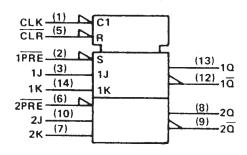
SDLS200 - DECEMBER 1983 - REVISED MARCH 1988


- Package Options Include Plastic "Small Outline" Packages, Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instrument Quality and Reliability

description

The 'LS78A contains two negative-edge-triggered flipflops with individual J-K, preset inputs, and common clock and common clear inputs. The logic levels at the J and k inputs may be allowed to change while the clock pulse is high and the flip-flop will perform according to the function talbe as long as minimum setup and hold times are observed. The preset and clear are asynchronous active-low inputs. When low they override the clock and data inputs forcing the outputs to the steady-state levels as shown in the function table.

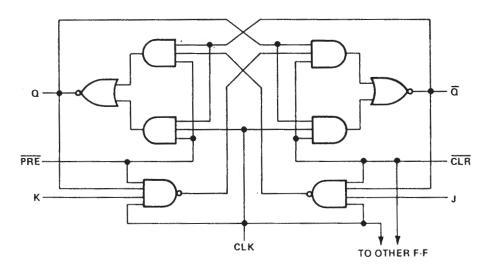
The SN54LS78A is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS78A is characterized for operation from 0 °C to 70 °C.

logic symbol[†]

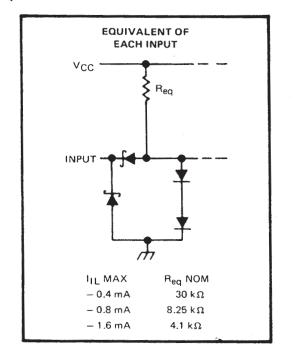
[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

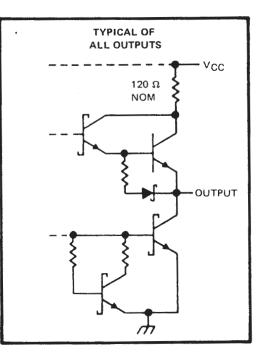
SN54LS78A . . . J OR W PACKAGE SN74LS78A . . . D OR N PACKAGE (TOP VIEW)

CLK 1 14 1K 1 PRE 2 13 10 1 J 3 12 10 VCC 4 11 GND CLR 5 10 2J 2 PRE 6 9 20 2K 7 8 20


[INPUTS					OUTPUTS			
[PRE	CLR	CLR CLK		К	٥	ā		
	L	н	Х	Х	X	Н	L		
	Н	٤	х	Х	X	L	н		
	L	L	х	х	X	H‡	н‡		
	Н	н	Ļ	L	L	00	$\overline{\alpha}_0$		
	н	Н	ŧ	н	L	н	L		
	н	н	ŧ	L	н	L	н		
	н	н	\$	н	н	TOGGLE			
ł	Н	H	н	Х	X	۵ ₀	āo		

[‡]This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.




SDLS200 – DECEMBER 1983 – REVISED MARCH 1988

logic diagram (positive logic)

schematics of inputs and outputs (continued)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage	
Operating free-air temperature range: SN54LS78A	- 55°C to 125°C
SN74LS78A	0°C to 70°C
Storage temperature range	65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

SDLS200 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			SN54LS78A			SN74LS78A				
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.75	V	
VIH	High-level input voltage		2			2			V	
VIL	Low-level input voltage				0.7			0.8	V	
ЮН	High-level output current				- 0.4			- 0.4	mA	
IOL	Low-level output current				4			8	mA	
fclock	Clock frequency	· · · · · · · · · · · · · · · · · · ·	0		30	0		30	MHz	
+	Pulse duration	CLK high	20			20				
tw		PRE or CLR low	25			25			ns	
+	Setup time before CLK 4	data high or low	20			20				
tsu	PRE or CLR in		20			20			ns	
^t h	Hold time-data after CLK+		0			0			ns	
TA	Operating free-air temperature		- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		S	SN54LS78A			SN74LS78A			
		TEST CONDITIONS'			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK		$V_{CC} = MIN,$	lı = - 18 mA				- 1.5			- 1.5	V
Vон		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.7 V,							
		IOH = - 0.4 mA			. 2.5	3.4					
		$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.8 V,				0.7	2.4		V
		1 _{OH} = - 0.4 mA						2.7	3.4		
		V _{CC} = MIN,	VIL = MAX,	V _{IH} = 2 V,		0.05	0.4		0.05	0.4	
VOL		IOL = 4 mA				0.25	0.4		0.25	0.4	v
νοι		$V_{CC} = MIN,$	VIL = MAX,	V _{IH} = 2 V,					0.35	0.5	v
		10L = 8 mA							0.35	0.5	
	J or K	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	
4	CLR						0.6			0.6	mA
-1	PRE						0.3			0.3	
	CLK						0.8			0.8	
	J or K	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	
ЧΗ	CLR						120			120	μA
	PRE						60			60	# ^
	CLK						160			160	
IIL	J or K	V _{CC} = MAX,	V _I = 0.4 V				- 0.4			- 0.4	
	CLR						- 1.6			- 1.6	mA
	PRE						- 0.8			- 0.8	
	CLK						- 1.6			- 1.6	
los§		V _{CC} = MAX,	See Note 4		- 20		- 100	- 20		- 100	mA
ICC (To	otal)	$V_{CC} = MAX,$	See Note 2			4	6		4	6	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with V_O ≈ 2.25 V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

SDLS200 – DECEMBER 1983 – REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	то (ОUТР́UT)	TEST CONDITIONS		MIN	түр	MAX	UNIT
fmax					30	45		MHz
^t PLH	PRE, CLR or CLK	Q or Q	$R_L = 2 k \Omega$,	CL = 15 pF		15	20	ns
tPHL						15	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

