within the first sector
outportb(0x03, wrdh); /*upper byte of wordcount*/
outportb(0x0A, 0x01); /*enable DMA*/

}
/*THIS ROUTINE WRITES THE MEMORY BUFFER ON TO THE DISK*/
closfile()
{
char var_nam, name[10];
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unsigned int fd;
int num_wr;
ptr = ptr + 3; /*deletes device address and length of 

file before writing onto the disk*/
num = num – 3;
printf(“What shall I name the received file?”);
var_nam = scanf(“%s”, name);
fd = creat(name, BWRITE);

if(fd<0) abort(“\ncreat error occured\n”);
num_wr = write(fd, ptr, num);
printf(“Number of bytes written to file rec.dat =

%d\n”,num_wr);
close(fd);
}

/*THIS ROUTINE INITIALIZES THE DMA CONTROLLER FOR RECEIVE*/
dminit()

{
unsigned int lsb, temp, msb, latch, wrdh, wrd1, tmp1, start;
unsigned int bytn, byt, tmp2;
outportb(0x09, 0x01); /*clear all DMA requests on channel 1*/
outportb(0x0A, 0x05); /*mask channel 1 DMA request*/
outportb(0x0B, 0x45); /*mode register for single transfer mode,

read, auto init, address increment*/
lsb = adrr & 0xFF;
temp = adrr >> 0x08; /*rotate ptr 8 bits to get msb*/
msb = temp & 0xFF;
temp = temp >> 0x08; /*rotate 8 bits to get sector address*/
latch = temp & 0x0F;
outportb(0x81, latch);/*load sector address into DMA page 

register*/
outportb(0x02, lsb); /*lower byte of starting address*/
outportb(0x02, msb); /*upper byte of starting address*/

start = adrr & 0xFFFF;
bytn = num;
wrd1 = bytn & 0xFF; /*lower order byte of wordcount*/
tmp1 = bytn >> 0x08; /*rotate wordcount 8 bits for masb*/
wrdh = tmp1 & 0xFF; /*upper byte of wordcount*/
outportb(0x03, wrd1); /*this is the lower byte of # of bytes

that fit within the first sector*/
outportb(0x03, wrdh); /*upper byte of wordcount*/
outportb(0x0A, 0x01); /*enable DMA*/
outportb(port, 0x00);
outportb(port, 0x00); /*reset transmit underrun latch*/

}
/*THIS ROUTINE POLLS BIT D7 IN RR1 TO DETECT AN END–OF–MES-

SAGE*/
end()
{

unsigned char temp, ef;
unsigned int count;
ef = 0;
temp = 0
inportb(port);
outportb(port, 0x00);
outportb(port, 0x30);

while(ef==0)
{

count = 0;
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inportb(port);
outportb(port, 0x01);
temp = inportb(port);
while(count<300)

{
count++;
}

ef = temp & 0x80;
}

}
/*THIS ROUTINE LOADS THE LENGTH OF THE FILE TO BE RECEIVED*/

length()
{
unsigned int *iptr;
ptr++;
iptr = ptr; /*assigns iptr as an address of a 16–bit 

integer*/
num = *iptr;
}
/*THIS ROUTINE INITIALIZES THE 8530 FOR ASYNC. RECEIVE*/

asccinit()
{
unsigned char array[arraysiz], temp;
unsigned int =i=0;
array[0]=0x9;
array[1]=0xC0; /*hardware reset*/
array[2]=0x4;
array[3]=0x44; /*X16 clock, 1 stop bits*/
array[4]=0x3;
array[5]=0xE0; /*8 bits/character*/
array[6]=0x5;
array[7]=0x60; /*8 bits/character*/
array[8]=0xB;
array[9]=0x56; /*RxC = BR gen, TxC = BR gen, TRxCout = 

BR*/
array[10]=0xC;
array[11]=0x06; /*set BR gen for 19.2 kBaud*/
array[12]=0xD;
array[13]=0x00;
array[14]=0xE;
array[15]=0x03; /*set DTR/REQ, enable BR gen, PCLK = BR

source*/
array[16]=0x3;
array[17]=0xE1; /*enable receiver*/

temp = inportb(aport); /*Read from RR0 to
set up state machine*/

while(i<arraysiz)
{
outportb(aport, array[i++]);
}
}

/*RECEIVE FILE ASYNCHRONOUSLY AT 19.2 kBaud*/
recfile()

{
unsigned char temp, rx;
unsigned int i, count;
rx = 0;
temp = 0;
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for(i=0; i < num; i++)/*process the loop until all char are 
received*/

{
rx = 0;
while(rx==0)
{
temp = inportb(aport);/*load RR0 to check for rec. char

available*/
rx = temp & 0x01;

}
*ptr = inportb(aportd);/*Input a char from the rec. FIFO*/
ptr++;
}
ptr = ptr – num; /*Restore inital value of pointer*/

}
/*RECEIVE LENGTH OG FILE ASYNCHRONOUSLY AT 19.2 kBaud*/

recnum()
{
unsigned char temp, rx;
unsigned int i, count;
for(i=0; i < 0x03; i++)/*process the loop until all char are

received*/
{
rx = 0;
while(rx==0)
{
temp = inportb(aport);/*load RR0 to check for rec. char

available*/
rx = temp & 0x01;
}

*ptr = inportb(aportd);/*Input a char from the rec. FIFO*/
ptr++;
}

ptr = ptr – 0x03;
;
..................................................................
............


