- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- ‘122 and ‘LS122 Have Internal Timing Resistors

description

These d-c triggered multivibrators feature output pulse-duration control by three methods. The basic pulse time is programmed by selection of external resistance and capacitance values (see typical application data). The ‘122 and ‘LS122 have internal timing resistors that allow the circuits to be used with only an external capacitor, if so desired. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The ‘LS122 and ‘LS123 are provided enough Schmitt hysteresis to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond.

The R_{int} in nominall $10 \, \text{kOhm}$ for ‘122 and ‘LS122.

NOTES:

1. An external timing capacitor may be connected between C_{ext} and R_{ext}/C_{ext} (positive).
2. To use the internal timing resistor of ‘122 or ‘LS122, connect R_{int} to VCC.
3. For improved pulse duration accuracy and repeatability, connect an external resistor between R_{ext}/C_{ext} and VCC with R_{int} open-circuited.
4. To obtain variable pulse durations, connect an external variable resistance between R_{int} or R_{ext}/C_{ext} and VCC.
NOTE: Retrigger pulses starting before 0.22 C_{ext} (in picofrads) nanoseconds after the initial trigger pulse will be ignored and the output duration will remain unchanged.

FIGURE 1—TYPICAL INPUT/OUTPUT PULSES

See explanation of function tables on page

† These lines of the functional tables assume that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the set up.
Logic Diagram (Positive Logic)

'122, 'LS122

- **A1** (1)
- **A2** (2)
- **B1** (3)
- **B2** (4)
- **CLR** (5)

![Logic Diagram](image)

- \(R_{int} \)
- \(C_{ext} \)
- \(R_{ext}/C_{ext} \)

\(R_{int} \) is nominally 10 kΩ for '122 and 'LS122.

Logic Symbol

![Logic Symbol](image)

- **A1** (1)
- **A2** (2)
- **B1** (3)
- **B2** (4)
- **CLR** (5)
- **RI**
- **CX**

\(Q \)

Logic Diagram (Positive Logic) (Each Multivibrator)

'123, '130, 'LS123

- **A**
- **B**
- **CLR**

![Logic Diagram](image)

- \(R_{ext}/C_{ext} \)
- \(C_{ext} \)

Pin numbers shown are for D, J, N, and W packages.

Logic Symbol

![Logic Symbol](image)

- **1A** (1)
- **1B** (2)
- **1CLR** (3)
- **1Cext** (14)
- **1R_{ext}/C_{ext}** (15)
- **2A** (9)
- **2B** (10)
- **2CLR** (11)
- **2Cext** (6)
- **2R_{ext}/C_{ext}** (7)

\(Q \)

\(\bar{Q} \)

\(RX/CX \)

\(CX \)

\(1Q \)

\(2Q \)

\(1Q \)

\(2Q \)

†These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
schematics of inputs and outputs

'122, '123, '130 CIRCUITS

EQUIVALENT OF EACH INPUT

![Diagram of '122, '123, '130 CIRCUIT](image)

- Clear inputs: $R_{eq} = 2 \, k\Omega$ NOM
- Other inputs: $R_{eq} = 4 \, k\Omega$ NOM

TYPICAL OF ALL OUTPUTS

![Diagram of '122, '123, '130 CIRCUIT](image)

- 100 Ω NOM

'LS122, 'LS123 CIRCUITS

EQUIVALENT OF EACH INPUT

![Diagram of 'LS122, 'LS123 CIRCUIT](image)

- 17 $k\Omega$ NOM

TYPICAL OF ALL OUTPUTS

![Diagram of 'LS122, 'LS123 CIRCUIT](image)

- 120 Ω NOM

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

- Supply voltage, V_{CC} (see Note 1) .. 7 V
- Input voltage: '122, '123, '130 .. 5.5 V
 'LS122, 'LS123 .. 7 V
- Operating free-air temperature range: SN54' $-55^\circ C$ to $125^\circ C$
 SN74' ... $0^\circ C$ to $70^\circ C$
- Storage temperature range .. $-65^\circ C$ to $150^\circ C$

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54' MIN</th>
<th>SN54' NOM</th>
<th>SN54' MAX</th>
<th>SN74' MIN</th>
<th>SN74' NOM</th>
<th>SN74' MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V_{CC}</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>High-level output current, I_{OH}</td>
<td>-800</td>
<td></td>
<td></td>
<td>-800</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Low-level output current, I_{OL}</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Pulse duration, t_w</td>
<td>40</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>External timing resistance, R_{ext}</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>External capacitance, C_{ext}</td>
<td>No restriction</td>
<td>No restriction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Wiring capacitance at R_{ext}/C_{ext} terminal</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Operating free-air temperature, T_A</td>
<td>-55</td>
<td>125</td>
<td>0</td>
<td>70</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

electrical characteristics over recommended free-air operating temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>'122 MIN</th>
<th>'122 TYP</th>
<th>'122 MAX</th>
<th>'123 MIN</th>
<th>'123 TYP</th>
<th>'123 MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH} High-level input voltage</td>
<td>$V_{CC} = \min$, $I_I = -12\ mA$</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage</td>
<td></td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td></td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_I Input current at maximum input voltage</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{IH} High-level input current</td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL} Low-level input current</td>
<td></td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current§</td>
<td></td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{CC} Supply current (quiescent or triggered)</td>
<td>$V_{CC} = \max$, See Note 5</td>
<td>23</td>
<td>36</td>
<td>46</td>
<td>56</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡ All typical values are at $V_{CC} = 5\ V$, $T_A = 25\ ^°C$.
§ Not more than one output should be shorted at a time.

NOTES:
5. Ground C_{ext} to measure V_{OH} at Q, V_{OL} at \overline{Q}, or I_{OS} at \overline{Q}. C_{ext} is open to measure V_{OH} at Q, V_{OL} at \overline{Q}, or I_{OS} at \overline{Q}.
6. Quiescent I_{CC} is measured (after clearing) with 4.5 V applied to all clear and A inputs, B inputs grounded, all outputs open and $R_{ext} = 25\ \text{k}\Omega$, R_{int} of '122 is open.
7. I_{CC} is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $C_{ext} = 0.02\ \text{µF}$, and $R_{ext} = 25\ \text{k}\Omega$, R_{int} of '122 is open.

switching characteristics, $V_{CC} = 5\ V$, $T_A = 25\ ^°C$, see note 8

<table>
<thead>
<tr>
<th>PARAMETER††</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>'122, '130 MIN</th>
<th>'122, '130 TYP</th>
<th>'122, '130 MAX</th>
<th>'123 MIN</th>
<th>'123 TYP</th>
<th>'123 MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}</td>
<td>A</td>
<td>Q</td>
<td>$C_{ext} = 0$, $R_{ext} = 5\ \text{k}\Omega$, $C_L = 15\ \text{pF}$, $R_L = 400\ \Omega$</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>33</td>
<td>33</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>A</td>
<td>Q</td>
<td>$C_{ext} = 0$, $R_{ext} = 5\ \text{k}\Omega$, $C_L = 15\ \text{pF}$, $R_L = 400\ \Omega$</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Clear</td>
<td>Q</td>
<td>$C_{ext} = 0$, $R_{ext} = 5\ \text{k}\Omega$, $C_L = 15\ \text{pF}$, $R_L = 400\ \Omega$</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>36</td>
<td>36</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{wQ} (min)</td>
<td>A or B</td>
<td>Q</td>
<td>$C_{ext} = 1000\ \text{pF}$, $R_{ext} = 10\ \text{k}\Omega$, $C_L = 15\ \text{pF}$, $R_L = 400\ \Omega$</td>
<td>3.08</td>
<td>3.42</td>
<td>3.76</td>
<td>2.76</td>
<td>3.03</td>
<td>3.37</td>
<td>µs</td>
</tr>
</tbody>
</table>

†† t_{PLH} = propagation delay time, low-to-high-level output
§§ t_{PHL} = propagation delay time, high-to-low-level output
$\bullet t_{wQ}$ = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54LS'</th>
<th>SN74LS'</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, V_{CC}</td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>High-level output current, I_{OH}</td>
<td>-400 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-level output current, I_{OL}</td>
<td>4 mA</td>
<td></td>
<td>8 mA</td>
</tr>
<tr>
<td>Pulse duration, t_{PW}</td>
<td>40 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External timing resistance, R_{ext}</td>
<td>5 kΩ</td>
<td></td>
<td>180 kΩ</td>
</tr>
<tr>
<td>External capacitance, C_{ext}</td>
<td>No restriction</td>
<td>No restriction</td>
<td></td>
</tr>
<tr>
<td>Wiring capacitance at R_{ext}/C_{ext} terminal</td>
<td>50 pF</td>
<td></td>
<td>50 pF</td>
</tr>
<tr>
<td>Operating free-air temperature, T_{A}</td>
<td>-55°C</td>
<td>125°C</td>
<td>0°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS†</th>
<th>SN54LS'</th>
<th>SN74LS'</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH} High-level input voltage</td>
<td>$V_{CC} = \text{MIN}$, $I_{I} = -18 , \text{mA}$</td>
<td>2.5 V</td>
<td>3.5 V</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL} Low-level input voltage</td>
<td>$V_{CC} = \text{MIN}$, $V_{IH} = 2 , \text{V}$, $V_{IL} = V_{IH \text{max}}$</td>
<td>0.25 V</td>
<td>0.4 V</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL} Low-level output voltage</td>
<td>$V_{CC} = \text{MIN}$, $V_{I} = 7 , \text{V}$</td>
<td>0.1 mA</td>
<td>0.1 mA</td>
<td>mA</td>
</tr>
<tr>
<td>I_{I} Input current at maximum input voltage</td>
<td>$V_{CC} = \text{MAX}$, $V_{I} = 7 , \text{V}$</td>
<td>20 mA</td>
<td>20 mA</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OH} High-level input current</td>
<td>$V_{CC} = \text{MAX}$, $V_{I} = 2.7 , \text{V}$</td>
<td>20 mA</td>
<td>20 mA</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OL} Low-level input current</td>
<td>$V_{CC} = \text{MAX}$, $V_{I} = 0.4 , \text{V}$</td>
<td>-0.4 mA</td>
<td>-0.4 mA</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OS} Short-circuit output current‡</td>
<td>$V_{CC} = \text{MAX}$</td>
<td>-20 mA</td>
<td>-100 mA</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CC} Supply current (quiescent or triggered)</td>
<td>$V_{CC} = \text{MAX}$, See Note 13</td>
<td>5 LS122</td>
<td>12 LS123</td>
<td>mA</td>
</tr>
</tbody>
</table>

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
‡All typical values are at $V_{CC} = 5 \, \text{V}$, $T_{A} = 25^\circ\text{C}$.
§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5 \, \text{V}$, $T_{A} = 25^\circ\text{C}$ (See Note 8)

<table>
<thead>
<tr>
<th>Parameter†</th>
<th>FROM (INPUT)</th>
<th>TO (OUTPUT)</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}</td>
<td>A or B</td>
<td>Q</td>
<td>$C_{ext} = 0$, $C_{L} = 15 , \text{pF}$, $R_{L} = 2 , \text{kΩ}$</td>
<td>23 ns</td>
<td>33 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>A</td>
<td>Q</td>
<td>$C_{ext} = 0$, $C_{L} = 15 , \text{pF}$, $R_{L} = 2 , \text{kΩ}$</td>
<td>23 ns</td>
<td>44 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>B</td>
<td>Q</td>
<td>$C_{ext} = 100 , \text{pF}$, $R_{ext} = 10 , \text{kΩ}$, $R_{L} = 2 , \text{kΩ}$</td>
<td>116 ns</td>
<td>200 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†t_{PLH} = propagation delay time, low-to-high-level output
‡t_{PW} = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.
TYPICAL APPLICATION DATA FOR '122, '123, '130

For pulse durations when \(C_{\text{ext}} \leq 1000 \) pF, see Figure 4.

The output pulse duration is primarily a function of the external capacitor and resistor. For \(C_{\text{ext}} > 1000 \) pF, the output pulse duration \(t_w \) is defined as:

\[
t_w = K \cdot R_T \cdot C_{\text{ext}} \left(1 + \frac{0.7}{R_T} \right)
\]

where

- \(K \) is 0.32 for '122, 0.28 for '123 and '130
- \(R_T \) is in k\(\Omega \) (internal or external timing resistance.)
- \(C_{\text{ext}} \) is in pF
- \(t_w \) is in ns

To prevent reverse voltage across \(C_{\text{ext}} \), it is recommended that the method shown in Figure 2 be employed when using electrolytic capacitors and in applications utilizing the clear function. In all applications using the diode, the pulse duration is:

\[
t_w = K_D \cdot R_T \cdot C_{\text{ext}} \left(1 + \frac{0.7}{R_T} \right)
\]

where

- \(K_D \) is 0.28 for '122, 0.25 for '123 and '130
- \(R_{\text{ext}} \leq 0.6 \cdot R_{\text{ext, max}} \)

(See recommended operating conditions for \(R_{\text{ext, max}} \).)

Any silicon switching diode such as 1N3064 or equivalent.

Applications requiring more precise pulse durations (up to 28 seconds) and not requiring the clear feature can best be satisfied with the '121.

\[\text{TYPICAL OUTPUT PULSE DURATION VS EXTERNAL TIMING CAPACITANCE}\]

\[\text{FIGURE 4}\]

\[\text{†These values of resistance exceed the maximum recommended for use over the full temperature range of the SN54 circuits.}\]
TYPICAL APPLICATION DATA FOR 'LS122, 'LS123

The basic output pulse duration is essentially determined by the values of external capacitance and timing resistance. For pulse durations when \(C_{\text{ext}} \leq 1000 \) pF, use Figure 6, or use Figure 7 where the pulse duration may be defined as:

\[
t_w = K \cdot R_T \cdot C_{\text{ext}}
\]

When \(C_{\text{ext}} \geq 1 \) \(\mu F \), the output pulse width is defined as:

\[
t_w = 0.33 \cdot R_T \cdot C_{\text{ext}}
\]

For the above two equations, as applicable:

- \(K \) is multiplier factor, see Figure 7
- \(R_T \) is in k\(\Omega \) (internal or external timing resistance)
- \(C_{\text{ext}} \) is in pF
- \(t_w \) is in ns

For maximum noise immunity, system ground should be applied to the \(C_{\text{ext}} \) node, even though the \(C_{\text{ext}} \) node is already tied to the ground lead internally. Due to the timing scheme used by the 'LS122 and 'LS123, a switching diode is not required to prevent reverse biasing when using electrolytic capacitors.

'TLS122, 'LS123
TYPICAL OUTPUT PULSE DURATION
VS
EXTERNAL TIMING CAPACITANCE

\[VCC = 5 \text{ V} \]
\[TA = 25^\circ \text{C} \]

\[R_T = 260 \text{ k}\Omega \]
\[R_T = 160 \text{ k}\Omega \]
\[R_T = 80 \text{ k}\Omega \]
\[R_T = 40 \text{ k}\Omega \]
\[R_T = 20 \text{ k}\Omega \]
\[R_T = 10 \text{ k}\Omega \]
\[R_T = 5 \text{ k}\Omega \]

\[^t \text{This value of resistance exceeds the maximum recommended for use over the full temperature range of the SN54LS circuits.} \]

FIGURE 6
TYPICAL APPLICATION DATA FOR 'LS122, 'LS123†

MULTIPLIER FACTOR vs EXTERNAL CAPACITOR

(K IS INDEPENDENT OF R)

FIGURE 7

DISTRIBUTION OF UNITS vs OUTPUT PULSE DURATION

VCC = 5 V
TA = 25°C

MILDEN
- 20%

+ 20% - ('LS122)

- 8%

+ 8% - ('LS122/
'LS123)

MEDIAN
99% OF UNITS

t_w(out) — Output Pulse Duration

FIGURE 8

VARIATION IN OUTPUT PULSE DURATION vs SUPPLY VOLTAGE

C_ext = 60 pF
R_ext = 10 K ohms
TA = 25°C

FIGURE 9

VARIATION IN OUTPUT PULSE DURATION vs FREE-AIR TEMPERATURE

C_ext = 60 pF
R_T = 10 K ohms

FIGURE 10

NOTE 14: For the 'LS122, the internal timing resistor, R_INT, was used. For the 'LS122/123, an external timing resistor was used for R_T.

†Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS122 and SN54LS123 only.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>Low Power</td>
<td>Telephony</td>
</tr>
<tr>
<td>Wireless</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

www.ti.com/audiowww.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-7603901VEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>5962-7603901VFA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>7603901EA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>7603901FA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>JM38510/01203BEA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>JM38510/31401B2A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>JM38510/31401BEA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>JM38510/31401BFA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN54122J</td>
<td>OBSOLETE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td></td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN54123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN54LS123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74122N</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td></td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN74123N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74123N3</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74123NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74LS122D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122DE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74LS122N3</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td></td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN74LS122NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74LS122NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122NSRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS122NSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123DE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
</tbody>
</table>
PACKAGE OPTION ADDENDUM

18-Sep-2008

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS123DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123J</td>
<td>OBSOLETE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN74LS123N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SN74LS123N3</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>16</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SN74LS123NE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SN74LS123NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
</tr>
<tr>
<td>SNJ54122J</td>
<td>OBSOLETE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td>Call TI</td>
</tr>
<tr>
<td>SNJ54123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SNJ54123W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SNJ54LS123FK</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SNJ54LS123J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42 SNPB</td>
<td>N / A for Pkg Type</td>
</tr>
<tr>
<td>SNJ54LS123W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>16</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **Eco Plan -** The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD:** The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) **MSL, Peak Temp. --** The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

- Reel Diameter

TAPE DIMENSIONS

- K0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- A0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- Pocket Quadrants
- Sprocket Holes
- User Direction of Feed

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS122DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS122NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS123DR</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>10.3</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>SN74LS123NSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN74LS122DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
<tr>
<td>SN74LS122NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
<tr>
<td>SN74LS123DR</td>
<td>SOIC</td>
<td>D</td>
<td>16</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
</tr>
<tr>
<td>SN74LS123NSR</td>
<td>SO</td>
<td>NS</td>
<td>16</td>
<td>2000</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
MECHANICAL DATA

NS (R-PDSO-G)**

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

<table>
<thead>
<tr>
<th>Pins</th>
<th>14</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>10,50</td>
<td>10,50</td>
<td>12,90</td>
<td>15,30</td>
</tr>
<tr>
<td>A MIN</td>
<td>9,90</td>
<td>9,90</td>
<td>12,30</td>
<td>14,70</td>
</tr>
</tbody>
</table>

NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

<table>
<thead>
<tr>
<th>NO. OF TERMINALS **</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>20</td>
<td>0.342(8.69)</td>
<td>0.358(9.09)</td>
</tr>
<tr>
<td>28</td>
<td>0.442(11.23)</td>
<td>0.458(11.63)</td>
</tr>
<tr>
<td>44</td>
<td>0.640(16.26)</td>
<td>0.660(16.76)</td>
</tr>
<tr>
<td>52</td>
<td>0.739(18.78)</td>
<td>0.761(19.32)</td>
</tr>
<tr>
<td>68</td>
<td>0.938(23.83)</td>
<td>0.962(24.43)</td>
</tr>
<tr>
<td>84</td>
<td>1.141(28.99)</td>
<td>1.165(29.59)</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .005 (0.15) per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed .017 (0.43) per side.
E. Reference JEDEC MS-012 variation AB.

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 CDFP1–F16 and JEDEC MO–092AC
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
\[\text{Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .005 (0.15) per end.}\]
C. Body width does not include interlead flash. Interlead flash shall not exceed .017 (0.43) per side.
D. Reference JEDEC MS-012 variation AC.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal wall and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
N (R–PDIP–T**) PLASTIC DUAL–IN–LINE PACKAGE

16 PINs SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A MAX</td>
<td>0.775 (19.69)</td>
<td>0.775 (19.69)</td>
<td>0.920 (23.37)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745 (18.92)</td>
<td>0.745 (18.92)</td>
<td>0.850 (21.59)</td>
<td>0.940 (23.88)</td>
</tr>
</tbody>
</table>

MS–001 VARIATION

AA
BB
AC
AD

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
\[\text{Falls within JEDEC MS–001, except 18 and 20 pin minimum body length (Dim A).}\]
\[\text{The 20 pin end lead shoulder width is a vendor option, either half or full width.}\]

4040049/E 12/2002

Texas Instruments
www.ti.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers amplifier.ti.com
Data Converters dataconverter.ti.com
DSP dsp.ti.com
Clocks and Timers www.ti.com/clocks
Interface interface.ti.com
Logic logic.ti.com
Power Mgmt power.ti.com
Microcontrollers microcontroller.ti.com
RFID www.ti-rfid.com
RF/IF and ZigBee® Solutions www.ti.com/igrf

Applications
Audio www.ti.com/audio
Automotive www.ti.com/automotive
Broadband www.ti.com/broadband
Digital Control www.ti.com/digitalcontrol
Medical www.ti.com/medical
Military www.ti.com/military
Optical Networking www.ti.com/opticalnetwork
Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated